

Modelos de fluxo de caixa descontado para o patrimônio líquido Princípio básico • Esses modelos utilizam valores de fluxo de caixa descontado para atribuir valor (valorar) ao patrimônio líquido de uma empresa de forma direta. Dividendos durante o período de manutenção da ação e uma valorização da ação e uma valorização da ação. Valorização da ação no momento da venda.

☐ Modelo de desconto de dividendos

Parte da premissa de que o valor de uma ação é o valor presente dos dividendos que se espera que ela gere.

Valor da ação =
$$\sum_{n=1}^{n=\infty} \frac{Div_t}{(1+Ke)^n}$$

Onde: Div = Valor dos dividendos esperados;

Ke = Custo do capital próprio (PL);

n = Número de períodos da projeção.

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozini

Modelos de fluxo de caixa descontado para o patrimônio líquido

□ Pontos fortes dos modelos de desconto de dividendos

Lógica intuitiva

Os dividendos representam o único fluxo de caixa da empresa que é tangível aos investidores, já que as estimativas de FCFE e FOCF não podem ser reivindicadas pelos acionistas.

Simplicidade de cálculo

Necessitam de menos premissas que os modelos de fluxos de caixa livres, tais como gastos de capital, depreciação e necessidades de capital de giro.

Avaliação de Empresas - Valuation.

□ Pontos fortes dos modelos de desconto de dividendos

Aplicabilidade

Nos setores em que a estimativa de fluxo de caixa for difícil ou impossível, os dividendos são os únicos fluxos de caixa que podem ser estimados com algum grau de precisão.

Menores volatilidades de cálculo

Diferentemente dos fluxos de caixa que oscilam conforme o lucro, os dividendos são mais estáveis ao longo do tempo.

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozini

Modelos de fluxo de caixa descontado para o patrimônio líquido

□ Relação entre fluxo de caixa livre para o acionista e dividendos

Fluxos de caixa para o patrimônio líquido são maiores que os dividendos

Estabelecem um valor de base (piso) para o valor da ação

Fluxos de caixa para o patrimônio líquido iguais (na média) aos dividendos

Estabelecem estimativas realistas para o valor da ação Fluxos de caixa para o patrimônio líquido menores que os dividendos

Estabelecem um limite máximo (teto) para o valor da ação

Avaliação de Empresas - Valuation

□ Modelo de desconto de dividendos

A lógica deste modelo está na regra do valor presente:

O valor de uma ação é o valor presente dos fluxos de caixa futuros esperados pela posse daquela ação, descontados a uma taxa adequada ao grau de risco dos fluxos de caixa gerados pela ação (dividendos).

Avaliação de Empresas - Valuatio

Marcelo Augusto Ambrozini

Modelos de fluxo de caixa descontado para o patrimônio líquido

□ O modelo Gordon de crescimento

O modelo Gordon de crescimento associa o valor de uma ação aos seus dividendos esperados no próximo período (t+1), o custo do patrimônio líquido e a taxa de crescimento esperado em dividendos.

Valor da ação =
$$\frac{DPA_1}{K_e - g}$$

Onde: $DPA_1 = Dividendos por ação esperado para o próximo ano = <math>DPA_0 \times (1 + g)$

 K_e = Custo do patrimônio líquido (*equity*) ou custo do capital próprio.

g = Taxa de crescimento dos dividendos por tempo indeterminado

Avaliação de Empresas - Valuation.

Crescimento em lucros por ação (pág. 85 - Damodaran)

□ Como estimar a taxa de crescimento (g - growth)

A relação mais simples que determina o crescimento (g) é aquela baseada no percentual de lucros retidos na empresa (razão de retenção) e o retorno sobre o patrimônio líquido (ROE - Return on equity).

Para estabelecer isso, note que:

$$g_t = \frac{LL_t - LL_{t-1}}{LL_{t-1}}$$
 $g_t = \frac{110 - 100}{100} = 10\%$

Considerando-se a definição de retorno sobre o patrimônio líquido (ROE), o lucro líquido no ano t-1 pode ser formulado como:

 LL_{t-1} = Valor contábil do PL em t -2 x ROE em t -1

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozin

11

Crescimento em lucros por ação (pág. 85 - Damodaran)

□ Como estimar a taxa de crescimento (g - growth)

É sabido que: ROE
$$_{t-1} = \frac{LL_{t-1}}{PL_{t-1} - LL_{t-1}}$$

Se não houve nenhum evento que alterou o PL de t-2 para t-1, temos:

$$ROE_{t-1} = \frac{LL_{t-1}}{PL_{t-2}}$$

$$\frac{LL_{t-1}}{PL_{t-2}} \times PL_{t-2} = LL_{t-1}$$

$$LL_{t-1} = \frac{LL_{t-1}}{PL_{t-2}} \times PL_{t-2}$$

$$LL_{t-1} = ROE_{t-1} \times PL_{t-2}$$

 $LL_{t-1} = PL_{t-2} \times ROE_{t-1}$

Avaliação de Empresas - Valuation. Marcelo Augusto Ambro

Crescimento em lucros por ação (pág. 85 – Damodaran)

□ Como estimar a taxa de crescimento (g)

$$LL_{t-1} = PL_{t-2} \times ROE_{t-1}$$

Por extensão da expressão acima, o lucro líquido no ano t pode ser formulado como:

