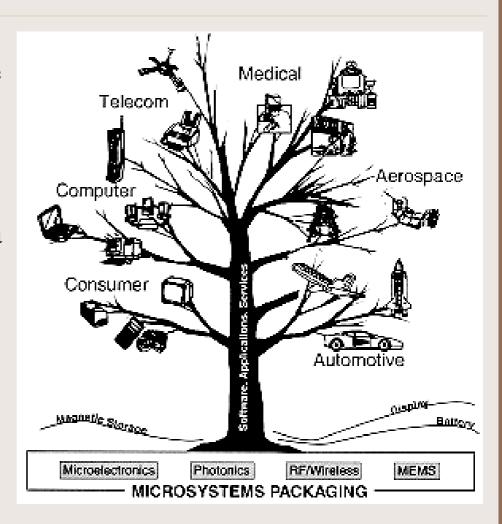
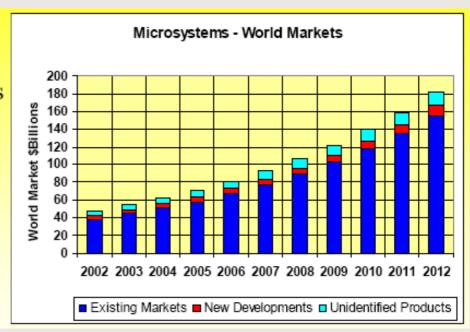
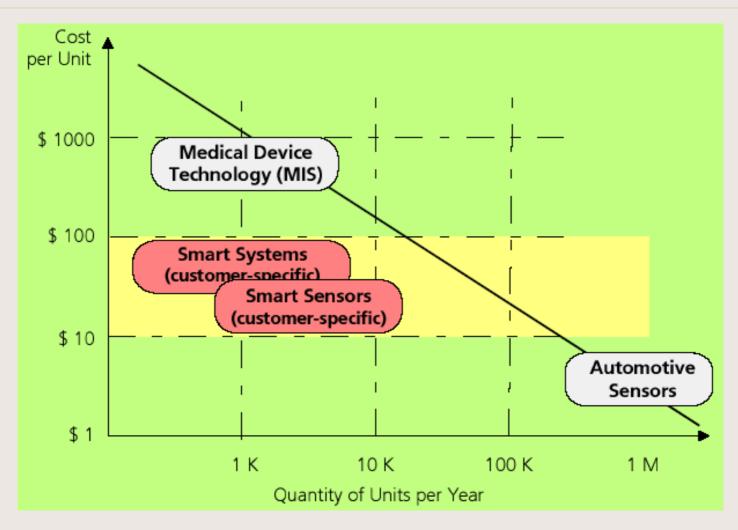

MST Automotivo


"Microsystem Technology"

 É uma estratégia que utiliza os mesmos princípios e técnicas da microeletrônica para a miniaturização e integração de sistemas e componentes elétricos, mecânicos, acústicos, magnéticos, óticos, térmicos, químicos ou biotecnológicos


Aplicações Dos Microssistemas

- Automotiva /Transporte
- Tecnologia da Informação, Periféricos
- Telecomunicações
- Medicina / Biomedicina
- Meio ambiente / Processos industriais
- Artigos de consumo/ Entretenimento
- Outras Aplicações
 (Defesa, Aeroespacial)



Mercado de MEMS/MST

- Consumer Electronics
- Automotive
- Medical and Biosciences
- Environmental
- Domestic (Household)
- Automation & Industry
- Aerospace/Space
- Traffic Control
- · Safety & Security

Custo Para "SMART SYSTEMS"

Histórico de desenvolvimentos na área automotiva

- Automobile in 1769 by Captain Cugnot
- O Spark plug in 1902 by Robert Bosch
- Multi-media systems in 1932 AM Radio
- From 7 V to 14 V in mid 50's
- Manifold air pressure "MAP" sensor for engine control in 1979
- Airbag system in 1981

- In 2000: 40 million cars produced
- Electronics part of total costs
 - * 2 % in 1980
 - * 10-15 % in 1997
 - ★ Today some cars ~ 30 %
- Auto electronics world wide markets \$90 billion in 2000, 2007 estimated to be \$145 billion
- 9 in 10 chance that next market-released innovation is influenced by electronics
- Electronics is blind, deaf and dumb with out sensors

MST Automotivo

Aplicações de MST na área automotiva

- Áreas de aplicação atuais de microssistemas integrados dentro do setor automotivo são:
 - Conforto do veículo: acionamento de funções por voz, sistemas sem chave, ar-condicionado, vidros elétricos, cadeiras e espelhos inteligentes, etc;
 - Controle operacional: Sensores de pressão no motor, nos pneus, no freio, sensores para monitoração de qualidade do óleo, controle ativo da suspensão, etc;
 - Controle ambiental: sistemas de injeção eletrônica para o controle de queima de combustível e emissão de poluentes, sensores químicos;
 - Segurança: sensores aplicados em sistemas ABS e "Airbags", sistemas de assistência ao motorista, sistemas eletrônicos de navegação, sistemas de auto-diagnóstico.

Fatores de MST na área Automotiva

Redução de Custos e de insumos

 Devido a alta competitividade da industria automobilística o fator de redução de custos é fundamental, utilizam-se então processos de fabricação em massa e de miniaturização integrando sensores e eletrônica.

• Confiabilidade

 A integração e miniaturização reduz a quantidade de interfaces e conexões. As interconexões são o ponto fraco em aplicações que para ambientes hostis, Microsistemas fornecem uma maior confiabilidade ao produto

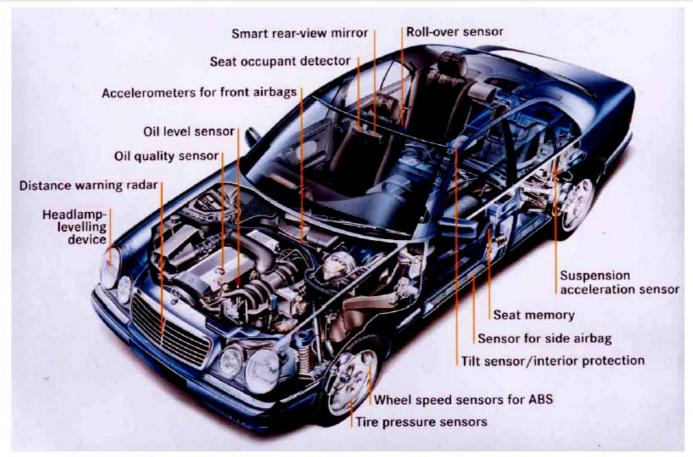
• Tamanho e peso

 Devido à miniaturização o tamanho físico e peso é diminuído, ganhando espaço nas placas de circuito impresso e permitindo o aumento de complexidade.


