
Software Architecture
and Systems-of-Systems

Milena Guessi Margarido

Prof. Dr. Elisa Yumi Nakagawa

Prof. Dr. José Carlos Maldonado

• • •
SCC-5944 Software Engineering - 2016

I. Software Architecture
1. Overview

2. Architectural Requirements

3. Architectural Description

4. Architectural Evaluation

Break

I. Systems-of-Systems
1. Software Architecture

2. Architectural Description

Program

2

Software
Architecture

Part I

3

What is it?

Who does it?

Why is it important?

What are the steps?

What is the work product?

How do I ensure that I’ve done it right?

Overview

4

Architectural design represents the structure of
data and program components that are required
to build a computer-based system

o Architectural style

o Struture and properties of components

o Interrelationships that occur among them

What is it?

5

Blueprint from which software is constructed

Fundamental concepts or
properties of a system
embodied in its elements,
relationships, and in the
principles guiding its design and
evolution over time

ISO/IEC/IEEE 42010

Definition

6

The architecture is not the operational software

It is an abstraction that enables you to:

i. Analyze the effectiveness of the design in
meeting its stated requirements

ii. Consider architectural alternatives at a stage
when making design changes is still relatively
easy

iii. Reduce the risks associated with the
construction of the software

What is it?

7

Why is it
important?

8

1. Data design

2. One or more representations of the
architectural structure

3. Selection of architectural styles or patterns
that are best suited to customer requirements
and quality attributes

4. Selection of an architectural alternative

5. Elaboration of the architecture using an
architectural design method

What are
the steps?

9

What are
the steps?

10Source: Hofmeister, C. et al., 2007

Analysis

Synthesis

Evaluation

Architectural

concernsContext

Architecturally

significant

requirements

Architecturally

significant

requirements

Candidate

architectural

solutions

Validated

architecture

Architecture description is created during the
architectural synthesis

o Encompasses the set of tangible artifacts
expressing a software architecture (ISO/IEC/IEEE
42010)

Communicates the architecture design to
stakeholders

 “Software architecture documentation speaks
for the architect, today, tomorrow and 20 years
from now.” (SEI)

What is the
work
product?

11

We need to ensure that the architectural
decisions taken are the right ones

o Architecture reviews (or evaluations) are
independent examinations of the software
architecture to identify potential architectural
problems

o At each stage of the architecture design method,
the architecture description is reviewed for

 Clarity

 Correctness

 Completeness

 Consistency

with requirements and with one another

How do I
ensure that
I’ve done it
right?

12

Architects’ tasks and responsabilities could be
manyfold (Garland and Anthony, 2003):

o Technical Risk Analyst

 Manage risk

 Evaluate requirements change risk

o Domain Analyst

 Divide problems and create solutions that fit the
organization needs

o Deliverables Reviewer

o Development Team Mentor

o Developer

o Team Lider

Who does
it?

13

What do
they do?

14Source: Kruchten, P. 2008

Listens to

customers, users

Watches

technology

Develops a

long-term vision

Guides the

development team

Expends time

making the right

design choices,

validating them,

and documenting

them

Software

Architect

50%

25%

25%

Time

Internal

External:

Inwards

External:

Outwards

Architectural
Requirements

15

Functional

Requirements

Stakeholder

Requirements

Architectural

Requirements
Architectural
Analysis

16

Quality

Attributes
Constraints

Source: Gorton, I., 2006

Reliability of communications:
o “Communications between components must be

guaranteed to succeed with no message loss”

Constraints:
o “The system must use the existing IIS-based web

server and use Active Server Page to process web
requests”

Architectural
Requirements
Examples

17

Software
Quality

Software Product Quality
o Satisfaction level reached by a software

product when it is used within specific
conditions

Quality Attribute
o Software characteristic that specifies the level

of a given attribute impacting software quality

o Examples: usability, reliability, performance, etc.

Quality Model
o Set of characteristics, and their

interrelationships, used as a benchmark for
specifying quality requirements and measuring
software quality

ISO/IEC 25000

18

19

ISO/IEC 25010 Quality Model

Software Product Quality

Functional

Suitability

Appropriateness

Completeness

Correctness

Reliability

Availability

Fault tolerance

Recoverability

Maturity

Performance

efficiency

Time-behaviour

Resource-

utilisation

Capacity

Usability

Appropriateness

recognisability

Learnability

Operability

User error

protection

User interface

aesthetics

Accessibility

Security

Confidentiality

Integrity

Non-

repudiation

Accountability

Authenticity

Compatibility

Co-existence

Interoperability

Maintainability

Modularity

Reusability

Analyzability

Changeability

Modificability

Testability

Portability

Adaptability

Installability

Replaceability

20

Quality Attribute Definition Architectural Requirement

Example

Functional Suitability degree to which a product or system provides functions that

meet stated and implied needs when used under specified

conditions

The system must provide a safe payment

method by credit card.

