Psi5120 Topicos de
computacaoemn

7a. Aula

20. Periodo de 2013

Livro texto

Distributed and Cloud Co
K. Hwang, G. Fox and J. Dongarra

Chapter 6: Clou
and Software Env

(suggested for use in 5 lecture

Prepared by Kai
University of Southern Ca
March 30, 2012

Copyright © 2012, Elsevier Inc. All rights reserved

Parallel Matrix Multiplication

Given two n x n matrices : A = (a;) and B = (by).
Compute the productof AandB: C=(c;)=AxB
where ¢;= 2 aiX byjfor all k=1,2, ..., n

= Dot product of row vector Ajand column vector B;

= Dot product of row vector of A;and row vector of B;'

Copyright © 2012, Elsevier Inc. All rights reserved. 42

Computational Complexity Analysis

We need to perform n” dot products to produce all Cij
The total complexity = n*xn=n> "Multiply and Add " operations.
Thus, sequential execution time = O(n°).

In theory, all n®dot products can be done on n* processors in parallel
(An embarrassingly parallel computation problem).

In reality, n is very large and n’ is even greater,

It is impossible to exploit the full parallelism.

With N processors, where N << n, we can do it in O(n* /N) time
Thus, the Speedup = O(n®) / O(n* /N) ~ O(N) is possible.

Copyright © 2012, Elsevier Inc. All rights reserved. 1.5

When n Is very large, every thing is not

S0 easy to do without much oS

e |

® Reading and storing large number of input and output ateix,
elements demand excessive I/O time and memory space

" Datareference locality demands many dupllcatlons of |
and column vectors to local processors —

®" Dot products can be done on the Red
in parallel blocks identified by “keys”

® Demand large-scale shuffle and exchan
operations over all intermediate <key, v
even externally in and out of disks.

® The task fork out from the master server to a
Reduce servers (workers) may result in sche

Copyright © 2012, Elsevier Inc. All rights reserved.

ldeas of Parallel Matrix Multiplication

« Each time unit counts the time to carry out the do duct of
two n-element vectors. (repeated multiply-and-add operations,
over arow vector of A and a column vector of B).

e If you partition the matrix into 16 equal bl
output elements are generated in each blo
can be handled by 16 VM instances in p

 Intheory, the total execution time should be sh
the total sequential execution time, if all commu
memory-access overheads are ignhored.

Copyright © 2012, Elsevier Inc. All rights reserved.

Input Matrix
partitioning
by row vectors of
matrix A and by column
vectors of matrix B or
by row vector of the
transposed matrix BT

sign exponentB8-bit) fraction (23-bit)
e | .
00111110001000000000000000000D00O0 =0.15625 |

31 23 O

32-bit floating-point numbers by IEEE 754-1985 stami
handle 2x1024x1024 = 221 such signed FLP numbers from

Dot Product Parallelization I HN NN
into Blocks affect the Reduce || _———
speed and efficiency inthe | LA,
computation section of the [
entire MapReduce process. || -———

Matrix C | T

Copyright © 2012, Elsevier |

Parallel Matrix Multiplication (Cont'd)

. Similarly, if you use 64 VM instances, you sh
expect a 1/64 execution time. Use up to the ™%
maximum number of 128 machine instances it =
is allowed in your assigned Ar

 Inthe extreme case of using
220 instances), you may end up
time unit to complete the total e
not allowed in the AWS platform,
speaking.

Copyright © 2012, Elsevier Inc. All rights reserved.

Hadoop and Amazon Elastic MapReduce

The Hadoop project is an open-source collection of projects all aimed at bringing distributed scalable data
processing to the masses. Hadoop is a distributed computing platform written in Java. It incorporate
features similar to those of the Google File System and of MapReduce to process vast amounts of data

Amazon Elastic MapReduce is a web service that enables businesses, rescarchers, data analysts, and
developers to easily and cost-effectively process vast amounts of data. It udilizes a hosted Hadoop
framework running on the web-scale infrastructure of Amazon Elastic Compute Cloud (Amazon EC2) and
Amazon Simple Storage Service (Amazon S3).