Função

 O progresso da Microtecnologia e da integração resulta num aumento de funcionalidade dos microsistemas permitindo a incorporação de formas de auto-teste auto-proteção, auto-calibração, etc.

• Energia


A redução de energia gasta por microssistemas é evidente

Sistemas Inteligentes de Transporte

- Enhanced safety:
 - reducing traffic accidents
 - alleviating accident damages
 - preventing secondary accidents
- Improvent environment:
 - reducing traffic congestion
 - reducing pollution
- Smoother traffic:
 - improving transportation efficiency
 - improving facility usage
 - managing traffic demand

Microtecnologia em Automóveis Modernos

Senses for the car

MST Automotivo

Oportunidades em MST Automotivo

App.	Sensor/Structure	Status	MST Opptnty
Seat Control	Presence	Limited Prod.	Low
	Valve	Future	Low
	Displacement	Future	Low
Climate	Mass Air Flow	Future	Medium
	Temperature	Production	Medium
	Humidity	Future	Medium
	Air Quality	Future	Medium
Compressor	Pressure	Production	High
Control	Temperature	Production	Low
Security	Proximity	Limited Prod.	Low
	Motion	Limited Prod.	Medium
	Vibration	Limited Prod.	Medium
	Displacement	Limited Prod.	Low
	Keyless Entry	Limited Prod.	Medium
Windshield	Optical	Limited Prod.	Medium
Wipers	Optical	Future	Medium

igure 1: Applications of MEMS/MST - Comfort, Convenience, Security

App.	Sensor/Structure	Status	MST Opptnty
Coolant System	Temperature	Production	Low
	Level	Limited Prod.	Low
Tire	Pressure	Limited Prod.	High
Engine Oil	Pressure	Production	High
	Level	Production	Low
	Contamination	Limited Prod.	Medium
Brake System	Pressure	Limited Prod.	High
	Level	Future	Low
Transmission	Pressure	Limited Prod.	High
Fluid	Level	Future	Low
Fuel System	Pressure	Limited Prod.	High
	Level	Future	Low
	Pressure (Vapor)	Limited Prod.	High
Vehicle Speed	Velocity	Production	Medium

Figure 2: Applications of MEMS/MST - On Board Vehicle Diagnostics [1]

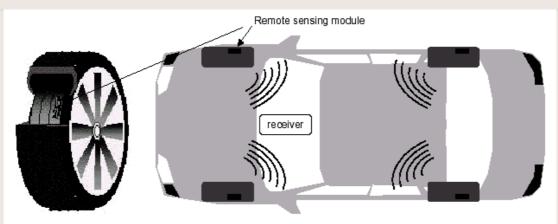
Oportunidades em MST Automotivo

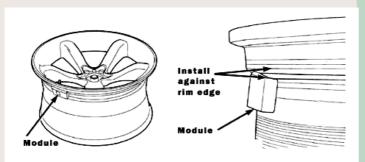
App.	Sensor/Structure	Status	MST Opptnty
Digital Engine Control			
Fuel	Level	Production	Low
Cylinder	Pressure	Future	Medium
Manifold -MAP	Pressure	Production	High
Barometric	Pressure	Production	High
Eng Knock	Vibration	Production	Medium
Mass Airflow	Flow	Limited Prod.	Medium
Exhaust	Gas Analysis	Production	Low
Crankshaft	Position	Major Prod.	Medium
Camshaft	Position	Limited Prod.	Medium
Throttle	Position	Limited Prod.	Medium
EGR	Pressure	Production	High
Fuel Pump	Pressure	Future	High
Torque	Torque	Limited Prod.	Medium
Continuously	Temperature	Future	Low
Variable	Pressure	Limited Prod.	High
Transmission	Microvalve	Future	Low
Fuel Injection	Pressure	Limited Prod.	High
•	Nozzle	Limited Prod.	High
Diesel TurboBoost	Pressure	Limited Prod.	High

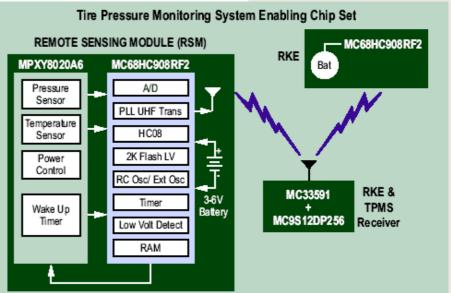
Figure 3: Applications of MEMS/MST - Engine/Drive Train [1]

App.	Sensor/Structure	Status	MST Opptnty
Antilock	Steering Position	Production	Medium
Braking,	Wheel Rotation	Production	Medium
Vehicle	Pressure	Limited Prod.	Medium
Dynamics,	Acceleration	Limited Prod.	High
Suspension	Valve	Future	Low
	Acceleration	Limited Prod.	High
	Rate	Limited Prod.	High
	Displacement	Limited Prod.	Low
	Rollover	Limited Prod.	High
Airbag Actuation	Acceleration	Production	High
-	PressCanister	Future	Medium
	Pressside Impa.	Limited Prod.	Medium
Seat Occupancy,	Presence/Force	Limited Prod.	Medium
Passenger Position	Displacement	Limited Prod.	Medium
Seatbelt Tensioner	Acceleration	Limited Prod.	High
Object Avoidance	Presence/Displa.	Limited Prod.	Medium
Navigation	Yaw Rate/Gyro	Limited Prod.	High
	Wheel Rotation	Limited Prod.	Medium
Road Condition	Optical	Future	High

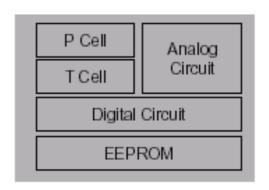
Figure 4: Applications of MEMS/MST - Safety [1]

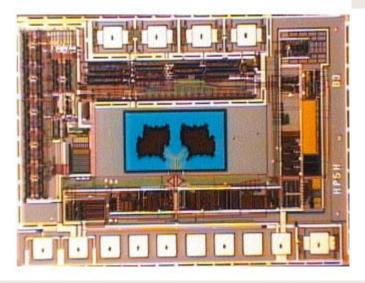

Sistema de Monitoração de Pneus


Tyre Pressure Monitoring


- Pressure monitoring
 - * Safety
 - * Fuel economy
 - Possibility to dispose the spare tire
 - Fuel economy
 - Cost savings
- Pressure sensor, signal conditioning, RF-stage
- Question lies on whether microcontroller would be external or internal
 - * External
 - Flexibility
 - Current consumption
 - Cost
 - * Internal
 - Cost
 - Lack of flexibility

