
Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

INTRODUCTION

Chapter #1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Contents

 Human cognitive processes

 Models

 Structure of the book

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Abstraction and human mind

• The human mind continuously re-works reality by applying
cognitive processes

• Abstraction: capability of finding the commonality in
many different observations:
• generalize specific features of real objects (generalization)

• classify the objects into coherent clusters (classification)

• aggregate objects into more complex ones (aggregation)

• Model: a simplified or partial representation of reality,
defined in order to accomplish a task or to reach an
agreement

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Models
What is a model?

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection

of the original‘s properties

Pragmatic Feature A model needs to be usable in place of an

original with respect to some purpose

Model

represents System

Purposes:

• descriptive purposes

• prescriptive purposes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
What is Model Engineering?

 Model as the central artifact of software development

Model

Rapid prototyping

Static analysis

Code generation

Automated testing

Refactoring/

Transformation

Documentation

[Illustration by Bernhard Rumpe]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MD* Jungle of Acronyms

 Model-Driven Development (MDD) is a development paradigm that
uses models as the primary artifact of the development process.

 Model-driven Architecture (MDA) is the particular vision of MDD
proposed by the Object Management Group (OMG)

 Model-Driven Engineering (MDE) is a superset of MDD because it
goes beyond of the pure development

 Model-Based Engineering (or “model-based development”) (MBE) is a
softer version of ME, where models do not “drive” the process.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Why Model Engineering?

 Traditional usage of models in software development

 Communication with customers and users (requirement

specification, prototypes)

 Support for software design, capturing of the intention

 Task specification for programming

 Code visualization, for example in TogetherJ

 What is the difference to Model Engineering?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Usage of models

 Do not apply models as long as you have not checked the

underlying simplifications and evaluated its practicability.

 Never mistake the model for the reality.

 Attention: abstraction, abbreviation, approximation, visualization, …

chlorine atom

electron

shell

electron

atom

nucleus

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Constructive models (Example: Electrical Engineering)

[Slide by Bernhard Rumpe]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Declarative models (Example: Astronomy)

 Heliocentric model by Kopernikus

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Application area of modeling

 Models as drafts

 Communication of ideas and alternatives

 Objective: modeling per se

 Models as guidelines

 Design decisions are documented

 Objective: instructions for implementation

 Models as programs

 Applications are generated automatically

 Objective: models are source code and vice versa

t

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Increasing abstraction in software development

 The used artifacts of software development

slowly converge to the concepts of

 the application area

Assembler (001001)

Assembler and mnemonic

abbreviations (MV, ADD, GET)

Procedural constructs

(while, case, if)

Libraries (GUI, lists)

Components (provided/required interface)

Business objects

(course, account, customer)

[Illustration by Volker Gruhn]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 1: MDSE Foundations

