SSSSSSSSS

Software Architecture
and Systems-of-Systems

Milena Guessi Margarido
Prof. Dr. Elisa Yumi Nakagawa

Prof. Dr. José Carlos Maldonado

SCC-5944 Software Engineering - 2016

. Software Architecture
1. Overview

2. Architectural Requirements
3. Architectural Description
4. Architectural Evaluation

Program

Break

| Systems-of-Systems
1. Software Architecture

2. Architectural Description

Software
Architecture

Part |

What is it?

Who does it?

Why is it important?

What are the steps?

What is the work product?

Overview

How do | ensure that I've done it right?

What is it?

“ Architectural design represents the structure of
data and program components that are required
to build a computer-based system

o Architectural style
o Struture and properties of components

o Interrelationships that occur among them

L 4

Blueprint from which software is constructed

Definition

Fundamental concepts or
properties of a system
embodied in its elements,
relationships, and (n the
principles guiding its design and
evolution over time

ISO/IEC/IEEE 42010

What is it?

The architecture is not the operational software

It is an abstraction that enables you to:

.. Analyze the effectiveness of the design in
meeting its stated requirements

ii. Consider architectural alternatives at a stage
when making design changes is still relatively
easy

ii. Reduce the risks associated with the
construction of the software

Why is it

Important?

Need more features! Need more...? \

Cool ideas f“ Fix problems!

and technology
@ Kill?2?

Simple
Fast Complicated
Easy to change More problems Incomprehensible

Unstable and slow
Impossible to change

softwarecreation.org

What are

the steps?

Data design

One or more representations of the
architectural structure

Selection of architectural styles or patterns
that are best suited to customer requirements
and quality attributes

Selection of an architectural alternative

Elaboration of the architecture using an
architectural design method

What are

the steps?

Source: Hofmeister, C. et al., 2007

Architectural
Context concerns

Yy ¢

AnaIySiS Architecturally

significant
requirements

Synthesis Candidate
architectural
solutions

Architecturally
significant
requirements

Evaluation

¥

Validated
architecture

10

What is the

work
product?

Architecture description is created during the
architectural synthesis

Encompasses the set of tangible artifacts
expressing a software architecture (ISO/IEC/IEEE
42010)

Communicates the architecture design to
stakeholders

“Software architecture documentation speaks
for the architect, today, tomorrow and 20 years
from now.” (SEI)

11

We need to ensure that the architectural
decisions taken are the right ones

Architecture reviews (or evaluations) are
independent examinations of the software
HOW dO | architecture to identify potential architectural

ensure that problem:
u . At each stage of the architecture design method,
|'Ve done It the architecture description is reviewed for
: ? Clarity
rlg ht. Correctness

Completeness
Consistency

with requirements and with one another

12

Who does

It?

Architects’ tasks and responsabilities could be
manyfold (Garland and Anthony, 2003):

Technical Risk Analyst
Manage risk
Evaluate requirements change risk

Domain Analyst

Divide problems and create solutions that fit the
organization needs

Deliverables Reviewer
Development Team Mentor
Developer

Team Lider

13

What do

they do?

Source: Kruchten, P. 2008

N
Software
Architect

Expends time
making the right
design choices,
validating them,
and documenting
them

Listens to
customers, users

Watches
technology

Develops a
long-term vision

Guides the
development team

Time

<
2
Z
zZ

Internal

2450

External:
Inwards

2450

External:
Outwards

14

Architectural
Requirements

15

Architectural

Analysis

Source: Gorton, |., 2006

Functional
Requirement

Stakeholder
Requirement

Constraints

)

)

Quality
Attributes

Architectural

Requirements

16

Architectural

Requirements
Examples

Reliability of communications:

"Communications between components must be
guaranteed to succeed with no message loss”

Constraints:

“The system must use the existing [IS-based web
server and use Active Server Page to process web
requests”

17

Software
Quality

ISO/IEC 25000

Software Product Quality

Satisfaction level reached by a software
product when it is used within specific
conditions

Quality Attribute

Software characteristic that specifies the level
of a given attribute impacting software quality

Examples: usability, reliability, performance, etc.

Quality Model

Set of characteristics, and their
interrelationships, used as a benchmark for
specifying quality requirements and measuring
software quality

18

ISO/IEC 25010 Quality Model

Software Product Quality

Functional
Suitability

g A ppropriateness

Completeness

Correctness

Reliability

Availability

Fault tolerance

Recoverability

Maturity

Performance
efficiency

Time-behaviour

Resource-
utilisation

Capacity

Usability

Appropriateness
recognisability

Learnability

Operability

User error
protection

User interface
aesthetics

Accessibility

Security

Confidentiality

Integrity

Non-
repudiation

Accountability

Authenticity

Compatibility

Co-existence

Interoperability

Maintainability

Modularity

Reusability

Analyzability

Changeability

Modificability

Testability

Portability

Adaptability

Installability

Replaceability

Quality Attribute

Functional Suitability

Reliability

Performance efficiency

Usability

Security

Compatibility

Maintainability

Portability

ISO/IEC 25010 Quality Model

Definition

degree to which a product or system provides functions that
meet stated and implied needs when used under specified
conditions

degree to which a system, product or component performs
specified functions under specified conditions for a specified
period of time

performance relative to the amount of resources used under
stated conditions

degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use

degree to which a product or system protects information and
data so that persons or other products or systems have the
degree of data access appropriate to their types and levels of
authorization

degree to which a product, system or component can
exchange information with other products, systems or
components, and/or perform its required functions, while
sharing the same hardware or software environment

degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainer

degree of effectiveness and efficiency with which a system,
product or component can be transferred from one hardware,
software or other operational or usage environment to another

Architectural Requirement

Example

The system must provide a safe payment
method by credit card.