Reliability degree to which a system, product or component performs

specified functions under specified conditions for a specified

period of time

The loss of data package must be smaller

than 0,1%.

Performance efficiency performance relative to the amount of resources used under

stated conditions

The system must process any user request

under 1ms

Usability degree to which a product or system can be used by specified

users to achieve specified goals with effectiveness, efficiency

and satisfaction in a specified context of use

The system must provide an interface for

visually impaired users.

Security degree to which a product or system protects information and

data so that persons or other products or systems have the

degree of data access appropriate to their types and levels of

authorization

The system must use cryptographic

passwords.

Compatibility degree to which a product, system or component can

exchange information with other products, systems or

components, and/or perform its required functions, while

sharing the same hardware or software environment

The system must share information with

Facebook, Twitter, and Instagram.

Maintainability degree of effectiveness and efficiency with which a product or

system can be modified by the intended maintainer

The system must take less than 2 hours to

update.

Portability degree of effectiveness and efficiency with which a system,

product or component can be transferred from one hardware,

software or other operational or usage environment to another

The system must be compatible wirh several

operational systems, including Windows,

iOS, Linux, and Android.

ISO/IEC 25010 Quality Model

Quality attributes depend on each other
o They have subtle relationships with each other

o Example: high performance vs portability

 It is impossible to completely satisfy all quality
attributes of a software system

Architectural
Requirements

21

 Task of finding the architectural design that meets the
architectural requirements

Architectural
Synthesis

22

Architecture

Design Selection of

Architectural

Views

Selection of

Architectural

Patterns

Architecture

Documentation

Source: Gorton, I. 2006

“Most of the IT applications I’ve
worked on in the last ten years
are based around a small
number of well understood,
proven architectures. There’s a
good reason for this – they
work”

Ian Gorton (2006)

Architectural
Patterns

23

Architectural patterns dictate a particular high-
level modular decomposition of the system that
helps to satisfy the essential requirements

One or more architectural patterns can be
selected depending on the size of the system

o Architect must specify how these patterns were
incorporated in the whole solution

Why? Take advantage of known, proven
solutions for decreasing the risk of selecting an
inappropriate architecture

Architects must understand how each pattern
addresses quality atributes

Architectural
Patterns

24

Module Patterns
o Describe an architecture in terms of modules

Component and Connector Patterns
o Describe an architecture in terms of components

and connectors

o Show software systems as a set of interacting
elements at run-time

Allocation Patterns
o Describe an architecture as a combination of

software elements and other types of elements (e.g.,
servers, networks, etc)

Architectural
Patterns

25

26

Component
and
Connector
Patterns

Data flow Pattern

• Components act as transformers whereas connectors move data from one

component’s output to another componente’s input

• It is possible when computing tasks can be devided as a sequence of

transformations

Call-return Pattern

• Components interact with each other by means of syncronous calls to others

provided capabilities

• Component that makes a call is paused until its request has been answered

• Connectors forward requests and return their outcome

Event-based Pattern

• Components interact with each other by means of events ou assyncronous

messages

• Systems are organized as loosely coupled coalitions of components

Repository Pattern

• Components interact with each other by means of sharing a data repository

• Access to this repository is mediated by DBMS, which provides a call-return

interface enabling data recovery and management

27

Data-flow

Batch

Sequential

Pipe & Filter

Call-return

Client-

Server

Peer-to-

Peer

SOA

Event-

based

Publish-

Subscribe

Point-to-

Point

Blackboard

SOA

Repository

Shared Data

Blackboard

Component
and
Connector
Patterns

28

Component
and
Connector
Patterns

Client-server

29

Component
and
Connector
Patterns

Client-server

N-tier Client-Server properties:

o Separation of concerns: Presentation,
business, and data management logics are
clearly separated in different layers

o Syncronous communication between layers:
i.e., requests come from one direction and
each layer waits for their response before
moving on.

o Flexible deployment: all layers can be
deployed to the same machine or they can be
delegated to separate machines.