 1 Introduction

 1.1 Purpose and Use of Models

 1.2 Modeling for Software Development

 1.3 How to Read this Book

 2 MDSE Principles

 2.1 MDSE Basics

 2.2 Lost in Acronyms: The MD* Jungle

 2.3 Overview of the MDSE Methodology

 2.3.1 Overall Vision

 2.3.2 Target of MDSE: Domains, Platforms,Technical Spaces, and Scenarios

 2.3.3 Modeling Languages

 2.3.4 Metamodeling

 2.3.5 Transformations

 2.3.6 Model Classification

 2.4 MDSE Adoption in Industry

 2.5 Tool Support

 2.5.1 Drawing Tools vs Modeling Tools

 2.5.2 Model-Based vs Programming-Based MDSE Tools

 2.5.3 Eclipse and EMF

 2.6 Criticisms of MDSE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 1: MDSE Foundations (continued)

 3 MDSE Use Cases

 3.1 Automating Software Development

 3.1.1 Code Generation

 3.1.2 Model Interpretation

 3.1.3 Combining Code Generation and Model Interpretation

 3.2 System Interoperability

 3.3 Reverse Engineering

 4 Model-Driven Architecture (MDA)

 4.1 MDA Definitions and Assumptions

 4.2 The Modeling Levels: CIM, PIM, PSM

 4.3 Mappings

 4.4 General Purpose and Domain-Specific Languages in MDA

 4.5 Architecture-Driven Modernization

 5 Integration of MDSE in your Development Process

 5.1 Introducing MDSE in your Software Development Process

 5.1.1 Pains and Gains of Software Modeling

 5.1.2 Socio-Technical Congruence of the Development Process

 5.2 Traditional Development Processes and MDSE

 5.3 Agile and MDSE

 5.4 Domain-Driven Design and MDSE

 5.5 Test-Driven Development and MDSE

 5.5.1 Model-Driven Testing

 5.5.2 Test-Driven Modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 1: MDSE Foundations (continued)

 6 Modeling Languages at a Glance

 6.1 Anatomy of Modeling Languages

 6.2 General Purpose vs Domain-Specific Modeling Languages

 6.3 General-Purpose Modeling: The Case of UML

 6.4 UML Extensibility: The MiddleWay Between GPL and DSL

 6.5 Overview on DSLs (Domain Specific Languages)

 6.5.1 Principles of DSLs

 6.5.2 Some Examples of DSLs

 6.6 Defining Modeling Constraints (OCL)

PART 2: MDSE Technologies

 7 Developing yourOwn Modeling Language

 7.1 Metamodel-Centric Language Design

 7.1.1 Abstract Syntax

 7.1.2 Concrete Syntax

 7.1.3 Language Ingredients at a Glance

 7.2 Example DSML: sWML

 7.3 Abstract Syntax Development

 7.3.1 Metamodel Development Process

 7.3.2 Metamodeling in Eclipse

 7.4 Concrete Syntax Development

 7.4.1 Graphical Concrete Syntax (GCS)

 7.4.2 Textual Concrete Syntax (TCS)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 2: MDSE Technologies (continued)

 8 Model-to-ModelTransformations

 8.1 Model Transformations and their Classification

 8.2 Exogenous, Out-Place Transformations

 8.3 Endogenous, In-Place Transformations

 8.4 Mastering Model Transformations

 8.4.1 Divide and Conquer: Model Transformation Chains

 8.4.2 HOT: Everything is a Model, Even Transformations!

 8.4.3 Beyond Batch: Incremental and Lazy Transformations

 8.4.4 Bi-Directional Model Transformations

 9 Model-to-TextTransformations

 9.1 Basics of Model-Driven Code Generation

 9.2 Code Generation Through Programming Languages

 9.3 Code Generation Through M2T Transformation Languages

 9.3.1 Benefits of M2T Transformation Languages

 9.3.2 Template-Based Transformation Languages: an Overview

 9.3.3 Acceleo: An Implementation of the M2T Transformation Standard

 9.4 Mastering Code Generation

 9.5 Excursus: Code Generation Through M2M Transformations and TCS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 2: MDSE Technologies (continued)

 10 Managing Models

 10.1 Model Interchange

 10.2 Model Persistence

 10.3 Model Comparison

 10.4 Model Versioning

 10.5 Model Co-Evolution

 10.6 Global Model Management

 10.7 Model Quality

 10.7.1 Verifying Models

 10.7.2 Testing and Validating Models

 10.8 Collaborative Modeling

 11 Summary

 Bibliography

 Authors’ Biographies

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MDSE PRINCIPLES

Chapter #2

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Principles
Contents

 Concepts

 Approaches

 Adoption

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE aim at large

 MDSE considers models as first-class citizens in software

engineering

 The way in which models are defined and managed is

based on the actual needs that they will address.

 MDSE defines sound engineering approaches to the

definition of

 models

 transformations

 development process.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Principles and objectives

 Abstraction from specific realization technologies
 Requires modeling languages, which do not hold specific concepts of

realization technologies (e.g., Java EJB)

 Improved portability of software to new/changing technologies – model
once, build everywhere

 Interoperability between different technologies can be automated (so
called Technology Bridges)

 Automated code generation from abstract models
 e.g., generation of Java-APIs, XML Schemas, etc. from UML

 Requires expressive and precise models

 Increased productivity and efficiency (models stay up-to-date)

 Separate development of application and infrastructure
 Separation of application-code and infrastructure-code (e.g. Application

Framework) increases reusability

 Flexible development cycles as well as different development roles
possible

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE methodology ingredients

 Concepts: The components that build up the methodology

 Notations: The way in which concepts are represented

 Process and rules: The activities that lead to the

production of the final product

 Tools: Applications that ease the execution of activities or

their coordination

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Equation

Models + Transformations = Software

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Target of MDSE

 The Problem Domain
is defined as the field
or area of expertise
that needs to be
examined to solve a
problem.

 The Domain Model is
the conceptual model
of the problem domain

 Technical Spaces
represent specific
working contexts for
the specification,
implementation, and
deployment of
applications.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Languages

 Domain-Specific Languages (DSLs): languages that are

designed specifically for a certain domain or context

 DSLs have been largely used in computer science.

Examples: HTML, Logo, VHDL, Mathematica, SQL

 General Purpose Modeling Languages (GPMLs, GMLs,

or GPLs): languages that can be applied to any sector or

domain for (software) modeling purposes

 The typical examples are: UML, Petri-nets, or state

machines

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodeling

 To represent the models

themselves as “instances” of

some more abstract models.

 Metamodel = yet another

abstraction, highlighting

properties of the model itself

 Metamodels can be used for:

 defining new languages

 defining new properties or

features of existing information

(metadata)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Transformations

 Transforming items

 MDSE provides appropriate languages for defining model

transformation rules

 Rules can be written manually from scratch by a developer, or

can be defined as a refined specification of an existing one.