LL $_{\rm t}$ = (Valor contábil do PL $_{\rm t-2}$ + Lucros retidos $_{\rm t-1}$) x ROE $_{\rm t}$

Pressupondo-se que o retorno sobre o patrimônio líquido não se altere, ou seja: $\mathsf{ROE}_\mathsf{t-1} = \mathsf{ROE}_\mathsf{t} \ = \mathsf{ROE}$

$$g_t = \frac{Lucros\ retidos_{t-1}}{LL_{t-1}} \times ROE$$

$$g_{t} = \frac{50}{100} \times 10\% = 5\%$$

$$g_{t} = 5\%$$

g_t = taxa de reinvestimento x ROE

 $g_t = (1 - payout) \times ROE$

 $g_t = b \times ROE$

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozin

Modelos de fluxo de caixa descontado para o patrimônio líquido

□ Como estimar a taxa de crescimento (g)

$$\mathbf{g_t} = \frac{Lucros\ retidos_{t\text{-}1}}{LL_{t\text{-}1}}\ x\ ROE$$

g_t = taxa de reinvestimento x ROE

 $g_t = (1 - payout) \times ROE$

 $g_t = b \times ROE$

Avaliação de Empresas - Valuatior

□ Como estimar a taxa de crescimento (g)

A partir da formulação da taxa de crescimento:

$$g_t = (1 - payout) \times ROE$$

Podemos determinar o payout por meio de uma simples manipulação matemática:

$$Payout = 1 - \frac{g}{ROE}$$

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozini

Modelos de fluxo de caixa descontado para o patrimônio líquido

- □ Considerações sobre o modelo Gordon de crescimento
 - O modelo Gordon de crescimento deve ser usado apenas para empresas com taxa de crescimento estável.

Adequado para empresas que possuem uma taxa histórica média de crescimento próxima a uma taxa estável.

- Mesmo empresas com alta volatilidade dos lucros podem apresentar uma série estável de dividendos, pois os gestores tendem a suavizar os dividendos.
- Mesmo empresas cíclicas, com expectativas de apresentar oscilações anuais nas taxas de crescimento, podem possuir uma taxa média de crescimento próxima à taxa de crescimento da economia.

Avaliação de Empresas - Valuation

- ☐ Considerações sobre a **taxa de crescimento** do modelo Gordon de crescimento
 - A taxa de crescimento estimado dos dividendos tem que ser condizente com a taxa de crescimento das receitas e/ou lucro.
 - A taxa de crescimento estimado dos dividendos tem que ser condizente com a taxa de crescimento da economia como um todo.

Avaliacão de Empresas - Valuatior

Marcelo Augusto Ambrozini

17

Modelos de fluxo de caixa descontado para o patrimônio líquido

□ O modelo Gordon de crescimento

Para se determinar os dividendos esperados para o próximo ano e a taxa de crescimento dos dividendos, pode-se utilizar como *proxy* a taxa de crescimento esperado do lucro por ação.

Fórmula para estimação da taxa de crescimento esperado do lucro por ação (LPA):

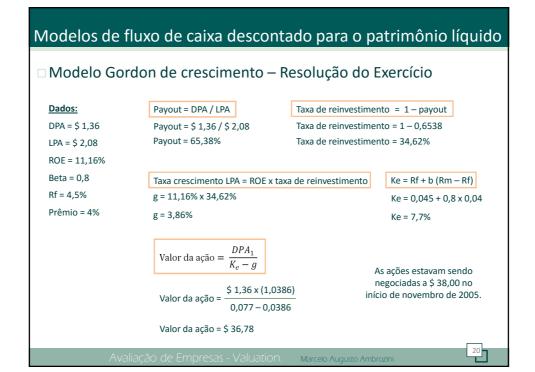
Taxa de crescimento esperado do LPA

= Retorno sobre o patrimônio líquido

Taxa de X reinvestimento dos lucros

1 – payout

Avaliação de Empresas - Valuation.



□ Modelo Gordon de crescimento – Exercício

O JPMorgan Chase detém grandes interesses tanto em bancos comerciais quanto em bancos de investimentos. Em anos recentes, a empresa cresceu por meio de aquisições, algumas das quais tem tido dificuldades de assimilar. No ano fiscal mais recente, a empresa pagou \$ 1,36 em dividendos por ação (DPA) sobre lucros por ação (LPA) de \$ 2,08. Presuma que a empresa manterá o retorno sobre o patrimônio líquido de 11,16% do ano mais recente de forma perpétua. Admitindo um beta de 0,8 para a empresa, taxa livre de risco de 4,5% e prêmio pelo risco de mercado de 4%, estime o valor da ação do JPMorgan.

Avaliação de Empresas - Valuatio

☐ Modelo Gordon de crescimento — Exercício de fixação

O StarClass Hotel atua no setor hoteleiro há 45 anos e é reconhecido pelos seus serviços de alta qualidade. A empresa atingiu o seu estágio de maturidade e vem obtendo um crescimento estável há pelo menos 15 anos. O lucro operacional da empresa antes do imposto de renda é de \$ 35 milhões e a alíquota fiscal é de 34%. A depreciação anual é de \$ 8,7 milhões e os gastos para compra de ativos fixos é de \$ 15 milhões por ano. A empresa pretende aumentar o capital de giro nos próximos anos em \$ 2 milhões por ano. O ROI da empresa é de 11% a.a. e o percentual de distribuição de lucros é de 60%. O custo do capital de terceiros é de 14% ao ano e o valor de mercado das dívidas é de \$ 80 milhões. O custo do capital próprio é de 18% ao ano e a empresa tem um patrimônio líquido de \$ 240 milhões. Com base nos dados acima, utilize o modelo de avaliação de empresas de crescimento estável para determinar o valor da empresa hoje.