30

Component
and
Connector
Patterns

Client-server

Component
and
Connector
Patterns

Client-server

31

• Servers in different layers can be cloned so that they

can be quickly replaced whenever one of them fails

Availability

• Transparent implementation of failure control

• Client requests can be forwarded to clones

Fault Tolerance

• Separation of concerns enables to make changes to one

layer without requiring to change the others

Modifiability

• High performance: each server can process thousands

of simultaneous requests

• New client requests can be processed by servers with

lower work loads

Performance

• Servers can be cloned

• Several instances of the server can run on the same

machine or different machines

• Potential bottleneck: Data management (DBMS)

Scalability

Architectural
Description

36

Architectural
Decisions

37

Requirements Architectural

Patterns

Software

Architect

38

Architecture
Description

Main artifact expressing the software architecture

Applications:
o Communicating and sharing architectural

knowledge

o Assessing and analyzing systems qualities

o Evolving software systems

 Impacts on feasibility, usability, and
maintainability of software systems

39

40

Team Manager

Client
Developer

Analyst

User

Architecture

DescriptionSoftware

Architect

Architecture
Description

Targeted for specific stakeholders

Addresses different concerns
o Functionality, security, cost, performance, among

others

Different views
o Each of them conforms to a given viewpoint

41

Architecture
Description
Language
(ADL)

Mechanisms for expressing composition,
abstraction, reusability, configuration, and
analysis of software architectures

Challenges for describing software architectures:
o Runtime perspective

o Dynamic perspective

o Mobile perspective

42

Conceptual
Model of an
Architecture
Description

ISO/IEC/IEEE

42010

43

Viewpoint

Artifact establishing
the conventions (i.e.,
model kinds) for the
construction,
interpretation and
use of architecture
views to frame
specific system
concerns

View

Artifact expressing
the architecture from
the perspective of
specific system
concerns

44

Architecture
Description

ISO/IEC/IEEE
42010

Architecture
Framework

4+1 Views

 Logical Viewpoint

 Process Viewpoint

Development
Viewpoint

 Physical Viewpoint

Use Case Viewpoint

Views & Beyond

Module Viewpoint

 Components and
Connectors Viewpoint

Deployment
Viewpoint

45

Establishes a common practice for creating,

interpreting, and analyzing architecture descriptions

for a particular domain or stakeholders community

The set of viewpoints describing an architecture
can vary for each system

o Takes into account stakeholders’ concerns

o Takes into account architect’s goals

Each viewpoint can highlight a particular element
and/or relationship in the system, e.g.:

o A layer view can be useful for describing
portability

o A deployment view can be useful for describing
performance and reliability

Architecture
Description

46

 [ADLs] provide mechanisms for expressing
composition, abstraction, reusability,
configuration, and analysis of software
architectures (Shaw and Garlan, 1994)

An ADL must explicitly model components,
connectors, and their configurations;
furthermore, to be truly usable and useful, it
must provide tool support for architecture-based
development and evolution (Medvidovic and
Taylor, 2001)

ADLs
Traditional
Definitions

47

Architecture building blocks
o Components

o Connectors

o Configurations

Tool Support
o Enable automated analyses on the architecture

description

ADLs
Characteristics

48

Components and
Connectors

o Interface

o Type

o Semantics

o Constraints

o Evolution

o Non-functional
properties

 Tool Support
o Active specification

o Multiple views

o Analysis

o Refinement

o Implementation
generation

o Dynamism

 (Architectural)
Configuration

o Understandability

o Compositionality

o Refinement and
traceability

o Heterogeneity

o Scalability

o Evolution

o Dynamism

o Constraints

o Non-functional
properties

Source: Medvidovic, N. and Taylor, R. N., 2000. 49

ADLs
Characteristics

ADL
Conceptual
Model

An ADL is any form of expression for use in
architecture descriptionsISO/IEC/IEEE

42010

50

ADL
Formalism
Level

51

Informal

• Present

neither

defined

syntax or

semantics

• Main usage:

• Illustrating or

exemplifying

concepts

Semi-formal

• Present

defined

syntax but

lack a

complete

semantics

• Main usage:

• Supporting

communication

among

stakeholders

Formal

• Present

formally

defined

syntax and

semantics

• Main usage:

• Verifying and

validating

models against

properties and

quality

attributes

Many, many, many ADLs...
o 123!!