The loss of data package must be smaller
than 0,1%.

The system must process any user request
under Tms

The system must provide an interface for
visually impaired users.

The system must use

passwords.

cryptographic

The system must share information with
Facebook, Twitter, and Instagram.

The system must take less than 2 hours to
update.

The system must be compatible wirh several
operational systems, including Windows,
iOS, Linux, and Android.

20

Architectural

Requirements

Quality attributes depend on each other
They have subtle relationships with each other

Example: high performance vs portability

It is impossible to completely satisfy all quality
attributes of a software system

21

“ Task of finding the architectural design that meets the
architectural requirements

[
I
Architecture
Requirements

Architectural

Synthesis

Architecture

Design

I
T

Architectu%\ Arm

Views Document

Fig. 38. Inputs and outputs of architecture design

Source: Gorton, |. 2006 22

Architectural

Patterns

"Most of the IT applications I've
worked on (n the last ten years
are based around a small
number of well understood,
proven architectures. There's a
good reason for this — they
work”

lan Gorton (2006)

23

Architectural

Patterns

Architectural patterns dictate a particular high-
level modular decomposition of the system that
helps to satisfy the essential requirements

One or more architectural patterns can be
selected depending on the size of the system

Architect must specify how these patterns were
incorporated in the whole solution

Why? Take advantage of known, proven
solutions for decreasing the risk of selecting an
inappropriate architecture

\ 4

Architects must understand how each pattern
addresses quality atributes

24

Architectural

Patterns

Module Patterns
Describe an architecture in terms of modules

Component and Connector Patterns

Describe an architecture in terms of components
and connectors

Show software systems as a set of interacting
elements at run-time

Allocation Patterns

Describe an architecture as a combination of
software elements and other types of elements (e.qg.,
servers, networks, etc)

25

Data flow Pattern

» Components act as transformers whereas connectors move data from one
component's output to another componente’s input

« It is possible when computing tasks can be devided as a sequence of
transformations

Call-return Pattern

« Components interact with each other by means of syncronous calls to others
provided capabilities

Component

d « Component that makes a call is paused until its request has been answered
dan Connectors forward requests and return their outcome

Connector
Patterns

Event-based Pattern

« Components interact with each other by means of events ou assyncronous
messages

» Systems are organized as loosely coupled coalitions of components

Repository Pattern

« Components interact with each other by means of sharing a data repository

* Access to this repository is mediated by DBMS, which provides a call-return
interface enabling data recovery and management

26

Component
and

Connector
Patterns

Data-flow

Batch
Sequential

(1

— Pipe & Filter

& J

Call-return

Client-
Server

Peer-to-
Peer

— SOA

Event-

based

Repository

Publish-
Subscribe

Point-to-
Point

— Blackboard

~N

- SOA

Shared Data

~N

Blackboard

J

27

Component
and
Connector

Patterns

Client-server

Client
Tier

Web Server
Tier

Business
Logic Tier

Data
Management
Tier

Web Web Web
Client Client Client
Web Server

1l

Application Server

1

Databases

Fig. 39. N-tier client-server example

28

Component
and
Connector

Patterns

Client-server

Relations

Computational Model

Constraints

What It’s For

The attachment relation associates client service-request ports with
the request role of the connector and server service-reply ports with
the reply role of the connector.

Clients initiate interactions, invoking services as needed from servers
and waiting for the results of those requests.

Clients are connected to servers through request/reply connectors.

Server components can be clients to other servers.
Specializations may impose restrictions:

— Numbers of attachments to a given port

— Allowed relations among servers

Components may be arranged in tiers.

Promoting modifiability and reuse by factoring out common
services

Improving scalability and availability in case server replication is in
place

Analyzing dependability, security, and throughput

29

Component N-tier Client-Server properties:

and
Separation of concerns: Presentation,
Connector business, and data management logics are

Patterns clearly separated in different layers

Client-server

.e., requests come from one direction and
each layer waits for their response before
moving on.

Flexible deployment: all layers can be
deployed to the same machine or they can be
delegated to separate machines.

Syncronous communication between layers:

30

mmm Availability

« Servers in different layers can be cloned so that they
can be quickly replaced whenever one of them fails

e Fault Tolerance

Component « Transparent implementation of failure control

» Client requests can be forwarded to clones
and

smm Modifiability

Connector

« Separation of concerns enables to make changes to one
layer without requiring to change the others

Patterns

Client-server e Performance

« High performance: each server can process thousands
of simultaneous requests

* New client requests can be processed by servers with
lower work loads

mmm Scalability

« Servers can be cloned

» Several instances of the server can run on the same
machine or different machines

* Potential bottleneck: Data management (DBMS)

Architectural
Description

36

Architectural

Decisions

Requirements

Software
Architect

Architectural
Patterns

37

Busmwess VaLve ArcHITETURE

SrrATECY MAP

Eo5 i L

TecnnoLoeY
MARKETS
EconoMY
Customers
ComreTmors CAPABILITY MoDEL
RecuLAToRY
4}“5 Process +o>
AN 22
PeopLE EBRAND Ass’:"rs
= XCELLENCE | f]Z