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozini

Modelos de fluxo de caixa descontado para o patrimônio líquido

□ Modelo de desconto de dividendos de dois estágios

Esse modelo aceita dois estágios de crescimento – uma fase inicial em que a taxa de crescimento não é estável e outra subsequente em que a taxa de crescimento é estável, com perspectiva de permanecer assim no longo prazo

Embora, na maioria dos casos, a taxa de crescimento na fase inicial seja mais alta que a taxa de crescimento estável, o modelo pode ser adaptado para se avaliarem empresas com previsão de obter taxas de crescimento baixas por alguns anos antes de reverter ao crescimento estável.

Avaliação de Empresas - Valuation

□ Modelo de desconto de dividendos de dois estágios

Valor da ação =
$$\sum_{t=1}^{t=n} \frac{DPA}{\left(1 + K_{e_{hg}}\right)} + \frac{\frac{DPA_{n+1}}{K_{e_{st}} - g}}{\left(1 + K_{e_{hg}}\right)^n}$$

Onde: DPA = Dividendos por ação (esperado)

Ke = Custo do patrimônio líquido (equity) ou custo do capital próprio.

g = Taxa de crescimento dos dividendos por tempo indeterminado

hg = período de alto crescimento (high growth)

st = período de estabilidade (stability)

n = quantidade de anos de alto crescimento

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozini

Modelos de fluxo de caixa descontado para o patrimônio líquido

□ Modelo de desconto de dividendos de dois estágios

No caso em que a taxa de crescimento extraordinário (g) e o *payout* forem fixos para os n primeiros anos, essa fórmula pode ser simplificada:

$$P_{0} = \frac{DPA_{0} \times (1+g) \times \left(1 - \frac{(1+g)^{n}}{\left(1 + Ke_{hg}\right)^{n}}\right)}{Ke_{hg} - g} + \frac{DPA_{n+1}}{(Ke_{st} - g_{n})\left(1 + Ke_{hg}\right)^{n}}$$

Onde: DPA = Dividendos por ação (esperado)

g = Taxa de crescimento dos dividendos

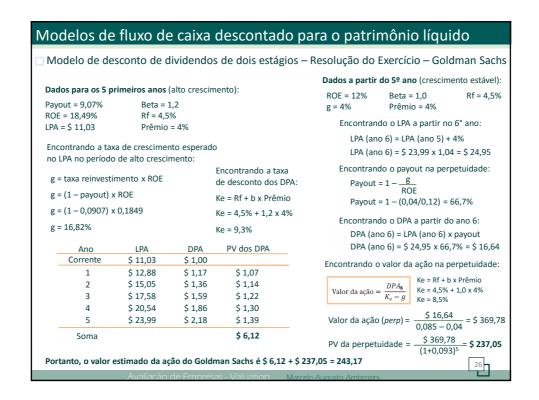
Ke = Custo do patrimônio líquido (equity) ou custo do capital próprio.

hg = período de alto crescimento (high growth)

st = período de estabilidade (stability)

n = quantidade de anos de alto crescimento

Avaliação de Empresas - Valuation.



□ Modelo de desconto de dividendos de dois estágios - Exercício

O Goldman Sachs é um dos principais bancos de investimento do mundo. Pressupondo que consiga manter a vantagem competitiva da sua marca por alguns anos, podemos avaliá-lo por meio de um modelo de desconto de dividendos em dois estágios, com cinco anos de alto crescimento seguidos de crescimento estável. Pelos cinco primeiros anos, assuma que o Goldman Sachs manterá a razão de *payout* vigente de 9,07% e o retorno sobre o patrimônio líquido corrente de 18,49%. A partir do 5º ano, pressuponha que pressões competitivas reduzirão o ROE para 12% e uma taxa de crescimento de 4%. O beta do Goldman Sachs estimado para os primeiros cinco anos de alto crescimento é de 1,2, passando para 1,0 a partir daí. A taxa livre de risco é de 4,5% e o prêmio pelo risco de mercado é de 4%. O lucro por ação corrente é de \$ 11,03. Com base nessas informações, estime o valor da ação do Goldman Sachs.

Avaliação de Empresas - Valuation

■ Modelo de desconto de dividendos de dois estágios – Resolução do Exercício – Goldman Sachs

Como a taxa de crescimento extraordinário (g) e o *payout* são fixos para os 5primeiros anos, podemos usar a fórmula:

$$P_{0} = \frac{DPA_{0} \times (1+g) \times \left(1 - \frac{(1+g)^{n}}{\left(1 + Ke_{hg}\right)^{n}}\right)}{Ke_{hg} - g} + \frac{DPA_{n+1}}{(Ke_{st} - g_{n})\left(1 + Ke_{hg}\right)^{n}}$$

$$\text{Valor ação} = \frac{\$\ 1,00(1+0,1682)\left(1-\frac{(1+0,1682)^5}{(1+0,093)^5}\right)}{0,093-0,1682} + \frac{\$\ 16,64}{(0,085-0,04)(1+0,093)^5}$$