ADL
Example

52Source: http://www.di.univaq.it/malavolta/al/

Informal
ADL
Example

53
Source:

1,2 Clements, P. et al., 2011

3 Weyns, D. An Architecture-Centric Approach for Software Engineering with Situated Multiagent Systems. PhD Thesis. 2006. Available at:

http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2006_09.abs.html

2. A bird’s-eye-view of a

system as it appears at run-

time.

1. Modules can (a) provide interfaces,

hiding other modules, or (b) exposing

some interfaces of internal modules

3. Shared data view of an agent

Source:

1 http://www.omg.org/spec/UML/2.5/

2 http://www.omg.org/spec/SysML/1.4/

Semi-formal
ADL
Example

54
2. SysML 1.x diagram types

1. UML 2.x diagram types

UML diagram of a

pipe-and-filter view

55Source: Clements, P. et al., 2011

UML package diagram (left)

and Dependency Structure

Matrix (DSM) (right)

Substructure of a

UML component

Semi-formal
ADL
Example

56Source: http://www.omgsysml.org/

Semi-formal
ADL
Example:
SysML

57Source: http://www.omgsysml.org/

Semi-formal
ADL
Example:
SysML

58

Examples
(Formal)

A composite component specified

in Darwin (top) and (bottom) the

graphical view of the component

The pipes-and-filters style declared in

Wright.

Dynamic insertion of a component into a

C2SADEL architecture.

Declaration in ACME of a family of

architectures, fam, and its subfamily, sub_fam,

which has new components and properties

Source: Medvidovic, N. and Taylor, R. N., 2000.

Formal ADL Example

59Source: Cavalcante, E., Oquendo, F., Batista, T. Architecture-Based Code Generation: From π-ADL Architecture Descriptions to Implementations in the

Go Language. ECSA 2015.

Description of a simple pipeline architecture

Formal
ADL
Example:
π-ADL

 Formalizing software architecture descriptions
o Models must be scalable

o Multiple formal methods must be supported

 using multiple ADLs to model a single system

 formalizing different aspects of a system in a
single ADL

o Incremental formalization must be supported

 how do you formalize in the face of
incompleteness?

 Formalize only and exactly as much as
necessary

o Analysis results must be transferable to design
and implementation

 what good is deadlock detection at architecture
alone?

Why
formal?

60Source: http://sunset.usc.edu/classes/cs599_2000/September7b.pdf

 48 practitioners

Use of ADLs:
o 86% use UML or an UML profile,

o 9% use ad hoc or in-house languages (e.g., AADL,
ArchiMate)

o 5% do not use any ADL

Needs of ADLs:
o Design (~66%), communication support (~36%), and

analysis support (~30%)

o Code generation and deployment support (~12%
percent) and development process and methods
support (~18%)

 Limitations of ADLs:
o Insufficient expressiveness for non-functional

properties (~37%)

o Insufficient communication support for non-
architects (~25%)

o Lack of formality (~18%)

What
industry
needs from
architectural
languages?

61Source: Malavolta, I. et al. 2013.

What
industry
needs from
architectural
languages?

Extrovert

Communicates the
architecture to the
stakeholders involved
in the architecting
phase

ADLs must be simple
and intuitive

Introvert

Analyzes the
architectural design

ADLs must enable
formality so to drive
analysis and other
automatic tasks

62

vs

Source: Malavolta, I. et al., 2013.

Industry focus Academic focus+

Architectural
Evaluation

64

Architectures are not inherently good or bad,
they are only well-suited or not with respect to a
particular set of goals

Questions:

a. Will the solution meet the quality
requirements?

b. Do we have sufficient resources for developing
the solution?

c. Did we take the right architectural decisions?

and many more...

Architectural
Evaluation

65

Architecture Evaluation

Checks

Architectural-significant decisions

Against

Architectural-significant requirements

Architectural
Evaluation

66

The sooner the better

Quantitative: How much ...?
o Estimation

o Analytical or simulation models

o Measurements on feasibility prototypes or
products

Qualitative: What if ...?
o Questioning techniques: questionnaires &

checklists

o Based on scenarios: e.g., ATAM, SAAM, ...

o Prototyping (proof-of-concept)

Evaluation mostly uses scenarios1 to verify
quality attributes

Architectural
Evaluation
Types

671 Short statement describing an interaction of one of the stakeholders with the system

When?
o Architecture is defined and before or after

implementation is completed

 Before: iterative evaluation of architecture
decisions

 After: Encompasses understanding legacy systems
and checking if they meet quality requirements

Who?
o Domain and technical stakeholders should

participate. The evaluation team should not be
drawn from the project staff

 Input
o Architecture description

 Completeness and reliability of the evaluation
depends on the description

Outputs
o Prioritized list of quality requirements

o God/bad, 6/10, where are the risks

Architectural
Evaluation

68

?

