Introdução

Carbono

- Não metálico.
- Não magnético.
- Dois isótopos estáveis (C₁₂ e C₁₃) quatro radioátivos (C₁₀, C₁₁, C₁₄, C₁₅).
- Grande reatividade.
- Quatro elétrons na camada de valência.
- Forma diversas cadeias, longas ou curtas.
- Possui diversas formas alotrópicas.

- Sete formas alotrópicas cristalinas: grafite (alfa e beta), diamante, diamante hexagonal (Lonsdaleíta que é uma forma detectada em meteoritos), caoíta, carbono (VI) e os fulerenos.
- Sete formas alotrópicas amorfas: DLC, Wiskers de grafite, fibras de carbono, negro de fumo, carbonita, carbono vítreo, carbono amorfo, carbono poroso.

Novas formas do Carbono

Fulerenos, 1985

Nanotubos de Carbono, 1991

"Espuma de carbono" 2002

Estruturas do Carbono

Dimensão	0-D	1-D	2-D	3-D
Isômero	C ₆₀	Nanotubo	Grafite	Diamante
	Fulerenos	Carbina	Fibra	C-amorfo
Hibridização	sp^2	sp ² (sp)	sp^2	sp^3
Densidade	1,72	1,2-2,0	2,26	3.52
(g/cm^3)		2,68-3.13	~ 2	2-3
Comprimento	1.40 (C=C)	1.44 (C=C)	1.42 (C=C)	1.54 (C-C)
da ligação (Å)	1.46 (C-C)		1.44 (C=C)	
Propriedades	Semicondutor	Metal ou	Semi-metal	Isolante
eletrônicas	E_{gap} =1,9 eV	semicondutor		E_{gap} =5,47 eV
		E _{gap} → variável		

Diagrama de fases do Carbono

Microeletrônica

- Processo planar.
- Atualmente baseado em silício.
- Principal componente é o MOS-FET.
- Principal tecnologia CMOS.
- Principal dispositivo é o inversor CMOS.

MOS - FET

Características Parasitárias de um transistor MOS-FET

Inversor CMOS

Principais necessidades para a evolução do Inversor CMOS

- Redução da capacitância parasítaria.
- Redução da potência de chaveamento.
- Redução da tensão de chaveamento.

Circuitos CMOS

 Redução da capacitância entre níveis de conexão.

• Aumento da velocidade de chaveamento.

 Redução da potência dissipada.

 Melhor isolação entre dispostivos. Eletrônica e Microeletrônica baseadas em Carbono Eletrônica e Microeletrônica baseadas em Carbono

Eletrônica e Microeletrônica baseadas em filmes de Diamante

Filmes de Diamante

O uso de filmes finos de diamante tem sido de interesse nas últimas duas décadas devido a diversas características:

- Inerte quimicamente;
- Alta resistência mecânica;
- Alta condutividade térmica (21 W/cm.K), (Si 1,5 W/cm.K);
- Possibilidade de deposição a partir de 450 °C;
- Alta dureza (100 GPa);
- Extremamente compatível com a tecnologia baseada em silício;
- Resistente a radiação eletromagnética;
- Resistente a temperaturas elevadas (> 4000 °C) em ambiente não oxidante.

Aplicações dos filmes de Diamante

- Substrato para dispositivos híbridos;
- Janelas para displays em flat panels;
- Encapsulamento para eletrônica de alta potência e optoletrônica;
- Isolação para circuitos de alta velocidade;
- Encapsulamento para lasers de estado sólido;
- Substrato para dispositios de alta temperatura;
- Substratos inertes a radiação;
- Lâminas SOI (Silicon On Insulator);
- Eletrodos para emissores de campo;
- Material para transistores de efeito de campo (D-FET).

