Bárbara Amaral Instituto de Física da USP

Aula 7: Relatividade restrita

Bibliografia

- Moysés: seção 6.9 a 6.11.
- Feynman: seções 15.8 e 15.9.
- ➤ Young and Freedman: seção 37.7 a 37.9.

Momento relativístico

Por que a definição de momento é importante?

Segunda lei de Newton

$$ec{F}=rac{dec{p}}{dt}$$

Lei de conservação do momento

Se a força externa resultante é zero então o momento total do sistema se conserva.

Momento relativístico

p = mv

Se usarmos a expressão

$$p = mv$$
,

a conservação do momento não é invariante pelas transformações de Lorentz.

Como devemos mudar a expressão para o momento *p*?

conservação do momento ao usarmos as transformações

Queremos que p seja tal que continue valendo a

de Lorentz

p = m(v)v

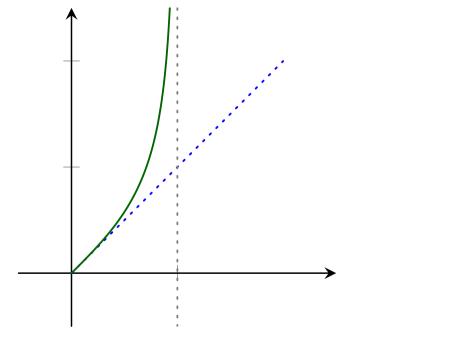
Experimento imaginado

Momento relativístico

$$ec{p} = rac{m_0 v}{\sqrt{1 - rac{v}{c}}}$$

Massa relativística

$$m(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$



Segunda lei de Newton e massa relativística

$$ec{F}=rac{d}{dt}ec{
ho}$$

Esse resultado continua válido na mecânica relativística, desde que usemos o momento relativístico

desde que usemos o momento relativistico
$$ec{p}=rac{m_0ec{v}}{\sqrt{1-rac{v^2}{c^2}}}.$$

A taxa de variação do momento não é mais proporcional à aceleração!

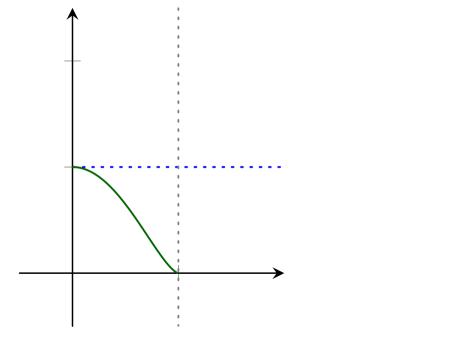
Uma força constante não produz uma aceleração

constante.

Forças paralelas à direção de movimento

$F=\gamma^3 m_0 a$

$$a=\frac{F}{m_0}\Big(1-\frac{v^2}{c^2}\Big)^{\frac{3}{2}}$$



Vemos que quando a velocidade aumenta, a aceleração produzida por uma força constante diminui.

Quando a velocidade tende a *c* a aceleração tende a zero!

velocidade c.

É impossível acelerar uma partícula massiva $(m_0 \neq 0)$ a

Forças perpendiculares à direção de movimento

$F = \gamma m_0 a$

No caso geral decompomos \vec{F} nas componentes paralelas e perpendiculares à direção do movimento.

$ec{F} = \gamma^3 m_0 ec{a}_{\parallel} + \gamma m_0 ec{a}_{\perp}.$

O vetor força e o vetor aceleração não são paralelos!

Energia

Relação entre trabalho e energia utilizando o momento

relativístico na expressão para F.

Nos leva a uma nova expressão para a energia cinética.

Energia cinética relativística

Trabalho

$$W = \int_{c} \vec{F} \cdot d\vec{x}$$

F paralela à direção de movimento

$$F=\gamma^3 m_0 a$$

F paralela à direção de movimento

$$W = \int_{x_1}^{x_2} F dx = \int_{x_1}^{x_2} \frac{madx}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{3}{2}}}$$

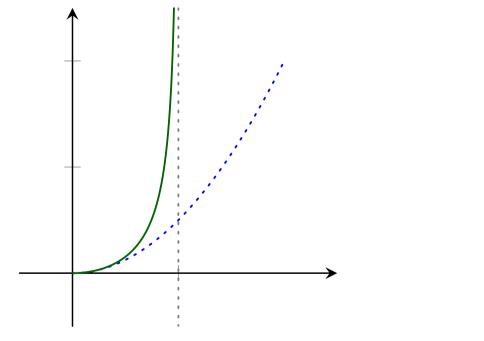
A energia cinética de uma partícula é igual ao trabalho realizado para deslocá-la desde o repouso até a velocidade

V .

Agora devemos escrever a integral para W em termos de v para obtermos K(v).

Energia cinética relativística

$$K = \gamma m_0 c^2 - m_0 c^2$$



A energia necessária para acelerar uma partícula de massa

 $m_0 \neq 0$ à velocidade da luz é infinita.

Energia total e energia de repouso

Energia cinética relativística

$$K = \gamma m_0 c^2 - m_0 c^2$$

Energia de repouso

$$E_R = m_0 c^2$$

Energia total

$$E = K + m_0 c^2 = \gamma m_0 c^2$$

Energia total

Se a partícula está em repouso:

$$E=m_0c^2$$

Temos várias evidências experimentais da equivalência

entre massa e energia.

Princípio da conservação da massa-energia

Princípio da conservação da massa-energia

Quando a soma das massas de repouso varia, haverá uma variação da energia igual a

$$\Delta E = \Delta mc^2$$
.

Energia nuclear

Relação entre energia e momento linear

$E^2 = (m_0c^2)^2 + (pc)^2$

Uma partícula pode ter momento e energia mesmo que $m_0 = 0$.

Um exemplo de tal partícula é o **fóton**.

Nesse caso

_

E = pc

e v é necessariamente igual a c.

Os fótons transportam momento.

Pressão de radiação

Quando uma onda eletromagnética é refletida ou absorvida por uma superfície, essa superfície sofre uma variação do momento.