
COMPUTER 54

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/11/$26.00 © 2011 IEEE

The founders of the “Software Engineering” movement
noted that Engineers had been taught how to do their job;
in contrast, people who were developing software had
learned to do very different jobs. Engineers, although far
from perfect, did not have as many problem projects as
software developers had.

Those who founded the movement hoped that many of
the software development problems that we were experi-
encing would go away if software development became a
new field of engineering. This was not a jurisdictional dis-
pute; the issues raised were about education and regulation.

WHAT MAKES ENGINEERING WORK?
Engineers, and their work, are not perfect, but they often

succeed in building functional, reliable products within
a fairly predictable timeframe and close to estimated
cost. This, at least, is what the founders of the movement
believed when they decided to use older engineering
disciplines as a model for the rapidly growing software
development profession.

The secret of the success and good reputation that en-
gineers enjoy is simple:

 • They have been taught how to do their job.
 • They have been taught the basic mathematics (theory)

and science they need to perform their work.
 • They have been taught to work according to strict

rules and to understand that if they do not follow
those rules, they might be found to have been negli-
gent and lose their license to work as Engineers.

M y professional career began about the time
the term “Software Engineering” came into
use. Before that, people were using terms like
“programming” or “software development”

to talk about work that today might be labeled software
engineering.

The new terminology was introduced because some
people noticed two things:

 • Software was, even in the 1960s, beginning to be a
major bottleneck. It was common to find the hardware
ready and working when the software was still incom-
plete and unreliable. Software was usually over budget,
behind schedule, and not fit for its intended use.

 • Many of those who were developing software began to
realize that they were doing something quite different
from what they had been taught to do. They had been
trained to be scientists or mathematicians and to add
to our knowledge. Now, they were creating artifacts
for others to use.

Although a huge number of articles have
been written about software development
and many interesting ideas have been
proposed, researchers and practitioners
have failed to create a new engineering
discipline focused on building software-
intensive systems.

David Lorge Parnas, Middle Road Software

Software
Engineering—
Missing in Action:
A Personal
Perspective

55OCTOBER 2011

In spite of all the positive things we
can say about software engineering,
it is important not to have an
unrealistic view of it.

It is important to note that Engineers are not just
taught rote procedures tied to current technology; they
are taught the basic mathematics and science that will
allow them to understand and use new technology when
it becomes available. Their education permits them to
understand the assumptions behind standard proce-
dures and, therefore, to know when new developments
justify new procedures.

EDUCATION AND LICENSING
There is a “core body of knowledge” associated with

each engineering discipline that comprises mathemat-
ics, scientific knowledge, guidelines, and regulations that
all who practice that discipline are expected to know. In
most jurisdictions, this body of knowledge is agreed upon
at a state or national level, and academic programs are
periodically evaluated to make sure that all elements of
the core are taught effectively. Exams after the end of the
university program are used to confirm that graduates
have learned the core principles and are qualified to work
in the profession.

In some jurisdictions, those who did not receive a
degree from an accredited engineering program can be
licensed if they pass an extensive set of exams that test
their comprehension of the core body of knowledge. In
most jurisdictions, graduates must work as an apprentice to
a licensed engineer for several years before they are finally
licensed to work on their own. License holders elect a body
that maintains and enforces the regulations. Legislation
gives the body the power to license practitioners and to
enforce the rules.

This approach, which is also used in other disciplines
such as law and medicine, has led to the success that
the founders of the software engineering movement
envisioned. In most jurisdictions, these professions are
self-regulating.

In spite of all the positive things we can say about
the engineering profession, it is important not to have
an unrealistic view of it. Not all good designers are
Engineers or behave like Engineers, and not all Engi-
neers are good designers. The licensing bodies enforce
minimal standards and discipline practitioners who do
not meet those standards .

Professional Engineers have been taught the scientific
principles, mathematics, procedures, rules, and regula-
tions appropriate to their discipline. They have been taught
to use this information when designing. They also have
undergone a period of supervised internship or appren-
ticeship before they are fully licensed as a professional.
However, many things can go wrong:

 • Some Engineers never deeply understood what they
were taught; they understood it just well enough to
pass the exams.

 • Some forget or ignore what they did learn.
 • Some do not understand the principles behind what

they learned and do not apply them correctly in un-
usual situations.

 • Some deliberately take shortcuts or neglect the rules.

Further, engineering science and principles do not
tightly constrain designers. Using the established princi-
ples of the discipline, Engineers can produce either routine,
uncompetitive designs or brilliant designs. Engineering
principles allow creating a product that does exactly what
is required or one that does more. For example, the product
can meet only current needs or it can grow as user needs
change.