Propriedades elétricas dos filmes de Diamante

Propriedade	Diamante	Silício
Band Gap	5,45 eV	1,12 eV
Mobilidade eletrônica	2000 cm ² / Vs	1420 cm ² / Vs
Mobilidade de lacunas	1800 cm² / Vs	470 cm² / Vs
Tensão de ruptura dielétrica	10 ⁷ V/cm	10 ⁵ V/cm
Resistividade	10 ¹⁶ Ω.cm	3 x 10 ⁵ Ω.cm
Constante dielétrica	5,7	7,6
Energia para geração de pares	13 a 16 eV	3,6 eV

Tipos de dispositivos D-FET

CI-MOS fabricado em substrato de Diamante

(Apollo Diamond Inc.USA)

Diodo baseado em Diamante

Kohn, E.; Denisenko, A.; "Concepts for diamond electronics", Thin Solid Films (2006).

Diodo baseado em Diamante

Kohn, E.; Denisenko, A.; "Concepts for diamond electronics", Thin Solid Films (2006).

Diodo de emissão lateral baseado em filmes de Diamante

Kang, W. P.; Davidson, J. L.; Wong, Y. M.; Holms, K.; "Diamond vacuum field emission devices", Diamond and Related Materials, v. 13, pp. 975-981, 2004.

Diodo de emissão lateral baseado em filmes de Diamante

Kang, W. P.; Davidson, J. L.; Wong, Y. M.; Holms, K.; "Diamond vacuum field emission devices", Diamond and Related Materials, v. 13, pp. 975-981, 2004.

Nano-FET baseado em Diamante

Nano-FET com porta de a) 100 nm e b) 1 nm.

Raveriu, C.; Rusu, A.; Udrea, F.; Raveriu, F.; "Simulations results of same diamond on insolator nano-MISFETs"; Diamond and Related Materials, v. 15, pp. 777-782, 2006.

Nano-FET baseado em Diamante

Raveriu, C.; Rusu, A.; Udrea, F.; Raveriu, F.; "Simulations results of same diamond on insolator nano-MISFETs"; Diamond and Related Materials, v. 15, pp. 777-782, 2006.

Nano-FET baseado em Diamante

Raveriu, C.; Rusu, A.; Udrea, F.; Raveriu, F.; "Simulations results of same diamond on insolator nano-MISFETs"; Diamond and Related Materials, v. 15, pp. 777-782, 2006.

Emissores de campo baseados em Diamante

Davidson, J. et al.; "Diamond field emission devices", Diamond and Related Materials, v. 12, pp. 429-433, 2003.

Emissores de campo baseados em Diamante

Davidson, J. et al.; "Diamond field emission devices", Diamond and Related Materials, v. 12, pp. 429-433, 2003.

Davidson, J. et al.; "Diamond field emission devices", Diamond and Related Materials, v. 12, pp. 429-433, 2003.

Davidson, J. et al.; "Diamond field emission devices", Diamond and Related Materials, v. 12, pp. 429-433, 2003.

Davidson, J. et al.; "Diamond field emission devices", Diamond and Related Materials, v. 12, pp. 429-433, 2003.

Davidson, J. et al.; "Diamond field emission devices", Diamond and Related Materials, v. 12, pp. 429-433, 2003.

*

Eletrônica e Microeletrônica baseadas em Carbono

Eletrônica e Microeletrônica baseadas em filmes de DLC

DLC (Diamond-like Carbon)

- Baseado em hibridações sp³ e sp²;
- Apresenta características que podem variar de um isolante a um semicondutor;
- Baixa constante dielétrica (< 3,0);
- Alta constante dielétrica quando dopado (> 6,0);
- Alta resistividade (10¹⁶ Ω .cm);
- Alta inércia química;
- Alta dureza mecânica (10 a 15 GPa).

Dielétricos de baixo k baseados em DLC

IBM CMOS 7S Cu metallisation

Dielétricos de baixo k baseados em DLC

IBM CMOS 7S Cu metallisation

 $\label{eq:DLC-k} \begin{array}{l} \mathsf{DLC} \to \mathsf{k} = 2,8 \\ \\ \mathsf{DLC}\text{-}\mathsf{F} \to \mathsf{k} = 2,4 \end{array}$

Chen, C. W.; Robertson, J.; Journal of Non Crystalline Solids, v. 227/228, pp. 602, 1998.

Robertson, J.; Philosophic Magnetic-B, v. 76, pp. 334, 1997.

Koizumi, S.; et al.; Applied Physic Letters, vol. 71, pp. 1065, 1997.