Copyright © 2012, Elsevier Inc. All rights reserved. 0 -0

The MapReduce library in the user program first splits the input files into M pieces and then starts up
many copies of the program on a cluster of machines. One of the copies of the program is the master. The
rest are workers that are assigned work by the master. There are M map tasks and R reduce tasks to assign.

The master picks idle workers and assigns each one a map task or a reduce task. A worker who is assigned
a map task reads the contents of the corresponding input split. It parses key/value paits out of the input
data and passes each pair to the user-defined Map function. The intermediate key/value pairs produced by

the Map function are buffered in memory.

Copyright © 2012, Elsevier Inc. All rights reserved.

Python Code Solution by Risheng Wang, USC, 2011

Input Files for left Matrix A and right Matrix B

The original input files are two 1024 by 1024 matrix. Each file contains 1024 numbers and there are 1024
lines in total. However, in order to do the MapReduce efficiently, [preprocess these input files in following
way:

1. The B matrix (ie. right matrix) is transposed. In other words, each line in the file contains a column

of matrix B.
2. Two more fields are inserted below each line for both matrix A and B.
a. The first filed (L/R field) is used to distinguish lines from matrix A and those from matrix B.
lts value is either ‘L" (Left Matrix A) or “R” (Right Matrix B).

b. The second filed is line number Ge. row/column number of matrix A/B)

(Courtesy of R. Wang,

Copyright © 2012, Elsevier Inc. All rights reserved. D

Input Files for left Matrix A and right Matrix B

Matrix A (Alnput.txt)

L 0 4B37BC83 51EFDEYE 36AE5EE7 26687FD5 3335F2CC 5613B65E ...
L 1 4291E86E 36035049 29400BEB 50E7A29A 3DCC6DC2 4311BA3D ..

L 1023 2BA21DF8 33B5D026 2AB93D52 527ACB15 5A34AE24 ...

Matrix B (Blnput.txt)

R0 43309A27 4FB74074 4C926D41 3399E730 3F6D7ABD 4EAB17/4B ...
R 1 495B3C1B 4596BDDS8 53147CC6 2AB604AA 4BB006F5 28FBFOEC ..

R 1023 4DE251DF 3C629BES 434846E7 30D36D2A 25E578F0 2A888940 ...

Copyright © 2012, Elsevier Inc. All rights reserved. 1.17

The Output File for Matrix C

The final output matrix Matrix C) is divided into blocks. Assume that the block size is BLOCKSIZE
(=1024 512 256,128 ..). The number of blocks in each row/column is 1024/BLOCKSIZE (=1, 4, 16,
64...). The map function is used to duplicate the input lines (rows and columns) for 1024/BLOCKSIZE
times so that each block can have its required rows and columns. For example, if the number of blocks in
cach row is 4, each line in matrix A should be duplicated 4 times. If number of blocks in each column is 4

cach line in transposed matrix B should also be duplicated 4 times. In my expetiment, the number of

blocks in cach row and column are always same.

Copyright © 2012, Elsevier Inc. All rights reserved.

The Output File for Matrix C

Mapper
The map function reads the inputs lines of two matrices and dispatch/duplicate them for corresponding
blocks. The intermediate key/value pair is like this:

Value

Block number is the key
[block number] | {L/R}:[Line Numbet}:[values of current line]

The block number can be calculated as ib*NB+jb, where ib = row index of the block, jb = column index of

the block, NB = the total number of blocks in each row.

Copyright © 2012, Elsevier Inc. All rights reserved.