TecuNoLoC Y
- =

CAPABILITY ELABORAT loN

Frocess A CLam

Use CASES

The Visual Architecting Process

Boswess, / SYsTEM
PersoNAL
AL GoALS N

. -
— = e <
sy = oo g™ Srvie Fencipres Mecyanshs ..
= Gl =iz

\ — = c =
= —l =

SM Mera ArcHITECTURE

Guiwes ArcriTeers
ExPoRE

SreciFic
FoncrronA-mY

CouasoraioN DincraM ConcerTuaL ARCH

Busivess Process MopeLS

sy;rsn/mamunoml-
CoNSTRAINTS
srate DI LocicaL ARCHITECTURE

TnTerFAce FroTocok

SYSTEM QUALITIES

e r/_‘—
—C2
Resuers == //a\‘o M%ﬂ[_ﬁ
_— -S> b 2EE= 3T
key FrozecTs —— : /,,x!gx, uala yw/u’é l)\p=
EVeNTS \?’\ = »
Use Case TempPLATE
=] Test Cases_FoR
Ore. CHANGES = SysTem QUALITIES n—D
LenenINeS
Toenriry ’_’_d‘_'

1110 Gearwicat HmTory

Dermiep Use CAses

ExecuTioNn ARcHITECTURE

Copyright © 2008 by Bredemeyer Consulting

38

Architecture

Description

Main artifact expressing the software architecture

Applications:

Communicating and sharing architectural
knowledge

Assessing and analyzing systems qualities
Evolving software systems

Impacts on feasibility, usability, and
maintainability of software systems

39

Developer ?

Analyst

~

Team Manage

Architecture

Software Description
Architect

40

Architecture

Description

Targeted for specific stakeholders

Addresses different concerns

Functionality, security, cost, performance, among
others

Different views
Each of them conforms to a given viewpoint

41

Architecture
Description

Language
(ADL)

Mechanisms for expressing composition,
abstraction, reusability, configuration, and
analysis of software architectures

Challenges for describing software architectures:
Runtime perspective

Dynamic perspective
Mobile perspective

42

Conceptual
Model of an
Architecture
Description

ISO/IEC/IEEE
42010

Interest

System-of-

exhibits P

1

A has interests in

Architecture

< identifies

A expresses

1.* 1
Stakehold identifies 1 Architecture
takeholder 1 Description
- Architecture
1 - (ﬁ 1.* Rationale
has < identifies
v
0..* 0..*
1.7
Correspondence
Rule Correspondence
Concern
1.7
frames A A addresses
1.7 1.7
Architecture I governs I Architecture
Viewpoint 1 1 View
1.* 1.
] 1.7 i
Model Architecture
Kind Model
governs p

43

Architecture
Description

ISO/IEC/IEEE
42010

Viewpoint

Artifact establishing

the conventions (i.e.,

model kinds) for the
construction,
interpretation and
use of architecture
views to frame
specific system
concerns

View

Artifact expressing
the architecture from
the perspective of
specific system
concerns

44

Architecture

Framework

Establishes a common practice for creating,
interpreting, and analyzing architecture descriptions
for a particular domain or stakeholders community

4+1 Views
Logical Viewpoint

Process Viewpoint

Development
Viewpoint

Physical Viewpoint

Use Case Viewpoint

Views & Beyond
Module Viewpoint

Components and
Connectors Viewpoint

Deployment
Viewpoint

45

Architecture

Description

The set of viewpoints describing an architecture
can vary for each system

Takes into account stakeholders’ concerns
Takes into account architect's goals

Each viewpoint can highlight a particular element
and/or relationship in the system, e.qg.:

A layer view can be useful for describing
portability

A deployment view can be useful for describing
performance and reliability

46

ADLs

Traditional
Definitions

[ADLs] provide mechanisms for expressing
composition, abstraction, reusability,
configuration, and analysis of software
architectures (Shaw and Garlan, 1994)

An ADL must explicitly model components,
connectors, and their configurations;
furthermore, to be truly usable and useful, it
must provide tool support for architecture-based
development and evolution (Medvidovic and
Taylor, 2007)

47

ADLs

Characteristics

Architecture building blocks
Components

Connectors
Configurations

Tool Support

Enable automated analyses on the architecture
description

48

Components and (Architectural)
Connectors Configuration

Interface Understandability
gype | Compositionality
emantics Refinement and
Constr'alnts traceability
EVOluFOHt' | Heterogeneity
on-functiona "
ADLs oroperties Scalability
Characteristics Tool Support oo
Dynamism

Source: Medvidovic, N. and Taylor, R. N., 2000.

Active specification
Multiple views
Analysis
Refinement

Implementation
generation

Dynamism

Constraints

Non-functional
properties

49

ADL

Conceptual
Model

ISO/IEC/IEEE
42010

Stakeholder

Architecture

Description
Language
o.r
Correspondence
Rule
0.*
Model Kind |——— <> Architecture
. Viewpoint

50

. Formal

O Semi.f | " Present
€mi-tforma formally
ADL * Present defined
. ° defined syntax and
Formalism Informal syntax but semantics
lack a Main usaqge;
Level * Present N U>ag
either complete » Verifying and
) semantics validating
defined , . models against
Syntax or ¢ Maln Usage. properties and
semantics * supporting quality
communication attributes

« Main usage:
* lllustrating or
exemplifying
concepts

among
stakeholders

51

ADL

Example

Source: http://www.di.univag.it/malavolta/al/

Many, many, many ADLs...
123!