N(E)

Koizumi, S.; et al.; Applied Physic Letters, vol. 71, pp. 1065, 1997.

N(E)

Koizumi, S.; et al.; Applied Physic Letters, vol. 71, pp. 1065, 1997.

Emissores de campo baseados em filmes de DLC

Robertson, J.; Thin Solid Films, v. 296, pp. 61, 1997.

Emissores de campo baseados em filmes de DLC

Robertson, J.; Thin Solid Films, v. 296, pp. 61, 1997.

Gröning, O.; Journal of Vacuum Science Technology B, v. 17, pp. 1064, 1999.

Emissores de campo baseados em filmes de DLC

Robertson, J.; Thin Solid Films, v. 296, pp. 61, 1997.

Gröning, O.; Journal of Vacuum Science Technology B, v. 17, pp. 1064, 1999.

Emissores planos de campo baseados em filmes de DLC

Robertson, J.; Thin Solid Films, v. 296, pp. 61, 1997.

Emissores planos de campo baseados em filmes de DLC

Robertson, J.; Thin Solid Films, v. 296, pp. 61, 1997. Zhao, J. P.; Applied Physics Letters, v. 76, pp. 191, 2000.

2cm

Estado da Arte em Microeletrônica Baseada em Carbono

Microeletrônica Baseada em Nanotubos de Carbono

Propriedades dos nanotubos de carbono

Propriedades	Nano Tubos de Carbono
Característica elétrica	Metal ou Semicondutor
Mecanismo de transporte	Balístico
Gap de energia	Eg [eV] =1/d
Condutividade térmica	6000 W/ m.K
Diâmetro	1 a 100 nm
Comprimento	> 1 mm
Superfície	> 1500 m²/g
Elasticidade	1000 Gpa
Transporte	Ambipolar

Aplicações dos nanotubos de carbono em eletrônica e microeletrônica

- Transistores de efeito de campo (CNT-FET);
- Conexões intra e inter-dispositivos;
- Microeletrônica em vácuo;
- Emissores de campo;
- Eletrônica de potência.

Densidade de estado nos nanotubos

Wolfgang, H.; et al.; "Carbon nanotube application in microelectronics"; IEEE Transactions on Components and Packaging Technologies, v. 27, n. 4, pp. 629, 2004

Crescimento dos nanotubos

From Prof. Endo Japão

condução nos nanotubos

CNT-FET proposto por IBM

Wind, S. J.; et al.; "Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes", Applied Physics Letters, v. 80, n. 20, pp. 3817-3819, 2002.

Funcionamento do CNT– FET

Funcionamento do CNT-FET

Funcionamento do CNT-FET

Funcionamento do CNT-FET

Comparação das principais características dos CNT-FETs e MOSFETs

Característica	CNT-FET	Fin-FET	MOS-FET
Corrente Ids (mA/ μm)	3,5	0,45	0,215
Transcondutância	6666	500	360
Resistência em condução (Ω/μm)	360	1442	4186
Comprimento de canal (nm)	2000	10	14
Corrente em corte (nA/µm)	1	10	100

Características dos nanotubos de carbono metálicos

- Ultra alta densidade de corrente 10¹⁰ A/cm² (Cobre–10⁷ A/cm²);
- Não apresenta eletromigração;
- Baixa resistência ao transporte balístico (fator 15 quando comparado ao cobre);
- Não necessita de barreira de difusão.

Interconexões em nanotubos de carbono

Interconexões em nanotubos de carbono

Interconexões em nanotubos de carbono

Interconexões em nanotubos de carbono

Wolfgang, H.; et al.; "Carbon nanotube application in microelectronics"; IEEE Transactions on Components and Packaging Technologies, v. 27, n. 4, pp. 629, 2004

Microeletrônica em vácuo

Lee, S-B.; et al.; "Fabrication of carbon nanotube lateral field emitters", Nanotechnology, v. 14, pp. 192-195, 2003.

Microeletrônica em vácuo

Lee, S-B.; et al.; "Fabrication of carbon nanotube lateral field emitters", Nanotechnology, v. 14, pp. 192-195, 2003.