Architecture

Tradeoff
Analysis
Method
(ATAM)

70

1st meeting

Who: evaluation meeting

and project decision

makers

2nd meeting

Who: evaluation

meeting, project

decision makers, and all

stakeholders

Reference Architectures

Architectural Evolution

Models @ Runtime

Sustanaible Architectures
o Green, Technical Debt

and many more...

Trending
Topics in
Software
Architecture

71

Systems-of-Systems

Part II

72

 Independent constituent
systems

o Action and decision
making

Geographic distribution

Evolutionary development

Emergent behavior

SoSs

73Image Source: https://ec.europa.eu/digital-single-market/system-systems

SoSs

74

Open systems
o Top

 Continually open for addition of new applications
and systems, whithout any top-level system
defining the SoS

 Emergent behavior

o Bottom

 The lowest level of the SoS (e.g., communication
stack) may be changed at any time

 Interoperability

o Continually evolving

 An SoS is never complete as it evolves at run-
time according to changes in the surrounding
environment

Source: Abbott, 2006.

1. Acquisition management and staffing

2. Requirements/architecture feasibility

3. Achievable software schedules

4. Supplier integration

5. Adaptation to rapid change

6. Systems and software quality factor
achievability

7. Product integration and electronic upgrade

8. Commercial off-the-shelf (COTS) software and
reuse feasibility

9. External interoperability

10. Technology readiness

SoSs
Potential
Pitfalls

75Source: Boehm, B. et al. 2004

Global Earth
Observing System
of Systems
(GEOSS)

76

SoSs
Example

GEOSS is to be a global, coordinated,
comprehensive and sustained system of Earth
observing systems

o Promote coordinated access to data and
products produced amongst all contributing
systems

 Introduces consistency of content through
guidelines to data providers for the
appropriate characterization of the observing
systems and their derived products

o Adoption of standardized best practices

GEOSS

77Source: http://earthobservations.org

Variety of users

Various communities with their own cultures

Distributed system
o No new single architecture imposed to

everyone

o Preserve the existing infrastructures as much
as possible

o Enforce simple and robust interfaces and
formats

Dynamic, open system
o Grow and attract third-party data and service

providers and accepts intermitent participation
with disconnected/connected modes without
disruption

Comprehensive information flow
o End-to-end: product order, planning,

acquisition, processing, archiving, and
distribution

78

SoSs
Example

GEOSS

Source: http://earthobservations.org

79

SoSs
Example

GEOSS

Architecture

Source: http://earthobservations.org

GEOSS defines best practices to ensure data

integrability and interoperability

1

2

3

80

SoSs
Example

GEOSS

Architecture

Implementation

Pilot (AIP)

Source: http://earthobservations.org

81

SoSs
Example

GEOSS

Architecture

Implementation

Pilot (AIP)

Use Cases

Engineering components with services

Source: https://www.earthobservations.org/documents/cfp/201501_geoss_cfp_aip8_architecture.pdf

SoSs
Example

 Interoperability through open interfaces and
reference methods

o Interoperability specifications agreed to
among contributing systems

o Access to data and information through
service interfaces

Open standards and intellectual property
rights

o Preference for formal international standards

o Multiple software implementations compliant
with the open standards should exist

GEOSS

82Source: http://earthobservations.org

Build upon existing systems and historical data
o National, regional or international agencies

that subscribe to GEOSS but retain their
ownership and operational responsability

 Implementation plan must address cost
effectiveness, technical feasibility, and
institutional feasibility

To be sustained over a long period of time,
GEOSS needs to be adjustable, flexible,
adaptable, and responsive to changing needs

o Capture future capabilities through open
architecture

83

SoSs
Example

GEOSS

Source: http://earthobservations.org

SOA is configurable and scalable to customer

needs and leverages robust systems and

processes for global interoperability

SoSs
Description

84

Two levels
o Mission

 Identifies required capabilities for constituents,
operations, connections, emergent behavior, etc.

o Architecture

 Describes structure, behavior, and properties
about the SoS

SoSs
Description

85

Definition
o Higher functionality that cannot be performed by

any constituent alone

 Accomplished by emergent behaviors

o Guides the whole SoS development process

mKAOS
o Language for describing mission models

o Tool: mKAOS Studio

Mission

86Source: Silva, E. et al., 2015.