 Alternatively, transformations themselves can be produced

automatically out of some higher level mapping rules between

models

 defining a mapping between elements of a model to elements to another

one (model mapping or model weaving)

 automating the generation of the actual transformation rules through a

system that receives as input the two model definitions and the mapping

 Transformations themselves can be seen as models!!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Model Engineering basic architecture

Model

Artifacts

(e.g. code)

Modeling

language

Platform

Meta-

modeling

language

Transformation

definition

Transformation

language

uses

defined using

defined by

Application domain Application Meta-Level

Transformation /

Code generation

Abstraction (bottom-up)
Reuse

Construction (top-down)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modelware vs. Grammarware

 Two technical spaces

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Transformations
MOF and transformation setting

MMt

MtM

Mt

Mt

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types of models

 Static models: Focus on the static aspects of the system in

terms of managed data and of structural shape and

architecture of the system.

 Dynamic models: Emphasize the dynamic behavior of the

system by showing the execution

 Just think about UML!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
CASE

 Historic approach (end of 20th century)

 Example: Computer Associates’ AllFusion Gen

 Supports the Information Engineering Method by James Martin by a series of diagram

types (incl. user interface)

 Fully automated code generation for one architecture (3-Tier) and plenty of execution

platforms (Mainframe, Unix, .NET, J2EE, different databases, …)

 Advantage/Disadvantage: no handling with the target platform required/possible

 Different implementation versions of the basic architecture

 Meta-Level often not supported / not accessible

 Modeling language often fixed, tool specific versions

 Execution platform often not considered or fixed

 Advantages

 Productivity, development and maintenance costs, quality, documentation

 Disadvantages

 Proprietary (version of a) modeling language

 Tool interoperability nonexistent

 Strongly dependent on the tool vendor regarding execution platforms, further development

 Tools are highly complex

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Executable UML

 “CASE with UML”
 UML-Subset: Class Diagram, State Machine, Package/Component

Diagram, as well as

 UML Action Semantic Language (ASL) as programming language

 Niche product
 Several specialized vendors like Kennedy/Carter

 Mainly used for the development of Embedded Systems

 One part of the basic architecture implemented
 Modeling language is predetermined (xUML)

 Transformation definitions can be adapted or can be established by the
user (via ASL)

 Advantages compared to CASE
 Standardized modeling language based on the UML

 Disadvantages compared to CASE
 Limited extent of the modeling language

[S.J. Mellor, M.J. Balcer: Executable UML: a foundation for model-driven architecture. Addison-Wesley, 2002]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA

 Interoperability through platform independent models
 Standardization initiative of the Object Management Group (OMG), based

on OMG Standards, particularly UML

 Counterpart to CORBA on the modeling level: interoperability between
different platforms

 Applications which can be installed on different platforms  portability, no
problems with changing technologies, integration of different platforms,
etc.

 Modifications to the basic architecture
 Segmentation of the model level

 Platform Independent Models (PIM): valid for a set of (similar) platforms

 Platform Specific Models (PSM): special adjustments for one specific
platform

 Requires model-to-model transformation (PIM-PSM; compare QVT) and
model-to-code transformation (PSM-Code)

 Platform development is not taken into consideration – in general industry
standards like J2EE, .NET, CORBA are considered as platforms

[www.omg.org/mda/]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Levels
CIM, PIM, PSM

 Computation independent (CIM): describe requirements and

needs at a very abstract level, without any reference to

implementation aspects (e.g., description of user

requirements or business objectives);

 Platform independent (PIM): define the behavior of the

systems in terms of stored data and performed algorithms,

without any technical or technological details;

 Platform-specific (PSM): define all the technological aspects

in detail.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
CIM

 Eg., business process

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Independent Model (PIM)

 specification of
structure and behaviour
of a system, abstracted
from technologicical
details

 Using the UML(optional)

 Abstraction of structure and behaviour of a system with the PIM
simplifies the following:

 Validation for correctness of the model

 Create implementations on different platforms

 Tool support during implementation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Specific Model (PSM)

 Specifies how the functionality described

 in the PIM is realized on a certain platform

 Using a UML-Profile for the selected platform, e.g., EJB

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA Reverse Engineering / Roundtrip Engineering

 Re-integration onto

new platforms via

Reverse Engineering

of an existing

application into a

PIM und subsequent

code generation

 MDA tools for

Reverse Engineering

automate the model

construction from

existing code

Legacy

App

COTS

App

Other

Other

Model

Reverse-engineer

existing application

into a model and

redeploy
PIM (UML)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE in Industry
Adoption and acceptance (hype)

 Not yet mainstream in all industries

 Strong in core industry (defense, avionics, …)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Industry (2)
Adoption

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool support

 Drawing vs. modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Eclipse and EMF

 EMF (Eclipse Modeling Framework) is the core

methodology in Eclipse o support MDE.

 Full support for metamodeling and language design

 Fully MD (vs. programming-based tools)

 Used in this course!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the new millennium – Much has changed!

 »When it comes down to it, the real point of software development is cutting
code«
 To model or to program, that is not the question!

 Instead: Talk about the right abstraction level

 »Diagrams are, after all, just pretty pictures«
 Models are not just notation!

 Instead: Models have a well-defined syntax in terms of metamodels

 »No user is going to thank you for pretty pictures;
 what a user wants is software that executes«
 Models and code are not competitors!

 Instead: Bridge the gap between design and implementation by model transformations

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997
 (revisited in 2009)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it on www.amazon.com

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com