HOME LANGUAGES PEOPLE INSTITUTIONS CONTACT US

ARCHITECTURAL LANGUAGES TODAY

The up-to-date list of currently existing

architectural languages

52

S

(a) (b) P -
- ~
Key - =
D Module Module interface T Account
Server-Main Server-Backup

1. Modules can (a) provide interfaces,
hiding other modules, or (b) exposing
some interfaces of internal modules

Administrative

Informal

Ki
d B Interface
Q Client Publish-subscribe
—”—”— ublish-su il
e
| Client-server
:Communication :Decision Making request/reply
S Database V\ wiautomatic
‘ e ~ failover
N Database Database
application access
Read-Write

Update

O orception 2. A bird's-eye-view of a
system as it appears at run-

time.

:Current
Knowledge

:Agent

Ej Data Repository
Y
I:l Component

—() Provided Interface

)7 Required Interface

KE

3. Shared data view of an agent

Source:

1,2 Clements, P. et al., 2011

3 Weyns, D. An Architecture-Centric Approach for Software Engineering with Situated Multiagent Systems. PhD Thesis. 2006. Available at:
http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2006_09.abs.html

UNIFIED o
SYSTEM
MODELING MODELIN -
LANGUAG
LANGUAGE . |

Diagram
| |
Structure Behaviour
Diagram Diagram
[IX A
I I I I
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram Diagram

2

Semi-formal i ||| B | oy
ADL 1. UML 2.x diagram types
Example

SysML Diagram

| U |

Behavior : Requirement Structure
Diagram ’ Diagram Diagram
[} temcmccaaaad [P
Activity Sequence State Machine Use Case Block Definition Internal Block Packa "
Dia Diagram Diagram Diagram Diagram Diagram ackage Diagram
gram g gl ol 9 g
I
| sameasuUML2 ! Parametric
] Diagram
[Modified from uML 2 LN,
:“_] New diagram type

2. SysML 1.x diagram types

1 http://www.omg.org/spec/UML/2.5/ 54
2 http://www.omg.org/spec/SysML/1.4/

Source:

&
Substructure of a
Servioss UML component
= Ao,
wdata €] Requests . "U
o " oo,
capacity = 40 D
capacity = 40 AN end-of-data = emply record
end-of-data = empty record when-full = block for 2 sec and retry
when-full = block for 2 sec and retry when-empty = block for 30 sec and retry
when-empty = block for 30 soc and rotry 4
N oditers € ," dmers €
¥ oL Calculate A S :Format
. T &) e Elos > | DwectDepost [e T DrectDeposit
Semi-formal [RREURIREG T ol
pipe-and-filter view ~ S S
ADL capacity = 50 :FormatRejected
end-of-data = “EOT” String g = Records
when-full = block for 2 sec and retry v
when-empty = block for 20 soc and retry pocity = 10
Examp|e oL J— T
wheon-full » block for 2 soc and rotry
when-empty = block for 60 sec and retry

client L using - :?;c;fri: ':;I:.I:ﬂn
- module € 5 | e uses module in row
used =8
N wusen . o module
; i A ;, diet |0]0]0J0J0]010} UML package diagram (left)
son IR aupe ejb 1/0(0|1]|0|0]0
g « oo lololoTol and Dependency Structure
ﬂ E wd [1]00f0o]o]olo| Matrix (DSM) (right)
L sen restart o|jofjof1j0|0]0
— qum \:f —Ay common 1110|0000
vo }<—--‘-“§9-”--- common ‘ vo 1111|001]0

Source: Clements, P. et al., 2011 5 5

1. Structure sd ABS_ActivationSequence [BequenceDlagrani) I 2. Behavior

bdd [package] VehicleStructure [ABS-Block Definition Diagram] <tm TreTraction [StaieDagrarrﬂ) | Interacti on
«DlOCK» «bloCkx»
Library: Jblocks || Library:Elec [act PreventLackup [Actviy Diagram]] state
Electronic Controkiar tro-Hydraulic
Processor Valve i machine
\ ibd [block] Anti-LockController)
. a1 lInternal Block Diagram @ activity/
«DIOCK» - DetectLossOf Modulate function
Semi-formal n
Detector N c1:modulator
intertace
iy m1:Brake
A D L definition use Modulator %

]

Example: R
° [Requirements Diagram - Braking Requirements]

I
' | pariconstrantBlock] StraightLineV ehicleDynamics [Parametric Diagram
Vehide System Braking Subsystem ot bf: c
Specification Spedification
- - 3 tAccelleration
wrequirements «requirements Equation Equation
StoppingDistance Anti-LockPerformance [f = (tFbA*(1-41)] [F = ma]
| |
id="102" id="37"
text="The vehicle shall stop text="Braking subsystem shall
from 60 mph within 150 f prevent wheel lockup under all
on aclean dry surface.” braking conditions.”
:VelocityEquation
[a = avidl]
wdenveReqts
3. Requirements 4. Parametrics

Source: http://www.omgsysml.org/

1. Structure 2. Behavior

ibd [block] Anti-LockController satisfies act PreventLockup [Swimlane Diagram])
[Internal Block Diagram] urequirements
Anti-Lock

A lirr-oLc «allocaten sallocates
erlormance. ~ TractionDetector =T :BrakeModulator
d1 ionDetector
aliocatedFrom gt ate
e1:modulator ictivitysDetectLos Lt
Interface Traction a\\Oc'
(,’ DetectLossOf
/ m1:BrakeModulator T
£ L
allocatedFrom - allocatedFrom
S ° f I %Olgiec‘tﬁode» aactivitys Modulate
ractionLoss: BrakingForce
- value allocatedTo
e m I O rm a values | ! - . wconnectorsc1:modulatorinterface
DutyCycle: Percentage b n d n g .