Emissores de campo

Parameters	Conventional Material	CNTs
Low Threshold	5-100 V/µm	1-3 V/µm
Stability at high current density	Unstable > 30mA/cm ²	Stable at 1A/ cm ²
Low work function	Intrinsic property of material	
Luminance	х	2x
Large field enhancement factor	Low	High

Protótipo de LCD baseado em nanotubos (Sansung 2002)

Perspectivas Futuras

Small 2005, v. 1, n. 4

5. Interconects

6. Transistors

7. The vertical CNTFET

8. The power CNTFET

Small 2005, v. 1, n. 4

5. Interconects
6. Transistors
7. The vertical CNTFET
8. The power

CNTFET

Small 2005, v. 1, n. 4

Fin-FET baseado em nanotubos

Fin-FET em silício

Fin- FET em silício

IBM unveils world's smallest transistor

09:05 Monday 9th December 2002 John G. Spooner, CNET News.com

IBM unveils world's smallest transistor

09:05 Monday 9th December 2002 John G. Spooner, CNET News.com

Nanotube-transistor

Proposta de VCNT-FETs

Grahan, A. P.; et al.; "Carbon nanotubes for microelectronics ?", Small 2005, v. 1, n. 4, pp. 382-390

VCNT-FETs

G.S. Düsberg, CPR NP 305. Heraeus Seminar Nov. 2003

Interconexões em nanotubos

Grahan, A. P.; et al.; "Carbon nanotubes for microelectronics ?", Small 2005, v. 1, n. 4, pp. 382-390

Interconexões em nanotubos

G.S. Düsberg, CPR NP 305. Heraeus Seminar Nov. 2003

Infineon

Substrate

Estruturas baseadas em CNTs

Grahan, A. P.; et al.; "Carbon nanotubes for microelectronics ?", Small 2005, v. 1, n. 4, pp. 382-390

Estruturas baseadas em CNTs

3-d scaling

Crescimento em grandes áreas

Terranova, M. L.; Sessa, V.;Rossi, M.; "The world of carbon nanotubes: An overview of CVD growth methodologies", Chemical Vapor Deposition, v. 12, pp. 315-325, 2006.

Filmes de Carbono Amorfo Hidrogenado (Diamond-like Carbon)

Características elétricas dos filmes de DLC depositados por *sputtering* reativo com H₂ e Ar

Constante dielétricak = 3,0 (SiO2= 3,8)Resistividade do a-C $\rho = 2 \times 10^6 \Omega.cm$ Resistividade do a-C:H $\rho = 9 \times 10^9 \Omega.cm$

M. Massi, H. S. Maciel, C. Otani, R. D. Mansano, P. Verdonck; "*Electrical and structural characterization of DLC films deposited by magnetron sputtering*", **Journal of Materials Science- Materials in Electronics**, vol.12, n. (4-6), pp. 343-346, junho de 2001.

Características elétricas dos filmes de DLC depositados por *sputtering* reativo com CH₄ e Ar

- Constante dielétrica
- Resistividade do a-C
- Resistividade do a-C:H

k = 1,7 (SiO₂= 3,8) ρ = 2 x 10⁶ Ω.cm ρ = 9 x 10¹² Ω.cm

R. D. Mansano, M. Massi, L. S. Zambom, P. Verdonck, P. M. Nogueira, H. S. Maciel, C. Otani; *"Effects of methane content on the characteristics of diamond like carbon films produced by sputtering"*, **Thin Solid Films**, vol. 373, pp. 243 – 246, 2000.

Características elétricas dos filmes de DLC depositados por *sputtering* reativo com CH₄ e aditivos

Constante dielétrica (C:H-N)k = 7,0 (SiO2= 3,8)Constante dielétrica (C:H-F)k = 5,0Resistividade (C:H-N) $\rho = 2 \times 10^{11} \Omega.cm$ Resistividade (C:H-F) $\rho = 6 \times 10^{14} \Omega.cm$

R. D. Mansano, A. P. Mousinho, L. S. Zambom, M. S. Medeiros, P. Verdonck, M. Massi; "*The influence of additives on electrical characteristics of DLC films deposited by reactive sputtering*", **19th International Symposium of Microelectronics technology and Devices – SBMICRO 2004**.