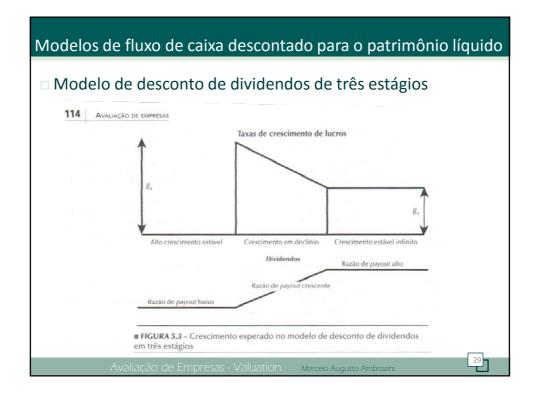
Valor ação = \$6,12 + \$237,05 = \$243,17

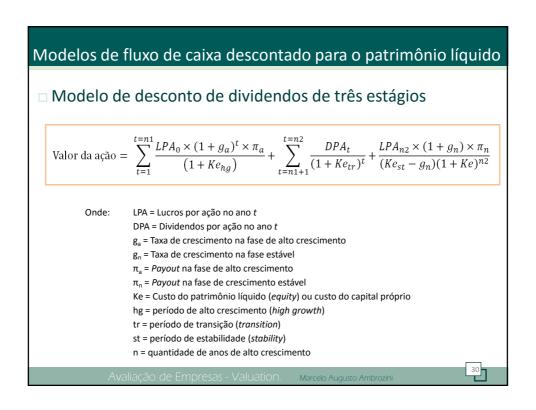
Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozin

27

Modelos de fluxo de caixa descontado para o patrimônio líquido


☐ Modelo de desconto de dividendos de três estágios


Esse modelo pressupõe um período inicial de alto crescimento estável, seguido por um período de crescimento em declínio e depois por um período de baixo crescimento estável, que perdura.

Em termos práticos, trata-se do modelo mais adequado a uma empresa cujos lucros crescem a taxas muito altas, que têm expectativa de continuar crescendo a esses índices por um período inicial, mas devem começar a declinar gradualmente aproximando-se de uma taxa estável à medida que a empresa aumenta e perde suas vantagens competitivas.

Avaliação de Empresas - Valuation

☐ Modelo de desconto de dividendos de três estágios

Exemplo 5.4, página 114 -Damodaran

O Canara Bank é um banco de médio porte, a sudeste da Índia, e registra rápido crescimento, acompanhando o mercado bancário como um todo no país. Protegido da concorrência de bancos estrangeiros, declarou um retorno sobre o patrimônio líquido de 23,22% em 2004 e pagou dividendos por ação de \$ 5,50 nesse ano (sobre lucros declarados por ação de \$ 33,27). A posição protegida permitirá ao banco manter o retorno sobre o patrimônio líquido corrente e razão de retenção pelos próximos cinco anos. O custo do patrimônio líquido para o período de alto crescimento é estimado com beta de 1,1 para o Canara Bank (baseado nos betas de outros bancos indianos), a taxa livre de risco de 6% e um prêmio pelo risco de mercado de 7% (refletindo um prêmio de mercado maduro de 4% e um prêmio de risco-país adicional para a Índia de 3%). Após o ano 5, o beta declinará em direção a 1 em crescimento estável (o que ocorrerá após o 10º ano) e o prêmio pelo risco para a Índia também cairá para 5,5% (refletindo as nossas premissas de que a Índia se tornará uma economia mais estável). Suponha que a concorrência alcançará a empresa após o ano 5, reduzindo o retorno sobre o patrimônio líquido ao custo de patrimônio líquido do período estável de 11,5% por ano no ano 10. A taxa de crescimento estável no ano 10 será de 4%. Na fase de transição, todos os inputs mudam em parcelas anuais iguais, de valores de período de alto crescimento para valores de período de crescimento estável. Com base nessas informações, estime o real valor da ação do Canara Bank.

Avaliação de Empresas - Valuation

	ac acso	onto de divid	endos de i	tres estagio	os – Reso	lução do Exercício –	Canara Ban
Dados de 2004 (ano corrente): ROE = 23,22% DPA = \$ 5,50 LPA = \$ 33,27 Dados para o período de alto crescimento: Beta = 1,1 RF = 6% Dados = 70%			Calculando a taxa de crescimento esperado no LPA:		g = taxa reinvestimento x ROE g = $(1 - payout) \times ROE$ g = $(1 - 0.1653) \times 0.2322 = 19.38\%$		
				ulando o ayout:	Payout	$= \frac{DPA}{LPA} = \frac{$5,50}{$33,27} = 10$	6,53%
				ndo o custo atrimônio		+ b (Rm – Rf) 5 + 1,1 x 7%	
Prêmio = 7%				quido:	Ke = 13,	•	
Ano	LPA	Crescimento	Payout	DPA	Ke	Fator descapitalização	PV dos DPA
Corrente	\$ 33,27		16,53%	\$ 5,50			
1	\$ 39,72	19,38%	16,53%	\$ 6,57	13,7%	(1+0,1370) ¹ = 1,1370	\$ 5,77
2	\$ 47,41	19,38%	16,53%	\$ 7,84	13,7%	$(1+0,1370)^2 = 1,2928$	\$ 6,06
3	\$ 56,60	19,38%	16,53%	\$ 9,36	13,7%	$(1+0,1370)^3 = 1,4699$	\$ 6,37
4	\$ 67,57	19,38%	16,53%	\$ 11,17	13,7%	(1+0,1370) ⁴ = 1,6713	\$ 6,68
-				\$ 13,34	13,7%	$(1+0,1370)^5 = 1,9002$	\$ 7,02