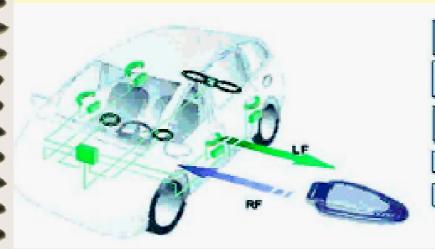
Sistema da Motorola




Sistema da Motorola (2)

Sensor internal state machine manages four different modes:

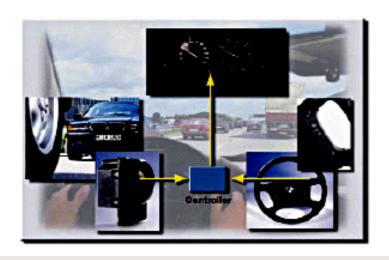
- 1. The pressure measurement mode: A mode in which the pressure cell, and the C to V converter are activated
- 2. The temperature measurement mode: In this mode the temperature cell (a PTC resistor) and its conditioning block are activated.
- 3. The standby mode: All analog and digital blocks are switched off, except an internal low frequency oscillator that sends a wake up pulse over an output pin to the controller periodically (every 6 seconds for example)
- 4. The read mode: After passing through one of the two above measurement modes, the measurement is stored in a sampling capacitor. The read mode activates the A to D converter and enables the controller to read serially the measurement.

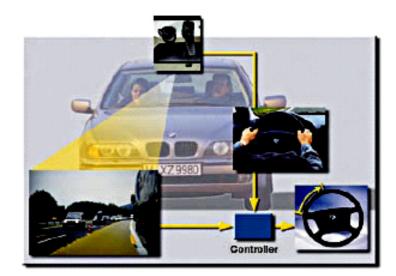


The Motorola TPM sensor block diagram

Carro sem Chave

- Goal is keyless automobile
- Idea is to implement to today's RF transmitter low frequency LF receiver and transmitter
 - Small working distance, 1.5 m, magnetic field
 - Can detect whether device is inside or outside the car

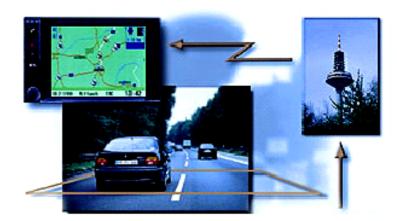

- Trigger system by door handle sensor or door handle switch
- ECU sends LF-challenge via exterior antenna.
- ID-Tag sends identification code to RF-receiver.
- 4. Doors are unlocked automatically
- 5. User pulls open the door.

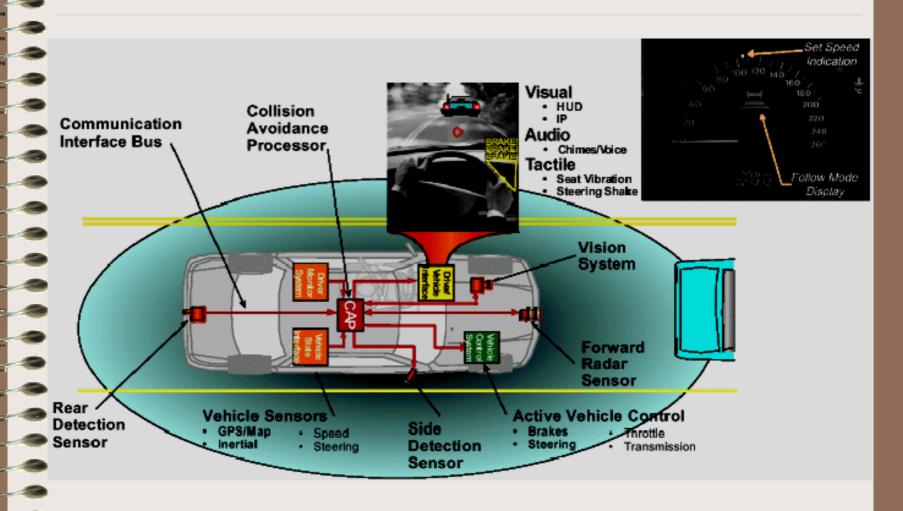

Sistemas de assistência ao motorista

- Vehicle Guidance
 - Active Cruiser Control
 - Controlling speed and distance between vehicles
 - Heading Control
 - · Controlling lateral vehicle position
- Navigation
 - · Guiding drivers through unknown areas
 - Additional information about the area or traffic situation
- Adaptive Light Control
 - A system regulating the angle and focus of the headlight beams
- Situation Adaptive Drive Management
 - Intelligent combination of traffic, vehicle and driver information determining a fuel-efficient driving strategy.
- Friction Monitoring
 - System detecting the frictional coefficient between the tires and the road.

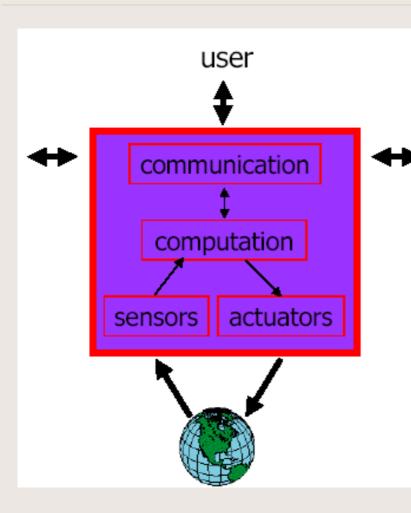
Direcionamento do Veículo

- Active Cruiser Control
 - system assists the driver especially on highways in maintaining following distances and vehicle speeds adapted to the respective situation
- Heading Control
 - System assist the driver in maintaining the lateral dynamic stability of the car and to stay on course

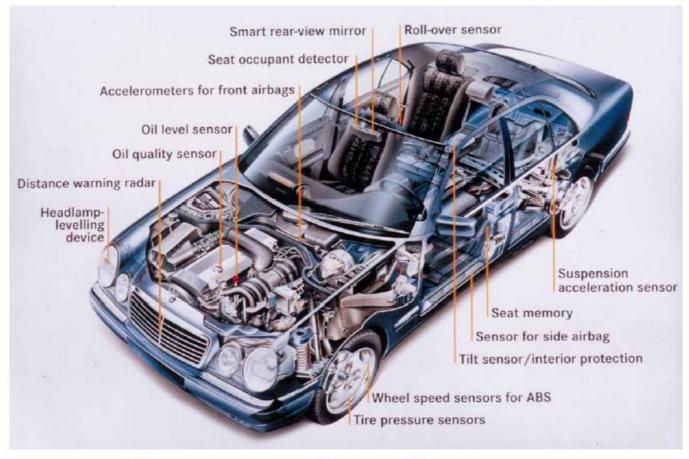



Sistema de navegação

 Global Positioning System (GPS) transmit radio signals which enable a position to be defined to within an accuracy of at least 100 meters