N :
AD L satisfy par [constraintBlock] StaightLineVehicleDynamics [P ic Diag)
- AW

req [package] VehicleSpekifications

Requirements Diagram - Brakin: uirements; v.chassis.tire. v.br;ke.ahs.mt v.brake.rotor. .
Example: i s | [Phan] [saaes] [o |
O Vehicle System Braking Subsystem
Specification Specification
S \
S M L wrequirement» «requirement» :BrakingForce :Accelleration
StoppingDistance Anti-LockPerformance Equation Equation
[f = (t*bf)*(1-h] [F = ma]
id="102" id="337"
text="The vehicle shall stop text="Braking subsystem
from 60 mph within 150 ft shall prevent wheel lockup
on a clean dry surface.” \ under all braking conditions.”
VerifiedBy t SatisfiedBy

sinteraction» Minlmumsmpp‘\ «block»Anti-LockController

ingDistance N\

aderiveReqts ——

3 Requirements ‘o) 4. Parametrics

Source: http://www.omgsysml.org/

Formal ADL Example

Sample_ Arcil.addComponent (Comp5) ;
Sample_Arch.weld(Connl, Comp5):

Sample_Arch.weld(Comp5, Conn2) ;
0(\@0‘ Comp5.start();
W _) :
' O Dynamic insertion of a component into a
component Composite

provide provserv; ~ C2SADEL architecture.
require regserv;
inst style Pipe-Filter
Cl : CompTypel; L.
C2 : CompType2; Constraints
bind V¢ : Connectors e Type(c) = Pipe
provserv -- Cl.pserv; A Ve : Components; p : Port | p e Ports(c) @
C2.rserv -- regserv; Type (p) = DataInput V Type(p) = DataOutput
}

Composite The pipes-and-filters style declared in
Wright.
Family fam = {
Component Type compl = { Port pl;
Component Type comp? = { Port pl;
Connector Type connl = { Roles Pt
}

Family sulo_fam extends fam with {
Component Type sub_compl extends compl with {
Port pl = { Property attach : int <<default = 1»>; }

A composite component specified Component Type compd - { ...)
in Darwin (top) and (bottom) the)
graphical view of the component Declaration in ACME of a family of

architectures, fam, and its subfamily, sub_fam,
which has new components and properties

Source: Medvidovic, N. and Taylor, R. N., 2000.

58

component Filter is abstraction() { connector Pipe is abstraction() {

connection inFilter is in(String) connection inPipe is in(String)
connection outFilter is out(String) connection outPipe is out(String)
protocol is { protocol is {

(via inFilter receive String (via inPipe receive String

via outFilter send String)= via outPipe send String)=*
} }
behaviour is { behaviour is {

transform is function(d : String) : String { via inPipe receive d : String

uncbservable via outPipe send d
behavior()

via inFilter receive d : String }

via outFilter send transform(d) }

behavior()
}

architecture PipeFilter is abstraction() {

behavior is {
Formal s
F1 is Filter()

and P1 is Pipe()

and F2 is Filter()
} where {
F1::outFilter unifies P1::inPipe
Example: !
ple: }

P1::outPipe unifies F2::inFilter
}

1-[_ A D L inFilter
F1 <.{j | inppe ouPpe inier

outFilter F2

d: outFilter
|:| Component | Output connection (outwards) ------- Unification
S Connector E Input connection (inwards)
Description of a simple pipeline architecture
Source: Cavalcante, E., Oquendo, F., Batista, T. Architecture-Based Code Generation: From 1-ADL Architecture Descriptions to Implementations in the 59
Go Language. ECSA 2015.

Why

formal?

Formalizing software architecture descriptions

Models must be scalable
Multiple formal methods must be supported
using multiple ADLs to model a single system

formalizing different aspects of a system in a
single ADL

Incremental formalization must be supported

how do you formalize in the face of
incompleteness?

Formalize only and exactly as much as
necessary

Analysis results must be transferable to design
and implementation

what good is deadlock detection at architecture
alone?

Source: http://sunset.usc.edu/classes/cs599_2000/September7b.pdf

60

What
industry

needs from
architectural
languages?

Source: Malavolta, I. et al. 2013.

48 practitioners

Use of ADLs:
86% use UML or an UML profile,

9% use ad hoc or in-house languages (e.g., AADL,
ArchiMate)

5% do not use any ADL

Needs of ADLs:

Design (~66%), communication support (~36%), and
analysis support (~30%)

Code generation and deployment support (~12%
percent) and development process and methods
support (~18%)

Limitations of ADLSs:

Insufficient expressiveness for non-functional
properties (~37%)

Insufficient communication support for non-
architects (~25%)

Lack of formality (~18%)

61

What
industry

needs from
architectural
languages?

Source: Malavolta, I. et al.,, 2013.

Extrovert %ﬂg; Introvert

“ Communicates the “ Analyzes the
architecture to the architectural design
stakeholders involved .
in the architecting ADLs must enable

h formality so to drive
phase .
analysis and other

“ ADLs must be simple automatic tasks

and intuitive

§ §

62

Architectural
Evaluation

64

Architectural

Evaluation

Architectures are not inherently good or bad,
they are only well-suited or not with respect to a
particular set of goals

Questions:

a. Will the solution meet the quality
requirements?

b. Do we have sufficient resources for developing
the solution?