Some brilliant designers never had a formal education
in their area of expertise, but they are intuitive and have
a good artistic sense. They also are likely to be careful
people who pay attention to detail. Often they are not for-
mally recognized as Engineers, and perhaps they do not
need to be. However, such brilliant, intuitive designers are
rare. In most cases, we cannot rely on them to provide the
products we use every day. Some work must be done by
less gifted people who benefit from having an engineering
education and working in a regulated profession.

A few of the useful products that we depend on today
are beautiful, highly functional designs. Far more began as
poor designs but were improved through a lengthy period
of prerelease testing, followed by beta testing and post-
delivery revisions. Almost every piece of software that I
encounter contains evidence of oversights either caused
or exacerbated by a lack of discipline.1

Engineer or technologist?
Engineering educators must clearly distinguish between

technology, which changes rapidly and has many arbi-
trary facts, characteristics, and scientific principles, which
remain usable throughout the Engineer’s career. A good
education teaches future Engineers how to use fundamen-
tal science to understand new technologies.

Engineer or application specialist?
Engineers are usually educated to work in broad disci-

plines and are not restricted to narrow fields of practice.
Graduates are civil engineers, not road engineers or bridge
engineers. Engineers usually become specialists through
experience, but their education allows them to change.

COVER FE ATURE

COMPUTER 56

Engineers are usually educated to
work in broad disciplines and are not
restricted to narrow fields of practice.

Engineer or scientist?
Engineering curricula often share some content with

science and mathematics programs, but the educational
goals are different. The engineering student must learn
how to use science and mathematics to build things, while
the science student must learn how to add new knowledge
to previously known information.

When a new engineering field is developing, it can
sometimes be difficult to distinguish it from an existing
science field. For example, when electrical engineering was
new, some universities tried to keep it in physics. Physics
departments claimed that physicists learned everything
anyone needed to know to design electrical systems. None-
theless, these fields are now clearly distinguished. Some
people educated as engineers might end up doing research
and working as scientists, but their focus is usually on
applicable science. Often, they work together with pure
scientists to develop recent scientific advances into use-
able technologies.

THE STRUCTURE OF THE PROFESSIONS
Scientists have attempted to partition the body of

knowledge accumulated about the world into distinct
areas such as physics, biology, and chemistry; these are
further divided into narrower areas such as hydraulics,
thermodynamics, human physiology, and organic chemis-
try. The borders between these areas are not always clear,
but the basic distinctions are. This structuring is essential
to the work of scientists who often confine their research
to a very narrow area. Specialization allows a scientist to
know an area well and to use that knowledge to extend
our understanding of the area.

Engineering is not partitioned in the same way. En-
gineers from a specific discipline are expected to be
responsible for developing a class of products; to do
that, they are required to know material from several
areas of science. At the start of a career, it is not easy to
predict what knowledge they will require, so an engineer-
ing education must be broad; even the required core is
broad. There is significant overlap in the requirements
for the various disciplines. An engineering discipline is
characterized by a selection of topics from science and
mathematics, but it does not have an exclusive claim to
those topics.

PROGRAMMER VERSUS SOFTWARE ENGINEER
When the term “Software Engineering” was introduced,

many asked a simple question, “How is software engineer-

ing different from programming?” Some of those who
asked that question were skeptical and wondered if the
term had been invented to attract more attention and fund-
ing. Others were asking the question rhetorically to suggest
that there was no such field.

The best response to this question was provided by
British computer scientist Brian Randell, who described
software engineering as “the multiperson development
of multiversion programs.” This pithy phrase implies
everything that educators should be teaching to future
software developers. It should go without saying that a
software engineer must be able to program, but that is
not enough.

However, Randell’s description is not sufficient to
determine the core body of knowledge from the point
of view of those who license Engineers. Pure software
knowledge is not enough for the development of many
software products. Just as those who grant licenses
require extensive overlap between mechanical and
chemical engineering, they would expect a licensed
software engineer to know much more than software
design.2

WHY BOTH MISSING IN ACTION AND LOST?
The goal of those who introduced the term “Software

Engineering” has not been achieved, and in fact we seem
to have lost sight of it. The gap between the computer sci-
ence research world and software development practices
continues to grow:

 • Industry is aware of the need for improvement and
sporadically forms new groups and initiatives that
attempt to bring about change re what practitioners
do. Most mainstream academics do not get involved.
Often, they are too busy playing the publication num-
bers game.3

 • On the academic side, we see new notations, for-
malisms, proof methods, and design approaches.
These gain little traction with industry because they
do not appear to address the practitioner’s problems.
Rather than show a better, more efficient way to do
things, they call for additional work that has no obvi-
ous benefit.4

The gap between research and practice is not strictly
between academia and industry. Larger companies have
in-house research groups whose work looks much like
academic research—they interact at least as much with
external researchers as with internal developers. Other
companies have their own internal methods specialists,
but the developers often view them as theoreticians. It is
this gap between academic research and developer prob-
lems that leads me to say that the “Software Engineering”
discipline is “missing in action.”