R. D. Mansano, A. P. Mousinho, L. S. Zambom, M. S. Medeiros, P. Verdonck, M. Massi; "*The influence of additives on electrical characteristics of DLC films deposited by reactive sputtering*", **19th International Symposium of Microelectronics technology and Devices – SBMICRO 2004**.

R. D. Mansano, A. P. Mousinho, L. S. Zambom, M. S. Medeiros, P. Verdonck, M. Massi; "*The influence of additives on electrical characteristics of DLC films deposited by reactive sputtering*", **19th International Symposium of Microelectronics technology and Devices – SBMICRO 2004**.

R. D. Mansano, A. P. Mousinho, L. S. Zambom, M. S. Medeiros, P. Verdonck, M. Massi; "*The influence of additives on electrical characteristics of DLC films deposited by reactive sputtering*", **19th International Symposium of Microelectronics technology and Devices – SBMICRO 2004**.

R. D. Mansano, A. P. Mousinho, L. S. Zambom, M. S. Medeiros, P. Verdonck, M. Massi; "*The influence of additives on electrical characteristics of DLC films deposited by reactive sputtering*", **19th International Symposium of Microelectronics technology and Devices – SBMICRO 2004**.

Características elétricas dos filmes de DLC depositados por HDPCVD com CH₄ puro

Constante dielétrica (a-C:H) Resistividade (a-C:H)

. *Óxido de Silício

k = 2,0 e 6,0 ρ = 2 x 10¹⁴ Ω.cm

k = 3,8 ρ = 8 x 10¹⁴ Ω cm

A. P. Mousinho; "Desenvolvimento e aplicação de processos com plasmas de alta densidade para a deposição de filmes de carbono", Tese de Doutorado, Escola Politécnica, 2005.

Características elétricas dos filmes de DLC depositados por HDPCVD

Constante dielétrica (C:H-N)k = 1,5Constante dielétrica (C:H-F)k = 1,5Resistividade (C:H-N) $\rho = 4 \times 10^{12} \Omega.cm$ Resistividade (C:H-F) $\rho = 6 \times 10^{15} \Omega.cm$

*Óxido de Silício

k = 3,8 ρ = 8 x 10¹⁴ Ω.cm

A. P. Mousinho; "Desenvolvimento e aplicação de processos com plasmas de alta densidade para a deposição de filmes de carbono", Tese de Doutorado, Escola Politécnica, 2005. Filmes de Carbono Nanoestruturado

Propriedades fotoelétricas dos filmes de carbono nanoestruturado

Característica	CH ₄ puro	CH ₄ + Ar	CH ₄ +N ₂
I _{escuro} (A)	2 x 10 ⁻⁹	2 x 10 ⁻⁹	2 x 10 ⁻⁷
I _{claro} (A)	2 x 10 ⁻⁵	2 x 10 ⁻⁹	2 x 10 ⁻⁴
Picos (nm)	540 e 630	520 e 600	500, 550 e 650

M. S. Medeiros, R. D. Mansano, A. P. Mousinho; "*Photoelectric effects of nanostructured amorphous carbon films*", **Microelectronics Journal**, n. 36, pp 981 – 984, 2005.

Propriedades fotoelétricas dos filmes de carbono após tratamento com plasma

Característica	CH ₄ puro	CH ₄ + Ar	CH ₄ +N ₂
I _{escuro} (A)	2 x 10 ⁻⁹	2 x 10 ⁻⁹	2 x 10 ⁻⁶
I _{claro} (A)	4 x10 ⁻⁵	2 x 10 ⁻⁹	8 x 10 ⁻⁵
Picos (nm)	540 e 650	590	Espectro contínuo

M. S. Medeiros, R. D. Mansano, A. P. Mousinho; "*Photoelectric effects of nanostructured amorphous carbon films*", **Microelectronics Journal**, n. 36, pp 981 – 984, 2005.

Deposição de nanotubos de carbono

Nanotubos de carbono depositados por sputtering reativo com plasma de CH₄ e N₂