☐ Modelo de desconto de dividendos de três estágios — Resolução do Exercício — Canara Bank

A taxa de crescimento estável no ano 10 será de 4%. Na fase de transição, todos os inputs mudam em parcelas anuais iguais, de valores de período de alto crescimento para valores de período de crescimento estável. Calculando a taxa de crescimento na fase de transição:

Após o ano 5, o beta declinará em direção a 1 em crescimento estável (o que ocorrerá após o 10º ano) e o prêmio pelo risco para a Índia também cairá para 5,5%. Suponha que a concorrência alcançará a empresa após o ano 5, reduzindo o retorno sobre o patrimônio líquido ao custo de patrimônio líquido do período estável de 11,5% por ano no ano 10. A taxa de crescimento estável no ano 10 será de 4%. Calculando o payout para a fase de transição:

Payout para o período estável =
$$1 - \frac{g}{ROE} = 1 - \frac{4\%}{11,5\%} = 65,22\%$$
 Ano $6 = 16,53\% + 9,738\% = 26,27\%$ Ano $7 = 26,27\% + 9,738\% = 36,01\%$

<u>65,22% – 16,53%</u> = 9,738%

<u>4% - 19,38%</u> = - 3,076%

Alteração

taxa

crescimento:

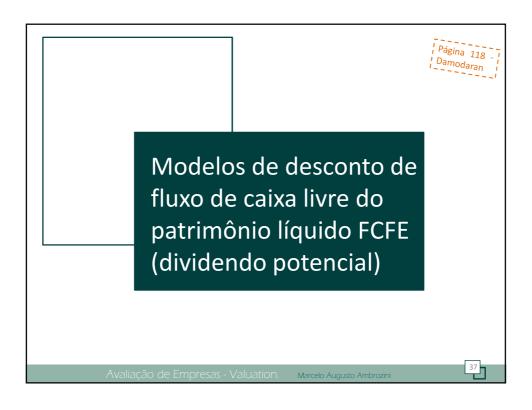
Alteração

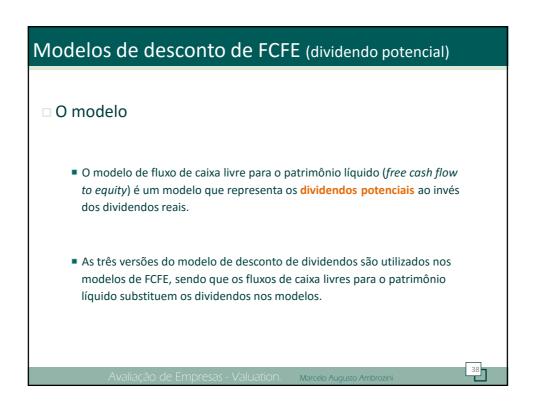
payout:

Modelos de fluxo de caixa descontado para o patrimônio líquido

Modelo de desconto de dividendos de três estágios – Resolução do Exercício – Canara Bank

Após o ano 5, o beta declinará em direção a 1 em crescimento estável (o que ocorrerá após o 10º ano) e o prêmio pelo risco para a Índia também cairá para 5,5%. Suponha que a concorrência alcançará a empresa após o ano 5, reduzindo o retorno sobre o patrimônio líquido ao custo de patrimônio líquido do período estável de 11,5% por ano no ano 10.


Alteração do Ke na fase de
$$= \frac{11,5\% - 13,7\%}{r} = -0,44\%$$
 Ano $8 = 12,82\% - 0,44\% = 12,82\%$ Ano $8 = 12,82\% - 0,44\% = 12,38\%$


alor nr	esente dos d	lividendos na fas	e de transicã	0			\$ 94.53
10	\$ 130,30	4,00%	65,22%	\$ 84,98	11,50%	3,0545 x 1,1150 = 3,4058	\$ 24,95
9	\$ 125,29	7,08%	55,48%	\$ 69,51	11,94%	2,7287 x 1,1194 = 3,0545	\$ 22,76
8	\$ 117,01	10,15%	45,74%	\$ 53,52	12,38%	2,4281 x 1,1238 = 2,7287	\$ 19,62
7	\$ 106,22	13,23%	36,01%	\$ 38,25	12,82%	2,1522 x 1,1282 = 2,4281	\$ 15,75
6	\$ 93,82	16,30%	26,27%	\$ 24,64	13,26%	1,9002 x 1,1326 = 2,1522	\$ 11,45
Ano	LPA	Crescimento	Payout	DPA	Ke	Fator descapitalização	PV dos DP