C. Did we take the right architectural decisions?

and many more...

65

Architectural

Evaluation

Architecture Evaluation
Checks
Architectural-significant decisions

Against

Architectural-significant requirements

\ 4

The sooner the better

66

Architectural

Evaluation
Types

Quantitative: How much ...?
Estimation

Analytical or simulation models

Measurements on feasibility prototypes or
products

Qualitative: What if ...?

Questioning techniques: questionnaires &
checklists

Based on scenarios: e.g., ATAM, SAAM, ...
Prototyping (proof-of-concept)

Evaluation mostly uses scenarios' to verify
quality attributes

T Short statement describing an interaction of one of the stakeholders with the system

67

Architectural

Evaluation

When?

Architecture is defined and before or after
implementation is completed

Bef(_)r.e: iterative evaluation of architecture
decisions

After: Encompasses understanding legacy systems
and checking if they meet quality requirements

Who?

Domain and technical stakeholders should
participate. The evaluation team should not be
drawn from the project staff

Input
Architecture description

Completeness and reliability of the evaluation
depends on the description

Outputs?

Prioritized list of quality requirements
Goa&ad,), where are the risks

68

2nd meeting

Who: evaluation

meeting, project

decision makers, and all
1st meeting stakeholders

Architecture
Tradeoff Who: evaluation meeting

and project decision
makers

Analysis
M et h o d Partnership and | Evaluation Evaluation Follow-up
(ATAM) R T T

schedule attributes join in the delivery of
definition identification architecture final report
» Stakeholders and description +Notes on
identification classification analysis lessons learned
* Scenarios * Scenarios and time
priorization priorization consumed
= Architectural
approaches
identification

- - - \)

Trending
Topics in

Software
Architecture

Reference Architectures
Architectural Evolution
Models @ Runtime

Sustanaible Architectures
Green, Technical Debt

and many more... &=

71

Systems-of-Systems

Part ||

12

Independent constituent
systems

Action and decision
making

Geographic distribution
Evolutionary development

Emergent behavior

Image Source: https://ec.europa.eu/digital-single-market/system-systems

73

Source: Abbott, 2006.

Open systems
Top

Continually open for addition of new applications
and systems, whithout any top-level system
defining the SoS

Emergent behavior
Bottom

The lowest level of the SoS (e.g., communication
stack) may be changed at any time

Interoperability
Continually evolving

An SoS is never complete as it evolves at run-
time according to changes in the surrounding
environment

74

SoSs

Potential
Pitfalls

Source: Boehm, B. et al. 2004

Acquisition management and staffing
Requirements/architecture feasibility
Achievable software schedules
Supplier integration

Adaptation to rapid change

Systems and software quality factor
achievability

Product integration and electronic upgrade

Commercial off-the-shelf (COTS) software and
reuse feasibility

External interoperability

10. Technology readiness

75

Global Earth
Observing System
of Systems

(GEOSS)

76

SoSs
Example

GEOSS

Source: http://earthobservations.org

@ GROUP ON

EARTH OBSERVATIONS

GEQOSS is to be a global, coordinated,
comprehensive and sustained system of Earth
observing systems

Promote coordinated access to data and
products produced amongst all contributing
systems

Introduces consistency of content through
guidelines to data providers for the
appropriate characterization of the observing
systems and their derived products

Adoption of standardized best practices

77

SoSs
Example

GEOSS

Source: http://earthobservations.org

Variety of users
Various communities with their own cultures

Distributed system

No new single architecture imposed to
everyone

Preserve the existing infrastructures as much
as possible

Enforce simple and robust interfaces and
formats

Dynamic, open system

Grow and attract third-party data and service
providers and accepts intermitent participation
with disconnected/connected modes without
disruption

Comprehensive information flow

End-to-end: product order, planning,
acquisition, processing, archwmg, and
distribution

78

SoSs
Example

GEQOSS
Architecture

Source: http://earthobservations.org

GEOSS defines best practices to ensure data
integrability and interoperability

79

GED GEOSS AIP Architecture

55 Community Objectives

GEOSS Vision and Targets
Societal Benefit Areas
System of Systems/ Interoperability

azHos
SOSS information Framework | Abstract/Best Practices [

Exa m p I e Earth Observations o Catalog/Registry
Geographic Features Information Computational Access and Order
Spatial Referencing Viewpoint Viewpoint Processing Services

G E O S S Metadata and Quality Sensor Web
GEOSS Data-CORE User Identity

Optimized Design/Development

Architecture
Implementation
Pilot (AIP)

Engineering

Viewpoint

B bl
e -

{ Vns wui
e bad

RM-ODP Viewpoints

Source: http://earthobservations.org 80

SoSs
Example

GEQOSS
Architecture

Implementation
Pilot (AIP)

0
/\ hY
GEOSS
Resource
Provider

Maintain and
Support SoS

Use Cases

GEOSS Common

Main GEO
Web Site

Infrastructure

GEOSS
Portal

Community Resources
Client Tier
Community Client
Portals Applications

Catalogues

Access Alert
Brokers Servers

Workflow Processing Test
Management Servers Facility

Engineering components with services

Source: https://www.earthobservations.org/documents/cfp/201501_geoss_cfp_aip8_architecture.pdf

SoSs
Example

GEOSS

Source: http://earthobservations.org

Interoperability through open interfaces and
reference methods
Interoperability specifications agreed to
among contributing systems

Access to data and information through
service interfaces

Open standards and intellectual property
rights
Preference for formal international standards

Multiple software implementations compliant
with the open standards should exist

82

SoSs
Example

GEOSS

Source: http://earthobservations.org

“ Build upon existing systems and historical data

o National, regional or international agencies
that subscribe to GEOSS but retain their
ownership and operational responsability

" Implementation plan must address cost
effectiveness, technical feasibility, and
institutional feasibility

“ To be sustained over a long period of time,
GEOSS needs to be adjustable, flexible,
adaptable, and responsive to changing needs

o Capture future capabilities through open
architecture

.