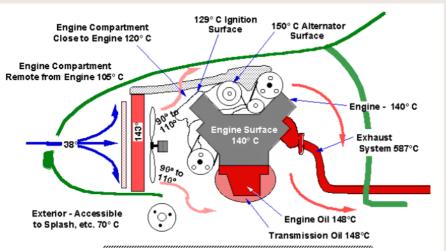
Sistemas anti-colisão



Sensores e Atuadores

- Transducer: convert energy from one form to another
- Definition includes sensors and actuators
- MEMS permits integration of sensors, actuators, computation, and communication into one batch-fabricated device


Microtecnologia na Industria Automotiva


Senses for the car

MST Automotivo

Sensores Automotivos

Ambiente térmico no automóvel

Road Surface 66° C

Location	Typical Continuous Max Temperature	Vibration Level	Fluid Exposure
On Engine On Transmission	140° C	Up to 10 Grms	Harsh
At the Engine (Intake Manifold)	125° C	Up to 10 Grms	Harsh
Underhood Near Engine	120°C	3 - 5 Gms	Harsh
Underhood Remote Location	105° C	3 - 5 Gms	Harsh
Exterior	70° C	3 - 5 Gms	Harsh
Passenger Compariment	70 - 80° C	3 - 5 Gms	Benign

Sensores e MST

- Sensors increase fuel effience and reduce emissions.
- Sensors increase safety and comfort of the driver
- microfabrication technologies reduce the cost of sensors
- microfabrication technologies increase functionality and reliability of sensors

year	1990	2000	2002
electronics	7%	17%	25%

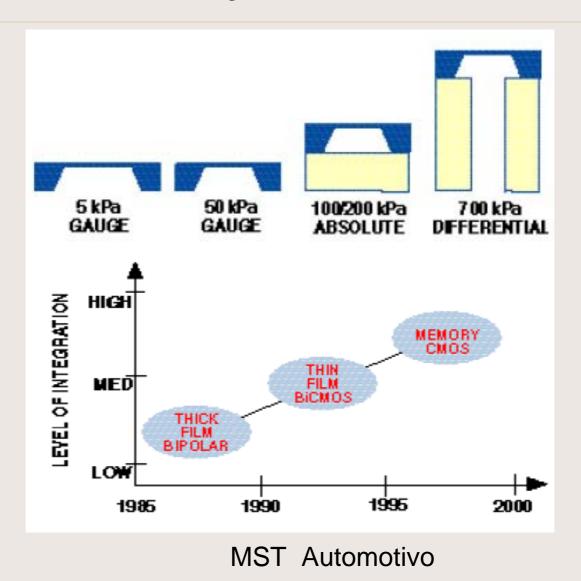
Applications

- Pressure sensors
- Mass flow sensors
- Accelerometers
- Angular rate sensors

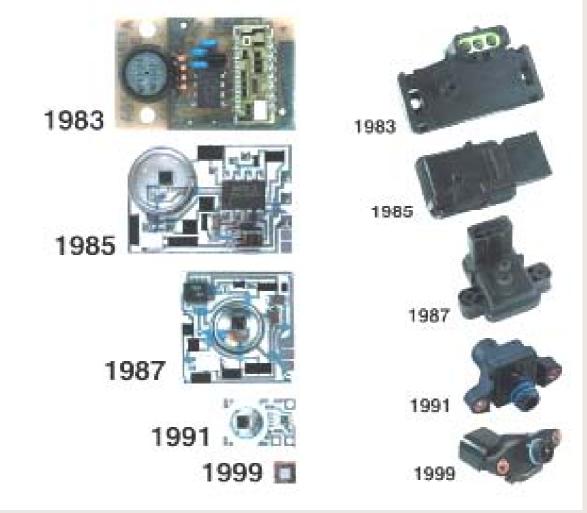
Sensores de Pressão

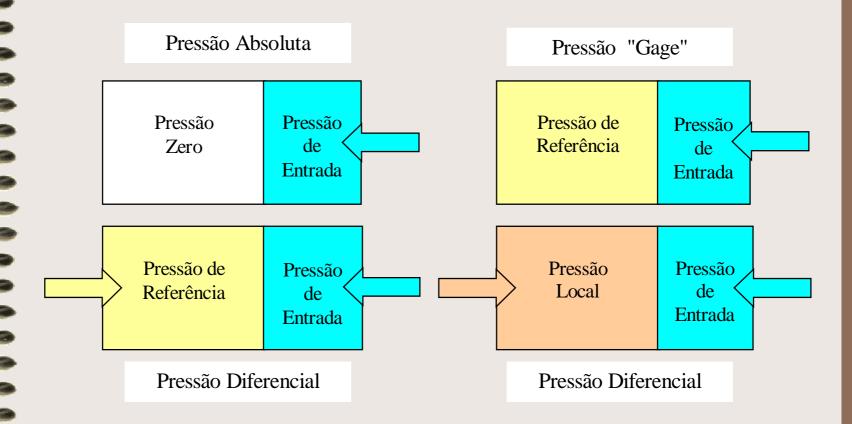
Pressure sensors

- first micromachined system used in the cars
- the core is a silicon chip which integrates the transducer element (membrane) and electronics
- a pressure difference across the membrane induce a mechanical deflection of the plate
- in the middle of membrane are 4 piezo-resistors, forming a Wheatstone bridge(deliver 100mV signal)
- the pressure can be applied to the front or the back side

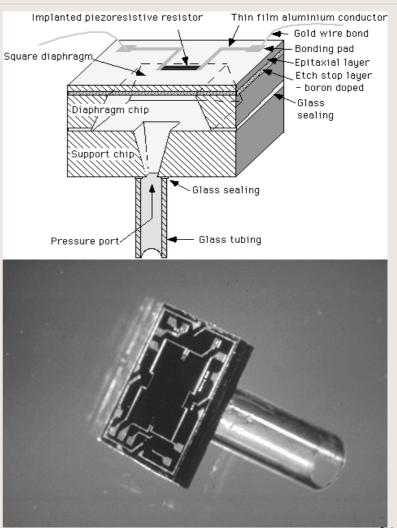

Diversas aplicações Automotivas

Os sensores de pressão são utilizados em:

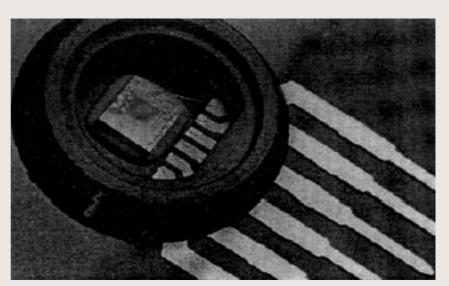

- Medida da pressão Barométrica;
- Pressão de Óleo em Motores;
- Pressão nos bicos de Injeção,
- Pressão nos sistemas exaustão
- Monitoramento da pressão hidráulica do sistema ABS;
- Monitoramento da pressão em compressores de ar.