Valor presente dos dividendos na fase de transição

Modelos de fluxo de caixa descontado para o patrimônio líquido Modelo de desconto de dividendos de três estágios – Resolução do Exercício – Canara Bank Dados após o 10° ano: Beta = 1,0 Prêmio = 5,5% ROE = Ke = 11,5% g = 4% Valor dos dividendos a partir do ano 11 = LPA₁₀ x (1 + taxa crescimento_{perpetuidade}) x payout_{perpetuidade} Ke_{perpetuidade} – taxa crescimento_{perpetuidade} Valor dos dividendos a partir do ano 11 = \$130,30 x (1 + 0,04) x 0,6522 0,115 – 0,04 Valor dos dividendos a partir do ano 11 = \$1.178,41 Valor presente dos dividendos na perpetuidade = \$1.178,41 3,4058 Valor presente dos dividendos na perpetuidade = \$345,99

Modelo de desconto de dividendos de três estágios – Resolução do Exercício – Canara Bank Os componentes do valor são: Valor presente dos dividendos na fase de alto crescimento \$ 31,90 Valor presente dos dividendos na fase de transição \$ 94,53 Valor presente dos dividendos na perpetuidade \$ 345,99 Valor da ação Canara Bank \$ 472,42	Modelos de fluxo de caixa descontado para o patr	imônio líquido
Valor presente dos dividendos na fase de alto crescimento \$ 31,90 Valor presente dos dividendos na fase de transição \$ 94,53 Valor presente dos dividendos na perpetuidade \$ 345,99	☐ Modelo de desconto de dividendos de três estágios – Resolução do	o Exercício – Canara Bank
Valor presente dos dividendos na fase de transição\$ 94,53Valor presente dos dividendos na perpetuidade\$ 345,99	Os componentes do valor são:	
Valor presente dos dividendos na perpetuidade \$ 345,99	Valor presente dos dividendos na fase de alto crescimento	\$ 31,90
	Valor presente dos dividendos na fase de transição	\$ 94,53
Valor da ação Canara Bank \$ 472,42	Valor presente dos dividendos na perpetuidade	\$ 345,99
	Valor da ação Canara Bank	\$ 472,42
	Avaliação de Empresas - Valuation Marcelo Augusto Ambroz	zini

Modelos de avaliação por FCFE:

- Modelo de FCFE de crescimento estável;
- Modelo de FCFE de dois estágios;
- Modelo de FCFE de três estágios.

Modelos de desconto de FCFE (dividendo potencial)

- □ Como obter o fluxo de caixa livre para o patrimônio líquido
 - O fluxo de caixa livre para o patrimônio líquido exprime o montante de caixa que uma empresa tem disponível para ser pago como dividendos ou recompras de ações.
 - Para estimar o quanto de caixa uma empresa tem condições de pagar aos acionistas, começamos com o lucro líquido e subtraímos as necessidades de reinvestimento da empresa e as entradas/saídas de caixa relativas às dívidas.

valiação de Empresas - Valuation. Marcelo Augusto Ambrozi

Modelos de desconto de FCFE (dividendo potencial) Como obter o fluxo de caixa livre para o patrimônio líquido Lucro Líquido (+) Depreciação (despesa não desembolsável) (-) Gastos de capital fixo (CAPEX) (+/-) Variações no capital de giro (+) Nova dívida levantada (-) Pagamento de dívidas (=) Fluxo de caixa livre para o patrimônio líquido

Modelos de desconto de FCFE (dividendo potencial)

□ Princípio básico

Ao substituir dividendos por FCFE estamos implicitamente admitindo que o fluxo de caixa livre para o patrimônio líquido será pago aos acionistas.

Consequências:

- Não haverá nenhuma outra formação de caixa futuro na empresa, já que o caixa disponível após o pagamento de dívidas e as necessidades de reinvestimento é distribuído aos acionistas a cada período.
- O crescimento esperado em FCFE incluirá aumento de lucros a partir dos ativos operacionais e não do aumento de títulos negociáveis.

Avaliação de Empresas - Valuation

□ Pontos fortes

 Os modelos de FCFE dão maior liberdade para os gestores estimarem os fluxos de caixa, não restringindo as premissas à política de dividendos da empresa.

Permite obter estimativas mais realistas de valor para empresas que pagam consistentemente menos ou mais dividendos do que poderiam.

 Diferentemente dos dividendos, o FCFE não é obrigado a ser um valor não negativo.

Permite que seja aplicado a empresas que estão no início dos seu ciclo de vida, que não pagam dividendos pois têm uma significativa necessidade de reinvestimento dos lucros.

Avaliação de Empresas - Valuatior

Marcelo Augusto Ambrozini

Modelos de desconto de FCFE (dividendo potencial)

□ Limitações do modelo

- Usar modelos de FCFE requer estimativas de gastos líquidos de capital, necessidades de capital de giro e variações no caixa relativas à dívida.
- Esse exercício é razoavelmente simples quando a empresa opera na estabilidade, mas pode ser extremamente complexo quando há expectativas de mudanças ao longo do tempo para esses valores.
- Em alguns casos, as estimativas de gastos de capital, depreciação, capital de giro e fluxos líquidos de caixa da dívida não estão publicamente disponíveis, o que impossibilita a aplicação desses modelos.

Avaliação de Empresas - Valuation

O modelo de FCFE de crescimento estável:

- Foi projetado para avaliação de empresas que estejam crescendo a uma taxa de crescimento estável (estado de equilíbrio).
- O valor do patrimônio líquido é função do FCFE esperado para o período seguinte, da taxa de crescimento estável e da taxa de retorno exigida.