SOA is configurable and scalable to customer
needs and leverages robust systems and
processes for global interoperability

83

S0Ss
Description

84

SoSs

Description

Two levels
Mission

|dentifies required capabilities for constituents,
operations, connections, emergent behavior, etc.

Architecture

Describes structure, behavior, and properties
about the SoS

85

Source: Silva, E. et al., 2015.

Definition
Higher functionality that cannot be performed by
any constituent alone

Accomplished by emergent behaviors
Guides the whole SoS development process

MKAOS
Language for describing mission models

Tool: mKAOS Studio

86

enables
accomplishes contributes to accomplishes
Cooperation
© © ; : . " '.
M Ission Global mission
1 enables

'

C once pt ua | is refined intc:J:‘ J | contributes executes |
Emergent
model g

behavior
is refined into y

is related to
has
uses
Invariant 0.5 0.0 |
Parameter

Heuristic

Source: Silva, E. et al., 2015.

Source: Silva, E. et al., 2015.

Higher-priority

Caption

missions
Flood Status Flood Alerted Mission model in
Monitored
mKAQS
Drone Images River Levels
Maonitored Monitored
Flood
L) T rer Alert Sent
Image Satellite Images
Improved Provided
Rain Model River Data
Produced Provided
| Caption 1
) 1
1 1
| Mission 1
I 1
I o 1
E Refinernent E
] 1
l o o o o 1
To Provide Hidrological [.#
Model for Simulation Satellite Images to Simulation l
Tn‘.u
Building Data
Exchange To Monitor Real-Time Flooding
|1..{ 11--*1
1., o
To Infer Building Data L Inteé)i:::anneglzata

Emergent Behavior

Emel’ge/’)t behGVlOl’ 3 D Communicational Capability ;
model in mKAOS | §

88

SoSs

Architectural
Description

“To gain confidence that an SoS
architecture will respect key
properties, it (s paramount to have
a precise model of the constituents
and the connectors between them,
the properties of the constituents,
and the SoSs environment.”

Nielsen et al. (2015)

89

SoSs

Architectural
Description

Source: Guessi, M. et al. 2015a.

How has the literature addressed the
architecture description of SoS?

Which are the techniques used in the
description of software architectures of SoS?

Does the primary study focuses on a specific
type of SoS?

90

Formal languages:
CML, CFML, FSM,
OWL, VDM-SL,
among others

Technlques Semi-formal e Formalism Level
Used for languages: ® Paper
Describing Pk L and

SoSs
Architecture formal and semi-

formal languages:

UML/SysML +
Petri nets

Formal * % %

Informal

Combination of

SysML + VDM-SL

Source: Guessi, M. et al. 2015a.

SoSs Type
Described

and
Concerns

Source: Guessi, M. et al. 2015a.

Directed
21%

Acknowledged
3%
\\\Collaborative

PAVS

irtu\ql
5%

Main quality
characteristics:
Interoperability

Correctness
Integrability
Dependability
Adaptability
Safety

92

ADLs for

SoSs

Source: Guessi, M. et al. 2015b. Oquendo, F. 2016a.

NYoN)

characteristics

Operational
independence of
constituent systems

Managerial
independence of
constituent systems

Geographical
distribution of
constituent systems

Evolutionary
development of SoS

Emergent behavior
drawn from SoS

Do Single System ADLs cope with SoS

characteristics?

No, they do not. Single system ADLs are based on the notion
that components’ operation is totally controlled by the system,
which is not the case for constituents. Moreover, the concrete
components of single systems are known at design-time, which
is not necessarily the case of SoSs either.

No, they do not. Single system ADLs are based on the notion
of components whose management is totally controlled by the
system, which is not the case of SoSs.

No, they do not. Single system ADLs are based on the notion
of logically distributed components. None supports the notion
of physical mobility, in particular regarding unexpected local
interactions among components that physically move near to
each other, as it is the case of SoSs.

No, they do not. Single system ADLs are based on the
principle that concrete components are known at design-time
and that they may possibly enter or leave the system at run-
time under the control of the system itself, which is not
necessarily the case of SoSs.

No, they do not. Single system ADLs have been defined based
on the principle that all behaviors are explicitly defined
(including global ones). None supports the notion of emergent
behavior required in SoSs.

93

Single
System
JA\D] K3

Weaknesses
for SoSs

Source: Guessi, M. et al. 2015b. Oquendo, F. 2016a.