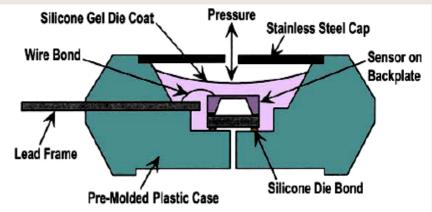

Evolução Tecnológica

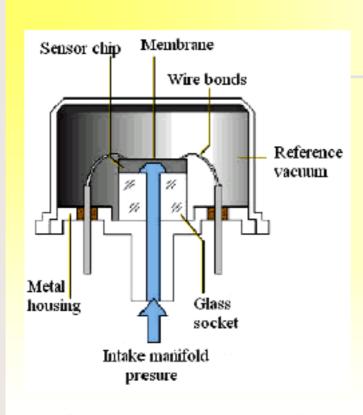
Evolução dos Sensores de Pressão Automotivos



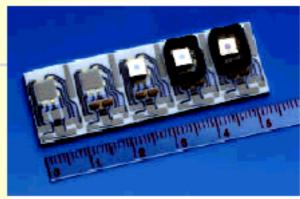
Medidas de Pressão

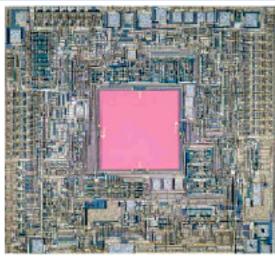

Sensores De Pressão Piezoresistivos


- Os sensores de pressão são o primeiro produto MEMS/MST a ser produzido em larga escala.
- A Piezo resistividade é um propriedade dos materiais onde a resistência de corpo é influenciada pela tensão mecânica aplicada ao dispositivo
- Piezo resistores comuns:Si, Si poly, SiO2
- Projeto típico: 4 piezo resistores em uma ponte de Wheatstone num diafragma de Si
- Sensibilidade de pressão:
 (mV/V-bar): S =(ΔR/ΔP)(1/R)


Sensores De Pressão Piezoresistivos (Motorola)

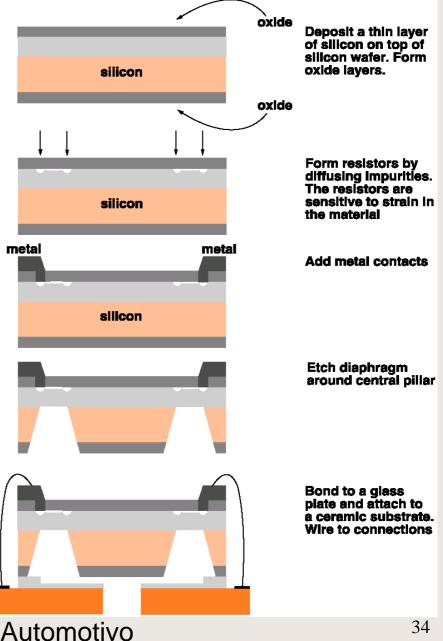
- Os sensores de pressão são o primeiro produto MEMS/MST a ser produzido em larga escala.
- A Piezo resistividade é um propriedade dos materiais onde a resistência de corpo é influenciada pela tensão mecânica aplicada ao dispositivo
- Piezo resistores comuns:Si, Si poly, SiO2 e ZnO
- Projeto típico: 4 piezo
 resistores em uma ponte de
 Wheatstone num diafragma de
 Si
- Sensibilidade de pressão: (mV/V-bar): $S = (\Delta R/\Delta P)(1/R)$




Alguns Sensores de Pressão

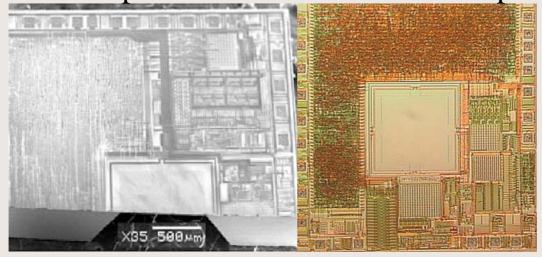
Cross section trough MAP pressure sensor

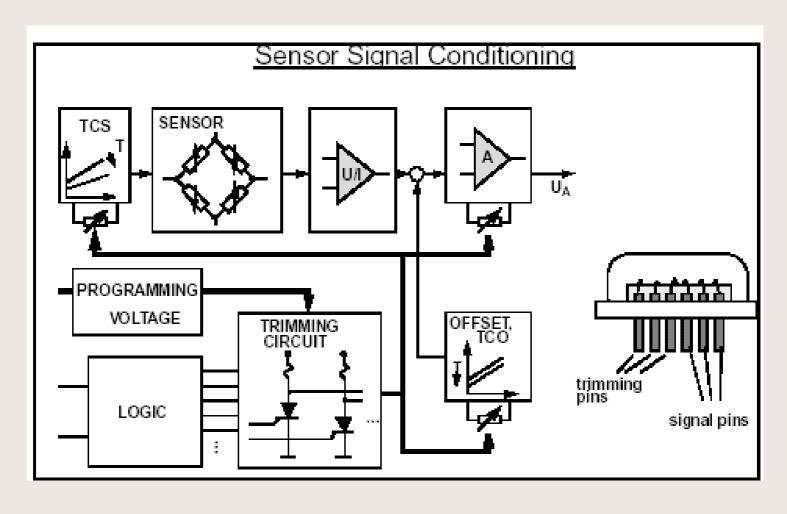
Assembly flow for pressure sensor



Integrated pressure sensor chip

MST Automotivo


Método de Fabricação de Sensores de Silício


MST Automotivo

Sensor Integrado de Pressão

- Abordagem tecnológica que combina a tecnologia CMOS e micro-usinagem de corpo para sensores de pressão.
- Método digital de correção de erro devido a variações de sensibilidade e de temperatura
- Utiliza EEPROM para armazenamento dos dados de calibração
 - Melhoria na precisão e estabilidade do dispositivo

