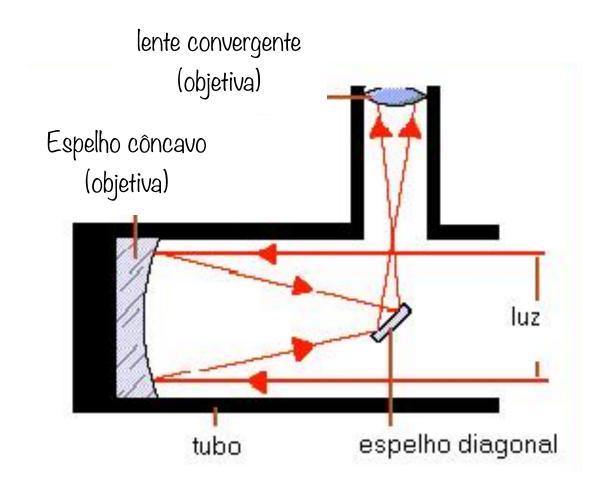
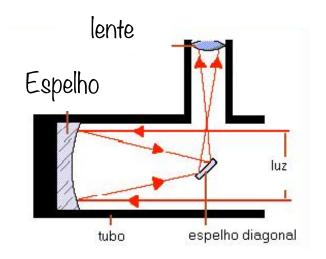
Instrumentos óticos

- Telescópio e luneta
 - o aumento angular
- Máquina fotográfica
- o Olho
- Lupa
- Microscópio composto

Telescópios e Lunetas

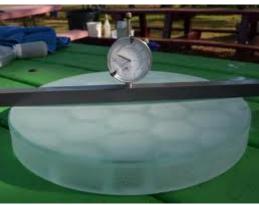

sistema ótico refletor

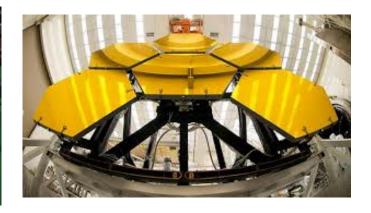


sistema ótico refrator

Telescópio

Telescópios de grandes aberturas - pesquisa


European South Observatory		
Cerro Paranal, Deserto de Atacama-Chile		
2.635 m		
>340 noites claras/ano		
www.eso.org/projects/vlt/		
Telescópios R=29m, f=13m		
8,2 m refletor (diâmetro)		


Matriz de espelhos hexagonais formando um Telescópio Extremamente Grande (ELT- Extremely Large Telescopes)

http://en.wikipedia.org/wiki/Segmented_mirror

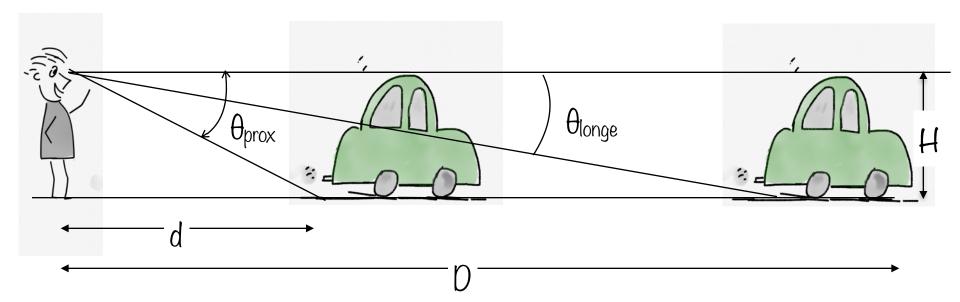
Espelhos construídos para o telescópio espacial James Webb http://jwst.nasa.gov/mirrors.html

Cada um dos espelhos é um espelho plano, feito de berílio, polido com extrema precisão

Vantagens

Berilio - material leve , espelhos são montados formando um espelho parabólicoposição de cada espelho controle automático para posicionamento com precisão