Avaliação de Empresas - Valuatior

Marcelo Augusto Ambrozini

Modelos de desconto de FCFE (dividendo potencial)

□ Modelo FCFE de crescimento constante

Esse modelo destina-se a avaliar empresas que crescem a uma taxa estável e, portanto, estão em situação estabilizada.

$$P_0 = \frac{FCFE_1}{K_e - g_n}$$

Onde:

 P_0 = Valor do patrimônio líquido hoje.

FCFE₁ = Fluxo de caixa livre para o patrimônio líquido esperado para o próximo ano.

 K_e = Custo do patrimônio líquido.

 $g_{\rm n}$ = Taxa de crescimento do FCFE em tempo indeterminado.

Avaliação de Empresas - Valuation. Marcelo Augusto

Modelo de FCFE de crescimento estável

Considerações sobre o modelo:

- A taxa de crescimento do FCFE tem que ser razoável em relação a taxa de crescimento da economia.
- Os desembolsos de capital são relativamente próximos à depreciação.
- O beta da empresa (usado no Ke) tem que ser próximo a 1 (risco da empresa = risco da economia)

Avaliação de Empresas - Valuation. Marcelo Augusto Ambroz

Modelos de desconto FCFE (dividendo potencial)

Modelo de FCFE de crescimento estável

Se obtiver um valor excessivamente baixo a partir desse modelo...

Se o seu problema é:

A solução é:

- 1. Os desembolsos de capital estão elevados em relação à depreciação;
- 2. O capital de giro, como percentual da receita é elevado demais:
- 3. O beta está elevado para uma empresa estável.
- 1. Use desembolsos de capital mais baixo ou o modelo de 2 estágios;
- 2. Normalize esse coeficiente, utilizando médias históricas:
- 3. Use um beta mais próximo de 1.

Modelo de FCFE de crescimento estável

Se obtiver um valor excessivamente alto a partir desse modelo...

Se o seu problema é:

1. Os desembolsos de capital são mais baixos do que a depreciação;

- 2. O capital de giro, como percentual da receita é negativo;
- 3. A taxa de crescimento é muito elevada para uma empresa estável.

A solução é:

- 1. Estabeleça desembolsos de capital igual a depreciação;
- 2. Estabeleça um desembolso para giro igual a zero;
- 3. Use uma taxa de crescimento próxima à do PIB.

Modelos de desconto FCFE (dividendo potencial)

Modelo de FCFE de 2 estágios:

- Desenvolvido para avaliar empresas com crescimento acelerado em um período inicial e com crescimento estável após esse período.
- O valor da ação é o valor presente do FCFE anual no período de crescimento extraordinário, somado ao PV ao fim daquele período.

Avaliação de Empresas - Valuation. Marcelo Augusto Ambrozini

Modelo de FCFE de 2 estágios

O modelo:

$$\sum_{t=1}^{t=n} \frac{FCFE_t}{\left(1+Ke\right)^t} + \frac{P_n}{\left(1+Ke\right)^n}$$

 $FCFE_1 = Fluxo de caixa esperado;$

Ke = Taxa de retorno do PL no crescimento acelerado;

 P_n = Preço ao final do crescimento acelerado

$$P_{n} = \frac{FCFE_{n+1}}{(Ke - g)}$$

 $g_n = Taxa$ de crescimento no momento estável

Avaliação de Empresas - Valuation

Marcelo Augusto Ambrozini

51

Modelos de desconto de FCFE (dividendo potencial)

□ Modelo FCFE de dois estágios

Esse modelo destina-se a avaliar empresas com expectativa de crescer muito mais rapidamente que outra madura no período inicial e a uma taxa estável após isso.

$$P_{0} = \sum_{t=1}^{t=n} \frac{FCFE_{t}}{\left(1 + K_{e_{hg}}\right)^{t}} + \frac{\frac{FCFE_{n+1}}{K_{e_{st}} - g_{n}}}{\left(1 + K_{e_{hg}}\right)^{n}}$$

Onde: P_0 = Valor do patrimônio líquido hoje.

 $FCFE_1$ = Fluxo de caixa livre para o patrimônio líquido esperado para os próximos anos. K_e = Custo do patrimônio líquido.

hg = período de alto crescimento (high growth).

st = período de estabilidade (stability).

 g_n = Taxa de crescimento do FCFE em tempo indeterminado.

Avaliação de Empresas - Valuation. Maro

Modelo de FCFE de 2 estágios:

Considerações sobre o modelo:

- Na fase inicial de crescimento acelerado o desembolso de capital é bem maior que a depreciação.
- Na fase de crescimento estável os pressupostos são os mesmos do modelo de estabilidade.

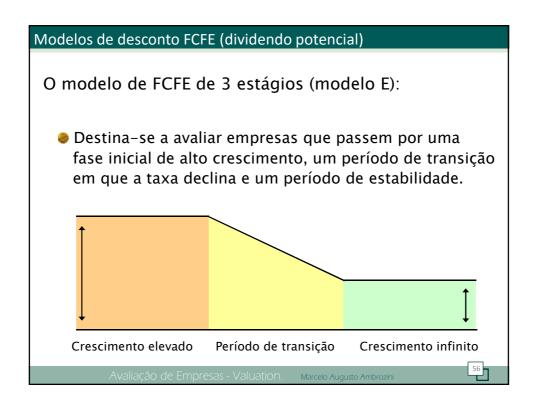
Avaliação de Empresas - Valuation. Marcelo Augusto Ambrozi

Modelos de desconto FCFE (dividendo potencial)

Modelo de FCFE de 2 estágios:

Se obtiver um valor excessivamente baixo a partir desse modelo...