Sensor de Pressão Programável

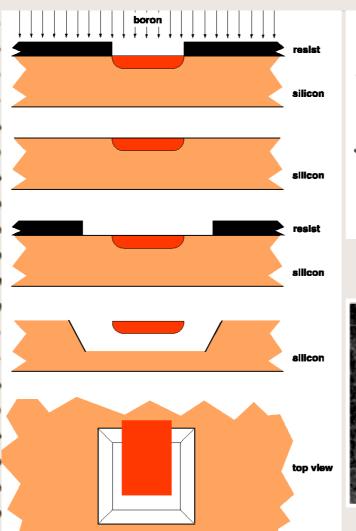
Condicionamento de Sinal para Sensor

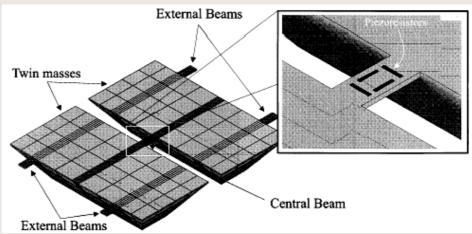
Comparison of Various Signal Conditioning and Error Correction Approaches					
Parameter	Two-Chip Thick-Film Laser	Two-Chip Thin-Film Laser	One-Chip Thick-Film Laser	One-Chip Analog Correction with EEPROM	One-Chip Digital Correction with EEPROM
Circuit complexity	Low	Low to moderate	Moderate to high	High	High
Process complexity	Low	Moderate	Moderate to high	Moderate to high	Moderate to high
Component costs	Highest	High	Low	Low	Low
Test complexity	High	High	High	Low	Low
Test cost	Very high	High	High	Low	Low
Package size	Large	Good	Small	Small	Small
Package cost	Very high	High	Low	Low	Low
Pressure range adaptability	Good	Good	Moderate	Moderate	Moderate
Trim after gel and/or packaging	No	No	No	Yes	Yes
Ability to do multi-order correction	No	No	No	Yes, with difficulty	Yes
Accuracy	Low	High	Moderate	Moderate	Very high
Resolution	High	High	High	High	Moderately high

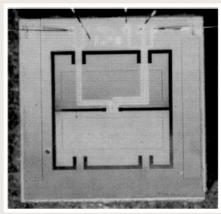
MST Automotivo

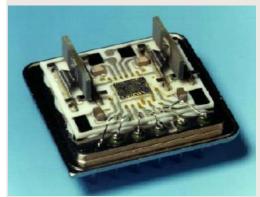
Acelerômetros

- are the heart of any airbag system
- 3 type
 - with piezoelectric ceramic
 - with bulk micromachined accelerometeres
 - with surface micromachined accelerometeres
- functional principle:
 - the mass is suspended by the polysilicon springs
 - the movement of the mass is being measured as a capacitance change between fixed and movable electrodes
 - measurement range :
 - 50g for front airbag
 - 100g for side airbag

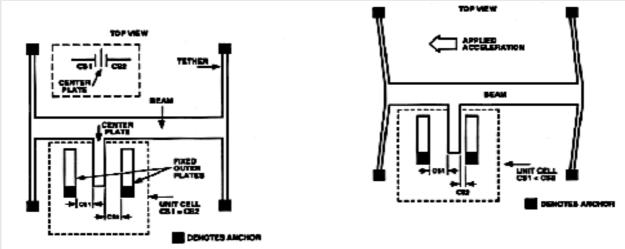

Accelerometer for front airbag

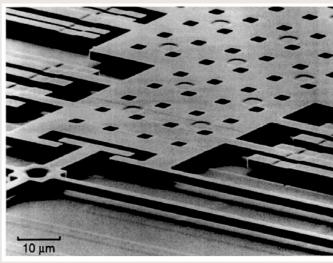




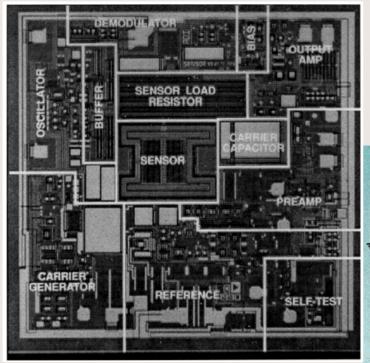


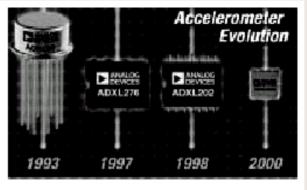
Acelerômetros em Silício

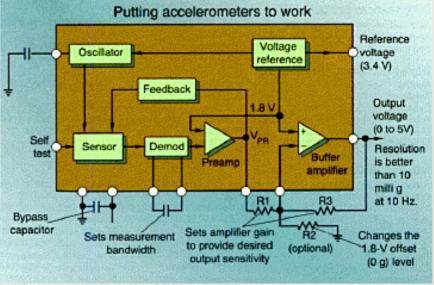




Acelerometro MEIMS (ANALOG DEVICES)

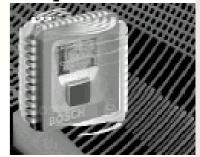




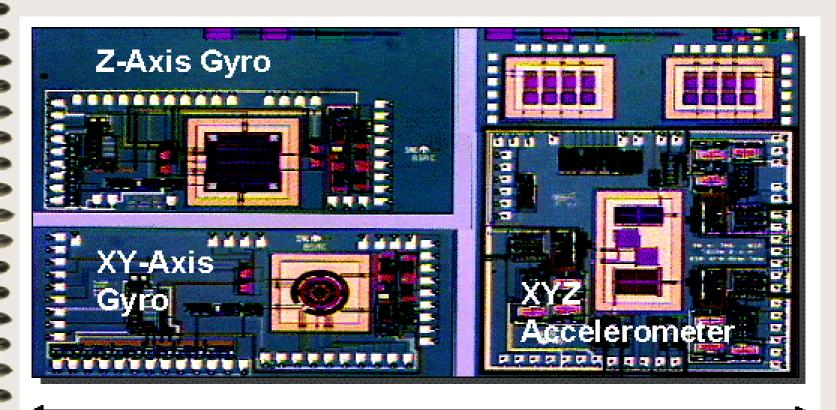

MST Automotivo

Acelerometro MEMS (ANALOG DEVICES) (2)

Analog Devices Accelerometers from 1993 to 2000

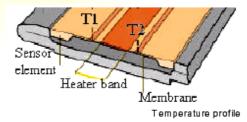

Sensores de Rotação angular

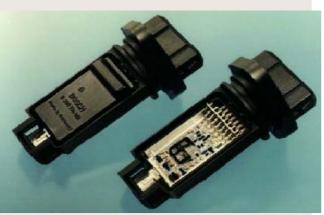
- ESP systems compare the driver wish with the real behaviour of the vehicle
- the angular rate sensor measures the rotate of the car around the vertical axis
- the system assist the driver by braking wheels automatically and independently to bring the car back on track
- EST use: steel cylinder, quartz or silicon technology
- all this sensors use coriolis forces to measure the angular rate