Limited expressive power in terms of on-the-fly
evolution

Lack support for open architecture description

Concrete constituents are not known at design-
time

Lack mechanism for describing emergent
behaviors

94

“ Description of an abstract architecture for SoS

o It can be evolutionarily concretized at run-time by
identifying and incorporating concrete
constituent systems

SosADL

—_——— e ———

I S
2s p—] Mediator C—#H20E,
| |

an Architecture i I G) :’f’e“’i
Description f f .
Language for | Sysem | Coalition | SYStem ||
SOSS N Legend ¥

[] Duty M Gate P Connection

.

Coalition represents on-the-fly composition
of systems (i.e., constituents)

Source: Oquendo, F. 2016a. Oquendo, F. 2016b. 9 5

SoSs

Architectural
Description

Analyze trade-offs of alternative designs at early
development stages

Describe contracts that exist between each
constituent system and the SoS

Support evolution

Important to keep the architectural design
aligned with systems goals and technologies

Preserve specified properties under evolution
steps

Support dynamic reconfiguration

Run-time modification of architectures and
interfaces

Support emergent behaviors
Describe global properties at the SoS level

Enable statement and verification of emergence
(including desirable and undesirable)

96

Formal ADLs for SoSs

Promote correctness, consistency, and
completeness of architecture descriptions

Support evolutionary development of SoSs

Desired properties of ADLs for SoSs
Understandability,

Scalability,
Research Refinement,

Traceability, among others others

Directions

Support different phases of SoS life cycle

Enforce correctness, consistency, and
understandability of architecture descriptions

Ensure semantic consistency among
heterogeneous models of constituents

Interchangeable, complementary techniques
should be explored for supporting different
abstraction/formalism levels

Bibliography

Part |

Bass, L., Clements, P., and Kazman, R. 2003. Software Architecture in Practice (2ed.). Addison-
Wesley Longman Publishing Co.

Gorton, I. 2006. Essential Software Architecture. Springer-Verlag New York, Inc.

Kruchten, P. What do software architects really do? In: Journal of Systems and Software, v.81,
p.2413-2416. 2008

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A. and America, P. A general model of
software architecture design derived from five industrial approaches. In: Journal of Systems and
Software, v.80, n.1, p. 106-126. 2007.

Garland, J. and Anthony, R. 2003. Large-Scale Software Architecture: A Practical Guide Using
UML. John Wiley & Sons, Inc., New York, NY, USA.Hofmeister

ISO/IEC/IEEE 42010:2010 International Standard for Systems and Software Engineering --
Architectural description

Malavolta, I.; Lago, P.; Muccini, H.; Pelliccione, P. and Tang, A. What Industry Needs from
Architectural Languages: A Survey IEEE Transactions on Software Engineering, 2013, v. 39, n. 6,
869-891.

Lago, P.; Malavolta, I.; Muccini, H.; Pelliccione, P. and Tang, A. The road ahead for architectural
languages. IEEE Software, 2014, 32, 98-105.
Medvidovic, N. and Taylor, R. N. A classification and comparison framework for software

architecture description languages. In: IEEE Transactions on Software Engineering, 2000, v. 26,
n.1, 70-93.

Oquendo, F. pi-ADL: An Architecture Description Language based on the Higher Order Typed
pi-Calculus for Specifying Dynamic and Mobile Software Architectures. In: ACM Software
Engineering Notes, 2004, v. 29, n.3, 15-28.

Clements, P.,; Bachmann, F; Bass, L; Garlan, D.; Ivers, J; Little, R.; Merson, P.; Nord, R.; and
Stafford, J. Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2011.

Shaw, M. and Garlan, D. Characteristics of Higher-Level Languages for Software Architecture.
Carnegie Mellon University, 1994. http://www.sei.cmu.edu/reports/94tr023.pdf

99

Bibliography

Part Il

Boehm, B.; Brown, W.; Basili, V. & Turner, R. Spiral Acquisition of Software-Intensive
Systems-of-Systems. In: Crosstalk, 2004, p. 4-9

Guessi, M.; Neto, V. V. G,; Bianchi, T,; Felizardo, K. R.; Oquendo, F. & Nakagawa, E. Y. A
systematic literature review on the description of software architectures for systems of
systems. In: ACM/SIGAPP SAC' 2015, 20153, p. 1442-1449

Guessi, M., Cavalcante, E., and Bueno, L.B.R. Characterizing ADLs for Software-Intensive
SoS. In: SeSoS at ICSE’ 2015. 2015b. p. 12-18.

Medvidovic, N. and Taylor, R. N. A classification and comparison framework for software
architecture description languages. In: IEEE Transactions on Software Engineering, 2000, v.
26, n.1, 70-93.

Nielsen, C. B.; Larsen, P. G,; Fitzgerald, J.; Woodcock, J. & Peleska, J. Systems of Systems
Engineering: Basic Concepts, Model-Based Techniques, and Research Directions. In: ACM
Comput. Surv.,, 2015, v. 48, p. 1-41

Oquendo, F. Formally Describing the Software Architecture of Systems-of-Systems with
SosADL. In: SoSE' 2016, 2016a, p.1-6

Oquendo, F. $-Calculus for SoS: A Foundation for Formally Describing Software-intensive
Systems-of-Systems. In: SoSE' 2016, 2016b, p. 1-6

Silva, E.; Batista, T. & Oquendo, F. A Mission-Oriented Approach for Designing System-of-
Systems. In: SOSE' 2015, p. 346-351.

Ulieru, M. & Doursat, R. Emergent engineering: a radical paradigm shift. In: Int. J.
Autonomous and Adaptive Communications Systems, 2011, v. 4, n.1, p. 39-60.

100