Mission

Conceptual

model

87Source: Silva, E. et al., 2015.

Mission

88Source: Silva, E. et al., 2015.

Mission model in

mKAOS

Emergent behavior

model in mKAOS

Higher-priority

missions

“To gain confidence that an SoS
architecture will respect key
properties, it is paramount to have
a precise model of the constituents
and the connectors between them,
the properties of the constituents,
and the SoSs environment.”

Nielsen et al. (2015)

SoSs
Architectural
Description

89

SoSs
Architectural
Description

How has the literature addressed the
architecture description of SoS?

Which are the techniques used in the
description of software architectures of SoS?

Does the primary study focuses on a specific
type of SoS?

90Source: Guessi, M. et al. 2015a.

Techniques
Used for
Describing
SoSs
Architecture

 Formal languages:
o CML, CFML, FSM,

OWL, VDM-SL,
among others

Semi-formal
languages:

o UML, SysML, and
UPDM

Combination of
formal and semi-
formal languages:

o UML/SysML +
Petri nets

o SysML + VDM-SL

91Source: Guessi, M. et al. 2015a.

SoSs Type
Described
and
Concerns

Directed

21%

Acknowledged

3%

Collaborative

21%

Virtual

5%

Not specified

50%

Main quality
characteristics:

o Interoperability

o Correctness

o Integrability

o Dependability

o Adaptability

o Safety

92Source: Guessi, M. et al. 2015a.

ADLs for
SoSs

93

SoS

characteristics

Do Single System ADLs cope with SoS

characteristics?

Operational

independence of

constituent systems

No, they do not. Single system ADLs are based on the notion

that components’ operation is totally controlled by the system,

which is not the case for constituents. Moreover, the concrete

components of single systems are known at design-time, which

is not necessarily the case of SoSs either.

Managerial

independence of

constituent systems

No, they do not. Single system ADLs are based on the notion

of components whose management is totally controlled by the

system, which is not the case of SoSs.

Geographical

distribution of

constituent systems

No, they do not. Single system ADLs are based on the notion

of logically distributed components. None supports the notion

of physical mobility, in particular regarding unexpected local

interactions among components that physically move near to

each other, as it is the case of SoSs.

Evolutionary

development of SoS

No, they do not. Single system ADLs are based on the

principle that concrete components are known at design-time

and that they may possibly enter or leave the system at run-

time under the control of the system itself, which is not

necessarily the case of SoSs.

Emergent behavior

drawn from SoS

No, they do not. Single system ADLs have been defined based

on the principle that all behaviors are explicitly defined

(including global ones). None supports the notion of emergent

behavior required in SoSs.

Source: Guessi, M. et al. 2015b. Oquendo, F. 2016a.

 Limited expressive power in terms of on-the-fly
evolution

 Lack support for open architecture description
o Concrete constituents are not known at design-

time

 Lack mechanism for describing emergent
behaviors

Single
System
ADLs
Weaknesses
for SoSs

94Source: Guessi, M. et al. 2015b. Oquendo, F. 2016a.

Description of an abstract architecture for SoS
o It can be evolutionarily concretized at run-time by

identifying and incorporating concrete
constituent systems

SosADL
an Architecture
Description
Language for
SoSs

95Source: Oquendo, F. 2016a. Oquendo, F. 2016b.

Coalition represents on-the-fly composition

of systems (i.e., constituents)

Analyze trade-offs of alternative designs at early
development stages

Describe contracts that exist between each
constituent system and the SoS

Support evolution
o Important to keep the architectural design

aligned with systems goals and technologies

o Preserve specified properties under evolution
steps

Support dynamic reconfiguration
o Run-time modification of architectures and

interfaces

Support emergent behaviors
o Describe global properties at the SoS level

o Enable statement and verification of emergence
(including desirable and undesirable)

SoSs
Architectural
Description

96

SoSs
Research
Directions

97

Research
Directions

 Formal ADLs for SoSs
o Promote correctness, consistency, and

completeness of architecture descriptions

o Support evolutionary development of SoSs

Desired properties of ADLs for SoSs
o Understandability,

o Scalability,

o Refinement,

o Traceability, among others others

Support different phases of SoS life cycle
o Enforce correctness, consistency, and

understandability of architecture descriptions

o Ensure semantic consistency among
heterogeneous models of constituents

o Interchangeable, complementary techniques
should be explored for supporting different
abstraction/formalism levels

98

 Bass, L., Clements, P., and Kazman, R. 2003. Software Architecture in Practice (2ed.). Addison-

Wesley Longman Publishing Co.