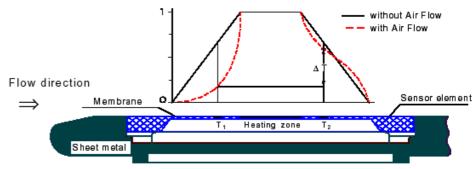

Micromachined angular rate for EST

Surface
Micromachined
angular rate
for Navigation

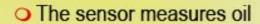
Sistemas Inerciais



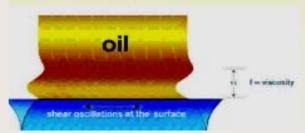

1 cm


Medidores de Fluxo de massa de ar

- use a calorimetric principle
- wide spread in Europe and US. use for engine control systems
- use a dielectric membrane (1µm thin) for heat capacity and good isolation
- the difference between T1 and T2 is a direct indicator of air flow over the chip
- * respons time: milliseconds



Evaluation of temperature difference $\Delta T = T_2 - T_1$


 \Rightarrow Characteristic curve dependent on flow direction

Monitoração da qualidade do óleo

- Goal is to increase time period between oil changes
 - Cost savings
 - Comfort
- Need to measure properties of the oil itself

- Viscosity
 - Shear-polarized microacoustic sensor
- Permittivity
- * Temperature
- * Level

Anexos

Métodos básicos de Sensoriamento

Piezoresistores e strain gages

- Os piezoresistores, strain gages ou extensômetros elétricos são dispositivos que produzem a mudança da resistência de um material condutívo em resposta a uma deformação mecânica. Este material pode ser um líquido, um plástico, um metal ou um semicondutor.
- Sabe-se que um resistor de acordo com a lei de OHM, pode ser expresso assim:

$$R = \frac{\rho \cdot l}{A}$$

• Com: ρ = resistividade do elemento, l = comprimento do resistor e A = seção do resistor.

 A sua variação unitária está dada pelas variações de resistividade comprimento e seção:

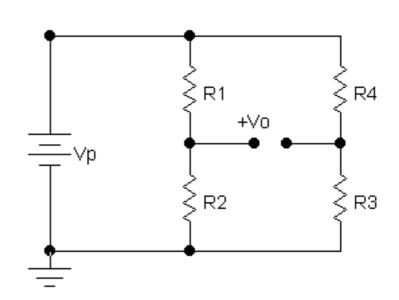
$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta l}{l} - \frac{\Delta A}{A}$$

 Define-se Gage Factor como a variação unitária multiplicado pela deformação mecânica no elemento e = (Δl/l) em (μstrain):

$$G = \frac{\frac{\Delta R}{R}}{\frac{\Delta l}{l}} = \frac{\frac{\Delta \rho}{\rho}}{\frac{\Delta l}{l}} + 1 + 2\nu$$

Ponte de Wheatstone

 É de longe a estrutura mais popular em instrumentação usando elementos resistivos, esta estrutura constitui-se por quatro resistências (R1, R2, R3, R4)interligadas como mostrado na figura a seguir. A tensão de saída deste circuito para excitação de tensão constante fica:


$$V_{o} = V_{p} \cdot \left(\frac{R_{1}R_{3} - R_{2}R_{4}}{(R_{1} + R_{2}) \cdot (R_{3} + R_{4})} \right)$$

A ponte é dita balanceada quando

$$R_1 R_3 = R_2 R_4$$

 Em instrumentação uma ou várias resistências da ponte podem ser substituídas por elementos sensores resistívos, sendo assim o elemento pode ser descrito como

$$R_{i} = R_{oi} + \Delta R_{i} = R_{oi} \cdot (1 + \frac{\Delta R_{i}}{R_{oi}})$$

Ponte de Wheatstone

- Sendo ΔR_i é a variação de resistência devido ao parâmetro físico e R_{oi} é o valor inicial para uma excitação de referência. Para "Strain Gages":

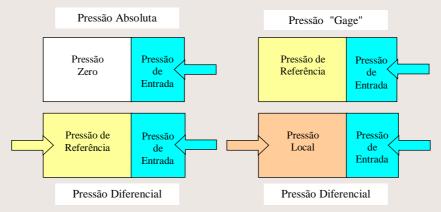
$$\Delta R_i = k \cdot \varepsilon_i$$

- com k = "Gage Factor" e ε =
 deformação mecânica na direção
 principal do gage.
- Estas variações em geral para o caso de "Strain Gages" são muito pequenas (da ordem de 10-3 W) então a saída pode ser aproximada assim, supondo que todas as resistências variam:

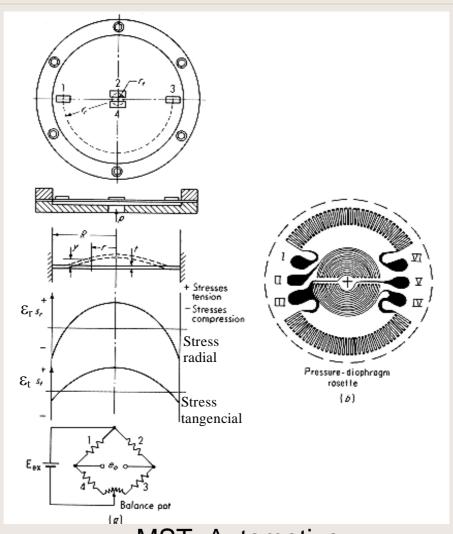
$$\frac{V_o}{V_p} = \frac{1}{4} \cdot \left(\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{R_2} + \frac{\Delta R_3}{R_3} - \frac{\Delta R_4}{R_4} \right)$$

ou seja:

$$\frac{V_o}{V_p} = \frac{k}{4} \cdot \left(\varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4\right)$$


- Esta estrutura permite então combinando as diversas deformações montar diversos esquemas de medida:
- Se $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E}_3 = \mathcal{E}_4 = \mathcal{E}$ então a saída da ponte será nula
- Se $\varepsilon_2 = \varepsilon_3 = \varepsilon_4 = 0$ e $\varepsilon_1 = \varepsilon$ então a saída da ponte será: $\frac{V_o}{V_p} = \frac{k}{4} \cdot (\varepsilon)$
- Se $\mathcal{E}_1 = -\mathcal{E}_2 = \mathcal{E}e$ saída da ponte será: $\mathcal{E}_3 = \mathcal{E}_4 = 0 \text{ então a}$ $\frac{V_o}{V_p} = \frac{k}{2} \cdot (\mathcal{E})$
- Se $\varepsilon_1 = -\varepsilon_2 = \varepsilon_3 = -\varepsilon_4 = \varepsilon$ ou seja estou medindo uma deformação produzida por uma tensão e uma produzida por uma compressão a saída da ponte será

$$\frac{V_o}{V_p} = (k\varepsilon)$$


 Neste caso é possível aumentar a sensibilidade da ponte usando quatro gages medindo tensão e compressão.