Se o seu problema é:


- 1. Os desembolsos de capital estão mais elevados do que a depreciação;
- 2. O beta durante o período de crescimento estável está alto;
- 3. O capital de giro está muito alto para ser sustentado.

A solução é:

- 1. Compense os desembolsos de capital com depreciação;
- 2. Utilize um beta mais próximo de
- 3. Utilize um coeficiente de capital de giro mais próximo do setor.

Modelos de desconto FCFE (dividendo potencial) Modelo de FCFE de 2 estágios: Se obtiver um valor excessivamente alto a partir desse modelo... Se o seu problema é: A solução é: 1. Os lucros estão inflacionados além 1. Reveja as estimativas de lucros; dos níveis normais; 2. Os desembolsos de capital são 2. Iguale os desembolsos de capital inferiores à depreciação; à depreciação; 3. A taxa de crescimento para o 3. Utilize uma taxa de crescimento período estável está elevada. mais próxima à do PIB.

Modelo de FCFE de 3 estágios (modelo E)

 $FCFE_1 = Fluxo de caixa esperado;$

Ke = Taxa de retorno do PL no crescimento acelerado;

 n_1 = Final do período de crescimento elevado

 n_2 = Final do período de transição

 $P_{n2} = \text{Preço final ao término do período de transição} \; \left| \; P_{n2} = \frac{FCFE_{n2+1}}{\left(Ke-g\right)} \right| \;$

g_n = Taxa de crescimento no momento estável

Modelos de desconto de FCFE (dividendo potencial)

☐ Modelo FCFE de três estágios

Esse modelo destina-se a avaliar empresas que passarão por uma fase inicial de altas taxas de crescimento, um período de transição em que a taxa decrescimento cai e uma situação de estabilização que o crescimento é estável.

$$P_{0} = \sum_{t=1}^{t=n} \frac{FCFE_{t}}{\left(1 + K_{e_{hg}}\right)^{t}} + \sum_{t=n1+1}^{t=n2} \frac{FCFE_{t}}{\left(1 + K_{e_{tr}}\right)^{t}} + \frac{\frac{FCFE_{n2+1}}{K_{e_{st}} - g_{n}}}{\left(1 + K_{e_{st,tr}}\right)^{n}}$$

Onde: P_0 = Valor do patrimônio líquido hoje.

FCFE_t = Fluxo de caixa livre para o patrimônio líquido esperado para os próximos anos. K_{ρ} = Custo do patrimônio líquido.

hg = período de alto crescimento (high growth).

tr = período de transição

st = período de estabilidade (stability).

 g_n = Taxa de crescimento do FCFE em tempo indeterminado.

Modelo de FCFE de 3 estágios (modelo E)

Considerações sobre o modelo:

- Na fase de crescimento elevado o desembolso de capital tende a ser maior que a depreciação. Na fase de transição essa diferença diminuirá e se inverterá na fase de crescimento estável.
- À medida que a taxa de crescimento diminua, o beta muda. No infinito, ele tenderá a 1,0.

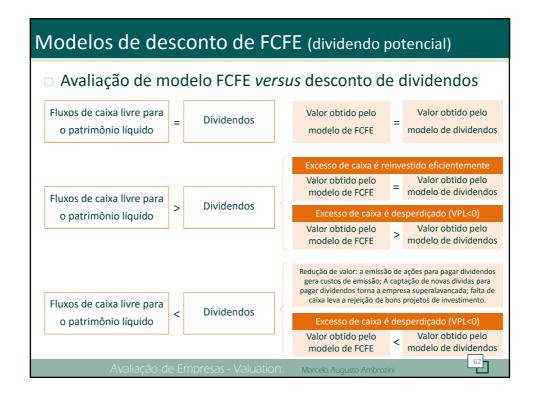
Avaliação de Empresas - Valuation. Marcelo Augusto Ambrozir

Modelos de desconto FCFE (dividendo potencial)

Modelo de FCFE de 3 estágios (modelo E)

Se obtiver um valor excessivamente baixo a partir desse modelo...

Se o seu problema é:


- 1. Os desembolsos de capital são significativamente mais elevados do que a depreciação na fase estável;
- 2. O beta durante o período de crescimento estável está alto;
- 3. O capital de giro está muito alto para ser sustentado.

A solução é:

- 1. Compense os desembolsos de capital com depreciação;
- 2. Utilize um beta mais próximo de
- 3. Utilize um coeficiente de capital de giro mais próximo do setor.

Modelos de desconto FCFE (dividendo potencial) Modelo de FCFE de 3 estágios (modelo E) Se obtiver um valor excessivamente alto a partir desse modelo... Se o seu problema é: A solução é: 1. Determine desembolsos de 1. Desembolsos de capital compensam a depreciação durante capital mais elevado; o crescimento elevado; 2. O período de crescimento é 2. Use um período de crescimento demasiadamente extenso; mais reduzido; 3. A taxa de crescimento para o 3. Utilize uma taxa de crescimento período estável está elevada. mais próxima à do PIB.

Introdução às Finanças Corporativas

□ Bibliografia

DAMODARAN, Aswath. Avaliação de empresas. 2ª ed. São Paulo: Pearson Prentice Hall, 2007.

Avaliação de Empresas - Valuation