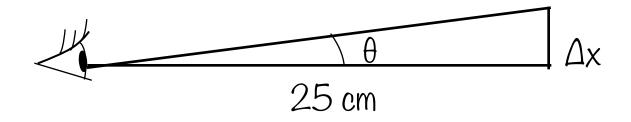
Telescópio Espacial Huble


Organizações	NASA/ESA
Comprimento de onda	Visível, ultravioleta e infravermelho
Localização	Orbita baixa da Terra
Tipo de órbita	Elíptica
Altura da órbita:	589 km.
Período orbital	96-97 min
Velocidade orbital	7.500 m/s,
Aceleração devido à	$8,169 \mathrm{m/s^2}$
Lançamento	24 de abril de 1990
Saída da órbita	Por volta de 2020
Massa	11.110 kg (~11 ton)

Telescópio Espacial Huble

Tipo de telescópio	Ritchey-Chretien refletor
Diametro	2,4 m
Área útil	~ 4,3 m ²
Comprimento focal:	57,6 m
Website:	http://www.nasa.gov/hubble http:// hubble.nasa.gov http://hubblesite.org http:// www.spacetelescope.org

Tamanho angular

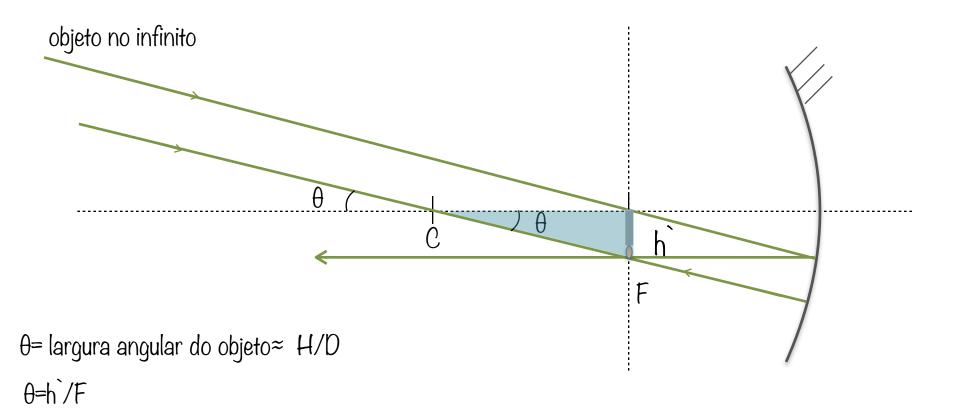

$$tan\theta_{prox}=H/d$$
 $tan\theta_{longe}=H/D$
 $tan\theta_{longe}=H/D$

O tamanho angular de um objeto depende da distância de observação

Quanto mais próximo do observador maior o tamanho angular de um objeto.

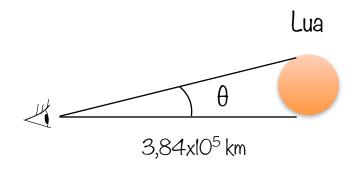
Tamanho angular

Visão Normal-Distância mínima de aproximação para boa acomodação do olho = 25 cm



Resolução Angular do olho humano=1,5x10-4 rad *

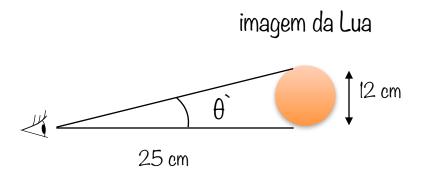
$$\tan\theta = (\Delta x)/(250 \text{ mm}) \approx \theta$$


$$\Delta x \approx 0.04 \text{ mm}$$

Aumento angular de um telescópio

A imagem real pode ser observada de perto; a olho nu, projetada em um anteparo, ou com uma ocular, que funciona como lupa. Qual o diâmetro da imagem da Lua no plano focal de um telescópio (terrestre) de 13 m de distância focal, como os que estão instalados no Deserto do Atacama no Chile?

Dados: Distância Terra-Lua= $3,84 \times 10^5$ Km e o diâmetro da Lua = $3,5 \times 10^3$ Km.