Medidas de pressão

- Pressão é uma força (F) atuando numa superfície (S), e mede-se como força por unidade de área, Pascal (Pa) no sistema SI, apesar de serem usadas outras unidades como bar, PSI, Kg/cm2, etc.
- Existem diversas formas de referenciar a pressão:
- Pressão Absoluta
 - » A pressão é medida em relação ao vácuo (pressão zero)
- Pressão "Gage"
 - » A pressão é medida em relação à pressão ambiente ou barométrica
- Pressão Diferencial
 - » É a diferença de pressão entre dois pontos de medida

Medida de pressão com diafragma plano.

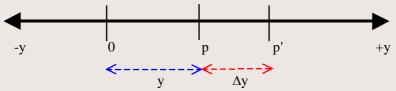
Medida de Pressão usando Diafragmas

Tomando o caso de um diafragma plano, engastado no seu perímetro, com raio (R_o e espessura (h) ao aplicar uma pressão (q) na sua superfície aparecem duas deformações mecânicas importantes, uma no sentido radial e outra no sentido tangencial, expressadas da seguinte forma:

$$\varepsilon_r(\alpha R_o) = \frac{3}{8} \cdot \frac{q}{E} \cdot \frac{R_o^2}{h^2} \cdot (1 - v^2) \cdot (1 - 3\alpha^2) \quad \varepsilon_t(\beta R_o) = \frac{3}{8} \cdot \frac{q}{E} \cdot \frac{R_o^2}{h^2} \cdot (1 - v^2) \cdot (1 - \beta^2)$$

- » com: $(\alpha R_0) = R_r$ distancia onde se encontra o strain gage (1 e 3), $(\beta R_0) = R_t$ distancia onde se encontra o strain gage (2 e 4), E = Módulo de elasticidade do material do diafragma, v =Coeficiente de Poisson do material
- Estas deformações podem ser medidas com 4 strain gages configurados em ponte d Wheatstone e ligados como mostrado na seguinte figura. A sensibilidade para um posicionamento adequado dos strain gages no diafragma fica:

$$S_{\varepsilon} = \frac{\varepsilon}{q} = 0.3741 \cdot \frac{1}{E} \cdot \frac{R_o^2}{h^2} \cdot \left(1 - v^2\right)$$


A sensibilidade elétrica de uma ponte completa de Wheatstone é: $S_e = \frac{V_o}{c} = V_p \cdot GF$

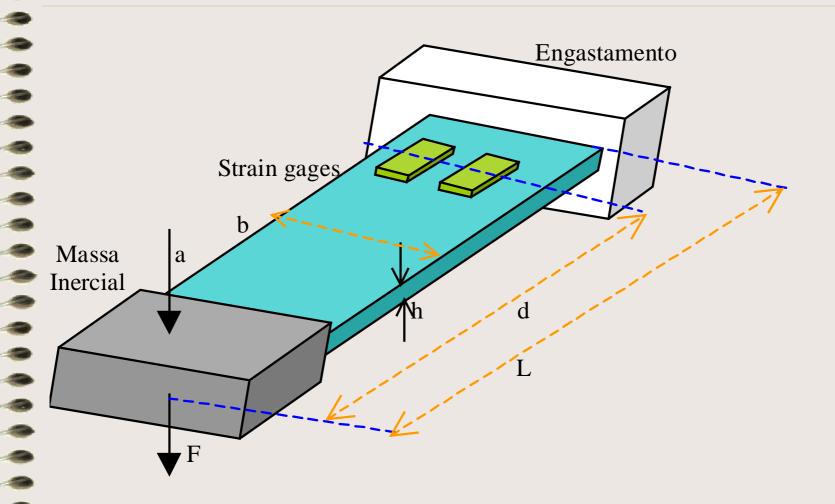
$$S_e = \frac{V_o}{\mathcal{E}} = V_p \cdot GF$$

- A sensibilidade deste esquema de transdução fica:
$$S_{pressão} = \frac{V_o}{g} = 0.3741 \cdot \frac{1}{E} \cdot \frac{R_o^2}{h^2} \cdot (1 - v^2) \cdot V_p \cdot GF$$
MST Automotivo

Medidas de aceleração

-A posição de um ponto (p) ao longo de uma linha reta pode ser descrita em qualquer instante (t) através do seu deslocamento tendo em conta uma certa origem.

-A velocidade (v) do ponto (p) num intervalo de tempo é a taxa instantânea de variação do deslocamento, e pode ser expressa assim:


$$v = \frac{dy}{dt}$$

-Da mesma forma a aceleração (a) do ponto (p) num intervalo de tempo é a taxa instantânea de variação da velocidade e se expressa assim:

$$a = \frac{dv}{dt} = \frac{d^2y}{dt^2}$$

»A unidade de aceleração é m/s2, sendo usual sua expressão em "g".

Acelerômetro usando Strain Gages

Medida de aceleração medindo deformações de um corpo

– No mecanismo de deformação associado a piezoresistividade uma massa inercial está solidária a uma viga ou estrutura elástica, onde se encontram alojados os strain gages. A aceleração agente no dispositivo associada a massa inercial (M) gera uma força (F = M.a) que flexionará a viga convertendo a aceleração em uma deformação mecânica. A sensibilidade desta conversão primaria fica:

$$S_{\varepsilon} = \frac{\varepsilon}{a} = \frac{6 \cdot M \cdot d}{b \cdot h^2 \cdot E}$$

- » com: E = Módulo de elasticidade do material da viga, b = Largura da viga, h = espessura da viga e d = distância até o strain gage
- A sensibilidade elétrica de uma ponte completa de Wheatstone é:

$$S_e = \frac{V_o}{\mathcal{E}} = V_p \cdot GF$$

» com :Vp = Tensão de alimentação da ponte de Wheatstone, GF = "Gage Factor" do extensômetro elétrico, então a sensibilidade do acelerômetro fica:

$$S_{acc} = \frac{6 \cdot M \cdot d}{b \cdot h^2 \cdot E} \cdot V_p \cdot GF$$