 Gorton, I. 2006. Essential Software Architecture. Springer-Verlag New York, Inc.

 Kruchten, P. What do software architects really do? In: Journal of Systems and Software, v.81,

p.2413-2416. 2008

 Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A. and America, P. A general model of

software architecture design derived from five industrial approaches. In: Journal of Systems and

Software, v.80, n.1, p. 106-126. 2007.

 Garland, J. and Anthony, R. 2003. Large-Scale Software Architecture: A Practical Guide Using

UML. John Wiley & Sons, Inc., New York, NY, USA.Hofmeister

 ISO/IEC/IEEE 42010:2010 International Standard for Systems and Software Engineering --

Architectural description

 Malavolta, I.; Lago, P.; Muccini, H.; Pelliccione, P. and Tang, A. What Industry Needs from

Architectural Languages: A Survey IEEE Transactions on Software Engineering, 2013, v. 39, n. 6,

869-891.

 Lago, P.; Malavolta, I.; Muccini, H.; Pelliccione, P. and Tang, A. The road ahead for architectural

languages. IEEE Software, 2014, 32, 98-105.

 Medvidovic, N. and Taylor, R. N. A classification and comparison framework for software

architecture description languages. In: IEEE Transactions on Software Engineering, 2000, v. 26,

n.1, 70-93.

 Oquendo, F. pi-ADL: An Architecture Description Language based on the Higher Order Typed

pi-Calculus for Specifying Dynamic and Mobile Software Architectures. In: ACM Software

Engineering Notes, 2004, v. 29, n.3, 15-28.

 Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.; Nord, R.; and

Stafford, J. Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2011.

 Shaw, M. and Garlan, D. Characteristics of Higher-Level Languages for Software Architecture.

Carnegie Mellon University, 1994. http://www.sei.cmu.edu/reports/94tr023.pdf

Bibliography
Part I

99

 Boehm, B.; Brown, W.; Basili, V. & Turner, R. Spiral Acquisition of Software-Intensive

Systems-of-Systems. In: Crosstalk, 2004, p. 4-9

 Guessi, M.; Neto, V. V. G.; Bianchi, T.; Felizardo, K. R.; Oquendo, F. & Nakagawa, E. Y. A

systematic literature review on the description of software architectures for systems of

systems. In: ACM/SIGAPP SAC' 2015, 2015a, p. 1442-1449

 Guessi, M., Cavalcante, E., and Bueno, L.B.R. Characterizing ADLs for Software-Intensive

SoS. In: SeSoS at ICSE’ 2015. 2015b. p. 12-18.

 Medvidovic, N. and Taylor, R. N. A classification and comparison framework for software

architecture description languages. In: IEEE Transactions on Software Engineering, 2000, v.

26, n.1, 70-93.

 Nielsen, C. B.; Larsen, P. G.; Fitzgerald, J.; Woodcock, J. & Peleska, J. Systems of Systems

Engineering: Basic Concepts, Model-Based Techniques, and Research Directions. In: ACM

Comput. Surv., 2015, v. 48, p. 1-41

 Oquendo, F. Formally Describing the Software Architecture of Systems-of-Systems with

SosADL. In: SoSE' 2016, 2016a, p.1-6

 Oquendo, F. $-Calculus for SoS: A Foundation for Formally Describing Software-intensive

Systems-of-Systems. In: SoSE' 2016, 2016b, p. 1-6

 Silva, E.; Batista, T. & Oquendo, F. A Mission-Oriented Approach for Designing System-of-

Systems. In: SoSE' 2015, p. 346-351.

 Ulieru, M. & Doursat, R. Emergent engineering: a radical paradigm shift. In: Int. J.

Autonomous and Adaptive Communications Systems, 2011, v. 4, n.1, p. 39-60.

Bibliography
Part II

100