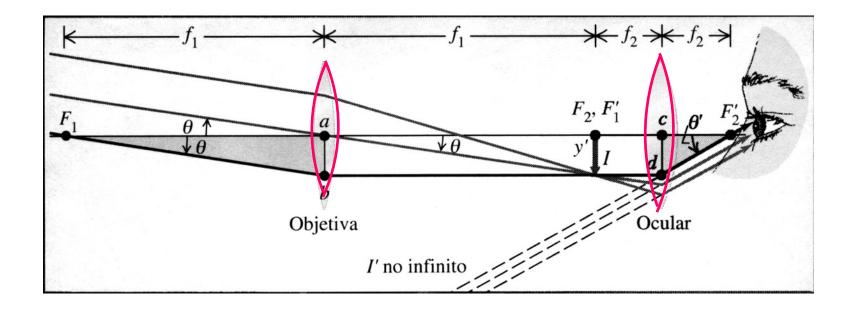
$$tan \theta = 3.5x10^3 \text{ km}/(3.84x10^5 \text{ km})$$

 $tan \theta = 9.1x10^{-3}$

a imagem formada no telescópio terá um diâmetro h`
$$\theta=h$$
'/F $\theta=9$,lxO⁻³ rad h`=9,lxIO⁻³ (I3 m) h`=1,l8 xIO⁻¹ m h`=12 cm

Mas comparando o tamanho do objeto e da imagem, vemos que a imagem é menor do que o objeto. O que o telescópio faz é trazer para um perto um objeto que está distante. Então, o que precisa ser avaliado é o aumento angular.

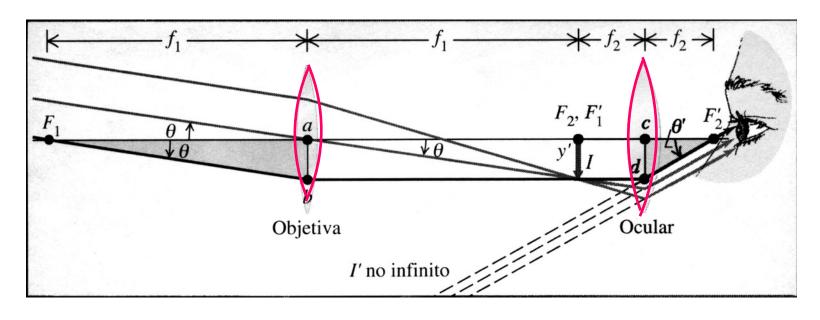
se a imagem da Lua formada pelo Telescópio for observada a olho nu, sobre um anteparo, a 25 cm;



Aumento Trasversal: $M_{\theta}=\theta'/\theta$

$$\tan \theta' = 12 \text{cm}/(25 \text{cm})$$

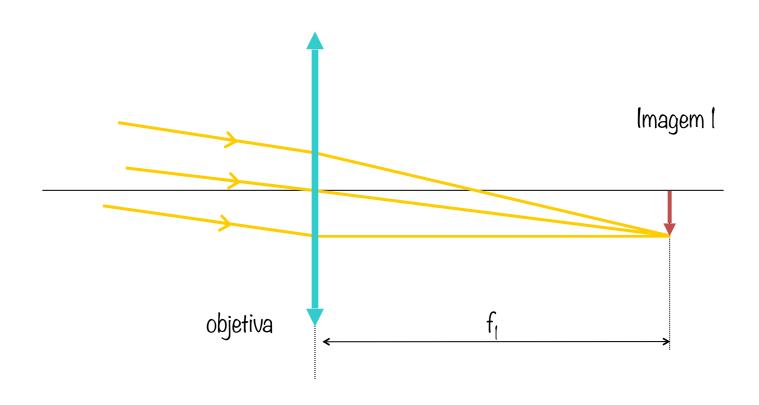
 $\tan \theta' = 0.48$
 $\theta' = 0.45 \text{ rad}$