The python code of map function is shown below

MacMulMapper.py

#!/usr/bin/env python

Author: Risheng Wang (ruishenw@usc.edw)
Date: 3/11/2011

Note: This scipt is the mapper for Martrix Multiplication with Hadoop MapReduce

import sys

BLOCKSIZE must be the intergral power of two
BLOCKSIZE = 128
TOTALSIZE - 1024

number of blocks for Matrix A/B NB = No. of blocks in each row
NB = TOTALSIZE/BLOCKSIZE (or in each transposed column)

input comes from STDIN (standard inpuo)
for line in sys.stdin:
remove leading and trailing whitespace
line = line stripO
parse the input
A_B, lineno, row_value = linesplic(" ',2)

Copyright © 2012, Elsevier Inc. All rights reserved. 1.1

lfiill_B =_= 'TL_“ : o ib =row index of each block
ib = (in0)(lineno)/BLOCKSIZE; [ip = column index of the block

for jb in (NB):
the key is the BLOCK Number.
intermediate_key = '‘%05d"%Gb*"NB+jb)
the value is the {L/R}:{LineNo}:{values of current line}
intermediate_value = "L:%s:%s"%(lineno, row_value)
key and value are seperated by a tab
print "%s\ts"%(intermediate_key, intermediate_value)
if AB - "R“ : - NB = No. of blocks
jb = (in)(lineno)/BLOCKSIZE; in each row
ib *NB + jb I

for ib in (NB):
= Block —

intermediate_key = "%05d"%(ib"NB+jb) [numbes
intermediate_value = "R.%s:%s"%(lineno, row_value)
print "%s\t%s"%(intermediate_key, intermediate_value)

Copyright © 2012, Elsevier Inc. All rights reserved. 117

Reducer
The incermediae key/value paits will be sorted by key. And the lines for the same block will go to the same
reducer. After the reducer collects all che lines (both rows and columns) for a block, ic will perform matrix
muldiplication. The code of reducer is shown below

MacdMulReducer.py

#!/usr/bin/env python

Author: Risheng Wang Gruishenmvw@usc.edw)
Dare: 3/11/2011
INote: This sciprt is the reducer for Marcrix Muldiplicadion wich Hadoop MapReduce. |

H H

+

import sys

import binascii
import struct

BLOCKSIZE = 1728
TOTALSIZE = 1024
NB = TOTALSIZE/BLOCKSIZE

L efeMarrixBlock = [I
RightTransposeMartrixBlock = |[I

roral number of lines Gwithin a block),

nl =0

oldblockno = -1

blockno = -1

Copyright © 2012, Elsevier Inc. All rights reserved.

1-18

for line in sysstdin:

for debug
nl=mnl+ 1

i
1
AL
rin

nl=nl~+ 1

remove leading and rrailing whitespace

line = linestripO
parse the input

input_key, input_value = line splicC'\¢’, 1D

for debug
L
T

blockno =

A_B, index, row_value = input_value splic(’':)

if A_B=="L":
LeftMartrixBlock append(row_value splic(")
if A_B=="R":

RightTransposeMartrixBlock append(row_value split(")

print inpuc_key

(input_key)

Copyright © 2012, Elsevier Inc. All rights reserved.

1-49

an block is finished
1f (nl == 2*BLOCKSIZE):
reset nl
nl =0
print block number to mark the output

print blockno, BLOCKSIZE

outpur & muldiply and sum

res = [0 for col in range(BLOCKSIZE)! for row in range(BLOCKSIZE)
for i in range (BLOCKSIZE) -
for j in range (BLOCKSIZE)
for k in range (TOTALSIZE) -
left_val = structunpack("!f" binascii.a2b_hex(LeftMatrixBlocklil[k})|0}
right_val = struct unpad\(If" binascii aZb_hex(Right TransposeMatrixBlockljlk[)) 0]
1‘CS|1||J| += left_val * right val FMultiply-and-Add
print resli[jl,
sysstderr.write(reporter:counter:matmul totalnum,%d\n'%(BLOCKSIZE))
print
del LeftMatrixBlock!:]
del RightTransposeMatrixBlock!|

Copyright © 2012, Elsevier Inc. All rights reserved.