University researchers and educators,
even those who claim to be in software
engineering, are rarely involved in
establishing a regulated profession.

57OCTOBER 2011

University researchers and educators, even those who
claim to be in “Software Engineering,” are rarely involved
in establishing a regulated profession. In fact, sometimes
they actively resist it.5

SOFTWARE ENGINEERING MEETS ...?
Each of the other articles in this special issue focuses

on a specific area of research or application area and
discusses its relation to software engineering. We must
consider an obvious question: “If software development
has not become an engineering discipline, how can they
talk about it meeting another area?” In fact, none of these
articles do that; each one confirms my position that soft-
ware engineering, as originally envisioned, does not yet
exist.

Theory
Manfred Broy’s message in “Can Practitioners Neglect

Theory and Theoreticians Neglect Practice?” is that we
cannot have an engineering discipline without “theory.” In
traditional engineering, theory refers to a set of assump-
tions about the physics of the situation and a mathematical
analysis of the implications of those assumptions. In com-
puter science, there is no physics involved; theory is all
mathematics.

Today, more than half a century after the term was
coined, an article arguing that software engineering needs
mathematics is evidence that we do not yet have such a
field. In the traditional engineering disciplines, professors
do sometimes discuss the mathematics to be included in
a curriculum, but they do not discuss whether they need
mathematics—they discuss which mathematics and how
much mathematics. In software, it is also necessary to ex-
plain how mathematics can be used to improve product
quality. In fact, some doubt that it has any relevance at all.6

If we want to establish software development as an
engineering profession, we definitely need to discuss the
role that mathematics can play in the field and exactly
what mathematics must be taught. There have been some
proposals, but there has not been enough discussion to
reach any agreement.7,8

Open source software
Brian Fitzgerald’s “Open Source Software: Lessons

from and for Software Engineering” offers an interest-
ing cautionary tale for software developers. Proponents
have advanced OSS as a “silver bullet” that can ameliorate
many of the problems that software developers encoun-
ter. However, OSS is a business model, not a design or
engineering method. OSS is a way to motivate and control
developers; it offers a different method for recouping in-
vestments. Consequently, an OSS product can be reliable
or unreliable, changeable or difficult to change, and so on.
A software development effort can use OSS ideas or reject

them independently based on whether the work is done by
professional engineers or not.

Evolutionary computation
In “Software Engineering Meets Evolutionary Com-

putation,” Mark Harman begins by reminding us that
software evolves and refers to early research that in-
vestigated how software grew and changed as a result
of modifications and additions. The bulk of this article
deals with techniques that use the idea of evolution in a
different way: the application of algorithms that mimic
the genetic mutation process. These are interesting algo-
rithms that can be useful in many situations, including
their application to some software project management
problems. Such algorithms could be a part of the core
of software engineering knowledge, but they are never
mentioned in many educational programs. Currently, it
is not clear whether this approach would be accepted as

a part of the core knowledge required of software en-
gineers. However, if we had established an engineering
discipline, it would be clear.

This particular programming approach does pose one
problem for professional engineers, who are responsible
for assuring that their product is fit for its intended use.
Providing such assurance is difficult, though not impos-
sible, if the product’s performance depends on future
evolution.

Space applications
In “Software Engineering for Space Exploration,” Robyn

Lutz provides an excellent introduction to the role of soft-
ware in space exploration and describes the problems that
programmers and engineers have had to solve in that ap-
plication area.

This article illustrates why we need to develop a soft-
ware engineering discipline in general rather than granting
degrees in narrower fields such as space software engi-
neering, aircraft software development, or game design.
The problems that Lutz describes arise in many software
applications. The software field has developed into a set of
cliques, each with its own terminology and technologies.
These differences in terminology conceal the common
principles and lead to duplication, confusion, and some
unnecessary disagreements.

Establishing a core body of knowledge would enable
and enhance the transfer of ideas and technology between

COVER FE ATURE

COMPUTER 58

various application areas. It would also reduce the un-
necessary differences in terminology between suppliers.