$$M_{\theta}=0,45 \text{ rad}/(9 \times 10^{-3} \text{ rad})$$

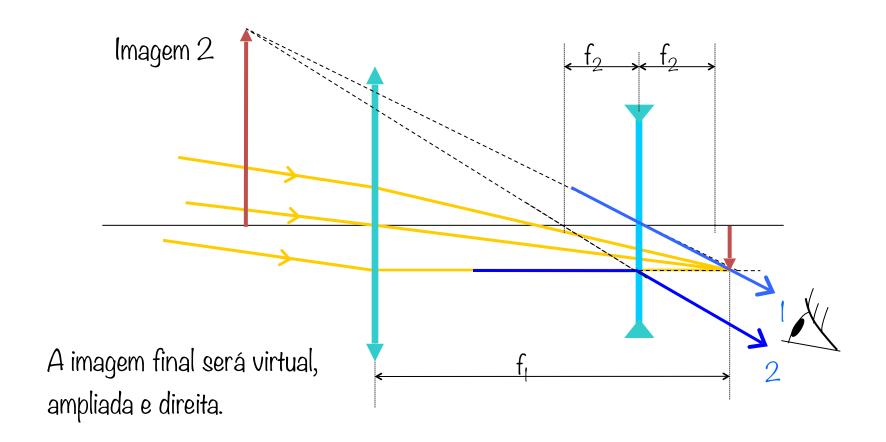
Luneta

A objetiva forma uma imagem real, no seu plano focal. Como no caso da objetiva fotográfica, quanto maior a distância focal, maior será a imagem formada. Essa imagem real, funciona como objeto para um segunda lente convergente, que atua como uma lupa, formando uma imagem final virtual e ampliada do objeto.

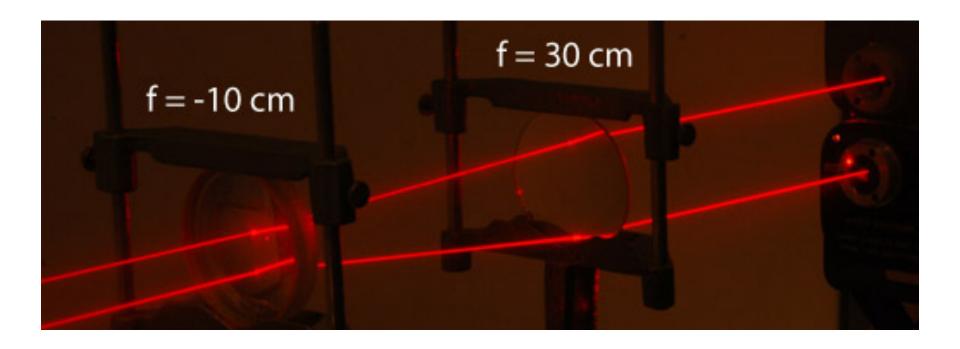
Aumento angular de uma luneta


$$ab = cd = y'$$
 $\theta = \frac{-y'}{f_1}$ $\theta' = \frac{y'}{f_2}$

$$M_{\theta} = \frac{\theta'}{\theta} = \frac{-y'/f_2}{y'/f_1}$$

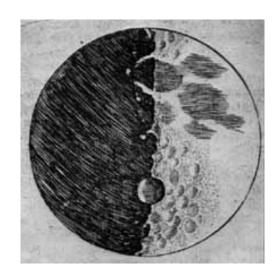

$$M_{\theta} = -\frac{f_1}{f_2} = -\frac{dist. \ focal \ da \ objetiva}{dist. \ focal \ da \ ocular}$$

Luneta terrestre (de Galileu)


Uma lente convergente forma uma imagem real e invertida de um objeto distante.

A imagem I será um objeto virtual para uma lente divergente, com ponto focal próximo da posição da imagem formada pela primeira lente

Luneta terrestre (de Galileu)

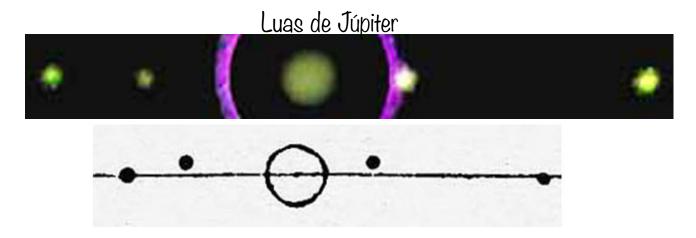


$$M_{\theta} = -\frac{f_1}{f_2} = -\frac{dist. \ focal \ da \ objetiva}{dist. \ focal \ da \ ocular}$$

O que Galileu viu?