Output

The output of reducer is formatted like this:

Block number

The final results of this block G.e. a BLOCKSIZE by BLOCKSIZE matrix)

An example is shown below

A submatrix (128x128) for
Parc 00000
0 MTUCUN OS1TZT 1O L ZO TICTITITTTItS
24373216327¢+32 3.88248143835¢+31 5.19607198289¢+32 7.53854952612¢+30 ...
17
9.21375889096¢+31 2.54720909701¢+30 244615706762¢+32 3.8188708317¢+32 ..

Note that one outpur file may conrain the resules of multiple blocks. The number of ourpur files is
depended on the number of reduce tasks (which is equal to the number of instances in my experimeno in
the system. The outpur files are named like parc-00000, parc-00001 ... and so on.

Copyright © 2012, Elsevier Inc. All rights reserved.

Performance Results

The figure below shows the execution time (blue line with primary y axis) and efficiency (red line with
secondary y axis) of matrix multiplication implementation with different number of instances (up to 20).
The Python is a script language, and its performance is much lower than C/Java (more than 100 times
slower [8D. To run a 1024 by 1024 matrix multiplication in a single instance (with one partition) needs
more than two hours (9225 seconds). With the number of instances increase, the execution time is
reduced rapidly. With four instances, it finishes in only half of time (4647 seconds) compared to single
instance case. When number of instance reaches 20, the execution time is only about 15 minutes (938

seconds).
The efficiency (with n instance) can be calculated as this:

Speedup = execution time with one instance / execution time with n instances

Efficiency = Speedup / n

The red line (with secondary y axis) shows the efficiency of MapReduce matrix multiplication with
different number of instances. As we can see from the figure, the efficiency is below one when the number
of instance is larger than one. This is because not all the operadons in MapReduce Matrix Multiplication
can be paralleled. The serial operations in the MapReduce job flows includes all the operations done by
master, like assign workload to mappers and reducers. Sortting intermediate key/value pairs are also part of
serial operations. With the number of instance increases, the efficiency decreases. This is because serial
operation takes larger and larger portion of execution time.

Copyright © 2012, Elsevier Inc. All rights reserved.

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Tme (sec)

Results

2

1 4 8 12 16 20

number of instances

==p==Execution Time ==lll=Efficiency

0.8

0.6

0.4

0.2

-0.2

Efficiency

Figure 2 Performance and Efficiency of MapReduce matrix multiplication with different number of instances

Copyright © 2012, Elsevier Inc. All rights reserved.

Results on Computing Time

and Communication Time

B communication time

B compulation Lime

Execution time (s)

1 4 8 12 16 20 32 64 56 128

Number of hosts

Copyright © 2012, Elsevier Inc. All rights reserved.

" Block sizeis very sensitive to the speedup perform

" The speedup is slowed down by many

®" The optimal number of server or VM insta

Some Observations

iImplementation efficiency of the MapReduce process. The - |
optimal choice should match with the cache size of the server,_ ™
nodes used.

as data I/O and replication times, inter < key, Valugs
matching, storing and retrieval, sorting and groupi
parallel task scheduling overheads, etc.

of the matrix order (n), effective dot product
GPU subcluster, and the reduction of all sorts ol
by parallelism handling, communication latenc
/O overheads, etc.

Copyright © 2012, Elsevier Inc. All rights reserved.

Copyright © 2012, Elsevier Inc. All rights reserved

	Psi5120 Tópicos de computação em nuvem
	Livro texto
	Distributed and Cloud Computing�K. Hwang, G. Fox and J. Dongarra��Chapter 6: Cloud Programming �and Software Environments�(suggested for use in 5 lectures in 250 minutes)��Prepared by Kai Hwang�University of Southern California�March 30, 2012�
	Slide Number 4
	Slide Number 5
	Slide Number 6
	 Ideas of Parallel Matrix Multiplication
	Slide Number 8
	 Parallel Matrix Multiplication (Cont’d)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