Service-oriented software and cloud computing
In “Software Engineering Meets Services and Cloud

Computing,” Stephen S. Yau and Ho G. An describe an ar-
chitecture for an important class of Web-based systems.
Although the applications are new and modern high-speed
communication networks make the distributed structure
practical, the architectural approach is reminiscent of
others that work well in other applications. The reader
might want to compare the service-oriented approach
with the output-oriented approach described in numer-
ous reports.9-11

A lthough a huge number of articles have been written
about software engineering and many interesting
ideas have been proposed, researchers and practi-

tioners have failed to create a new engineering discipline
focused on building software-intensive systems.

While each of the other articles in this special issue
claims to discuss the intersection of software engineering
with some other research area, they support my position:

 • If we are still writing papers arguing that we need
some theory or mathematics to be a profession, rather
than arguing about specific areas of theory that a soft-
ware engineer should know, we have not established
a profession.

 • If we find that individual application areas are discov-
ering common problems and solving them with their
own terminology and specialized techniques, we have
not yet established a profession.

 • If we do not consistently distinguish between engi-
neering problems, management problems, technology
problems, and business-plan issues, we have not yet
established a profession.

 • If we are, as many others have noted, a field that is
dominated by fads with clever acronyms that cause a
flurry of interest and then fade away, we have not yet
established a profession.

 • If we continue to treat software engineering as a “grab
bag” research area rather than as a regulated profes-
sion, we have lost sight of the original goal.

Those who began the software engineering movement
were prescient. They seem to have anticipated today’s
heavy dependence on software; they must have recognized
that software engineering should become one of the many
established engineering disciplines. Unfortunately, we who
came after them underestimated the difficulty of achieving
that goal and have lost sight of it.

If we want to establish a discipline of engineering that
specializes in software-intensive systems, the first step is

to agree on a core body of knowledge. Thus far, the various
efforts to establish a body of knowledge have been too in-
clusive. They have tried to collect every belief and fact about
software development rather than identify a small core of
solid knowledge that all software engineers must master.

In my experience, establishing a core will not be easy.
Unless we are vigilant, the core will continue to expand
and, consequently, lose relevance because it is too large.

Acknowledgments
I thank Carl Chang and David Weiss for their thought-provok-
ing comments on an earlier version of this paper.

References
 1. D.L. Parnas, “Risks of Undisciplined Development,” Comm.

ACM, Oct. 2010, pp. 25-27.
 2. D.L. Parnas, “Software Engineering Programmes Are Not

Computer Science Programmes,” Ann. Software Eng., vol.
6, 1998, pp. 19-37.

 3. D.L. Parnas, “Stop the Numbers Game.” Comm. ACM, Nov.
2007, pp. 19-21.

 4. D.L. Parnas, “Really Rethinking ‘Formal Methods,’” Com-
puter, Jan. 2010, pp. 28-34.

 5. D.L. Parnas, “Licensing Software Engineers in Canada,”
Comm. ACM, Nov. 2002, pp. 96-98.

 6. D.L. Parnas, “How Engineering Mathematics Can Im-
prove Software,” Proc. Int’l Conf. Eng. Reconfigurable
Systems and Algorithms (ERSA 2011); http://ersaconf.org/
ersa11/#hdisplay.

 7. D.L. Parnas and M. Soltys, Basic Science for Software De-
velopers, SQRL report no. 7, Software Quality Research
Laboratory, Dept. of Computing and Software, McMaster
University, 2002; www.cas.mcmaster.ca/sqrl/sqrl_reports.
html.

 8. D.L. Parnas, “Mathematics of Computation for (Software
and Other) Engineers,” Bull. European Assoc. Theoretical
Computer Science, Oct. 1993, pp. 249-259.

 9. K.L. Heninger, “Specifying Software Requirements for
Complex Systems: New Techniques and Their Applica-
tion,” IEEE Trans. Software Eng., Jan. 1980, pp. 2-13.

 10. D.L. Parnas, “Precise Documentation: The Key to Better
Software,” The Future of Software Engineering, S. Nanz,
ed., Springer, 2010, pp. 125-148.

 11. Z. Liu, D.L. Parnas, and B. Trancón y Widemann, “Doc-
umenting and Verifying Systems Assembled from
Components,” Frontiers in Computing Science in China,
June 2010, pp. 151-161.

David Lorge Parnas is professor emeritus at McMaster
University, Canada, and the University of Limerick, Ireland,
as well as president of Middle Road Software. Parnas re-
ceived a PhD in electrical engineering from Carnegie Mellon
University and honorary degrees form ETH Zurich, the
University of Louvain, the University of Italian Switzer-
land, and the Technical University of Vienna. Contact him
at parnas@mcmaster.ca.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