Foi com esse tipo de luneta que Galileu observou, com uma objetiva de comprimento focal de 1000 mm e uma lente divergente de 50mm, conseguindo um aumento de 20X.

crateras na Lua



Desenho de Galileo

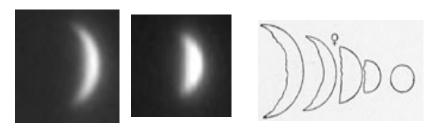
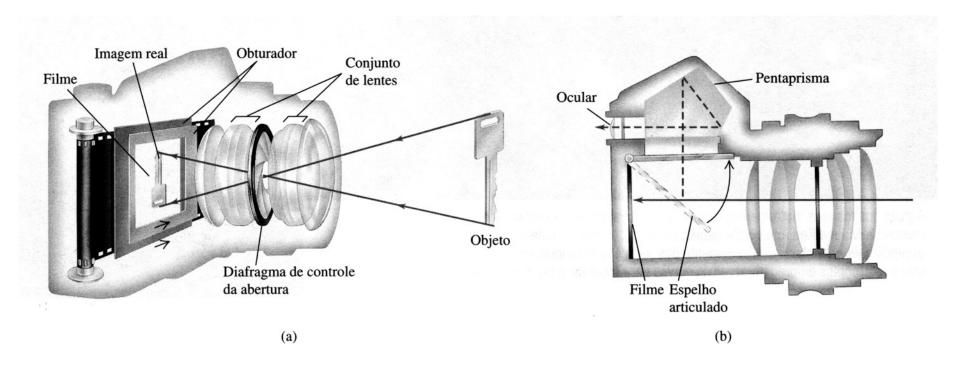
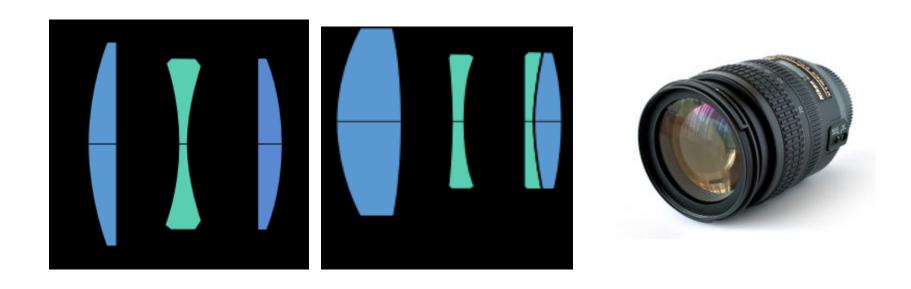


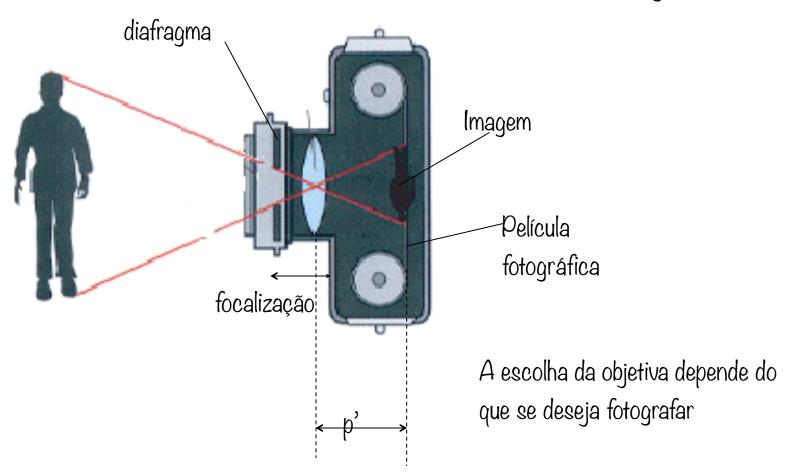
Foto com montagem equivalente

O que Galileu viu?




Fases de Vênus

NEBULOSA ORIONIS



Tipos de objetivas de máquinas fotográficas

Combinação de lentes convergentes e divergentes, feitas de vidros diferentes para minimizar as aberrações (cromática, esférica, etc.)

Filmes fotográficos 35mm

Máquina fotográfica escolha da distância focal da objetiva

Como o aumento depende da posição da imagem, se usarmos uma lente com distância focal maior, a distância imagem também será maior, portanto será também mais ampliada.

Por isso trabalhar com objetivas de grande distância focal, permite fotografias de objetos distantes, porém o campo de visada, é reduzido, uma vez que a área do filme (tela) permanece inalterada. Algumas objetivas fotográficas podem ter algumas lentes móveis que permitem um "zoom" no objeto fotografado, isto é, a distância focal da objetiva pode ser variada dentro de um certo intervalo.

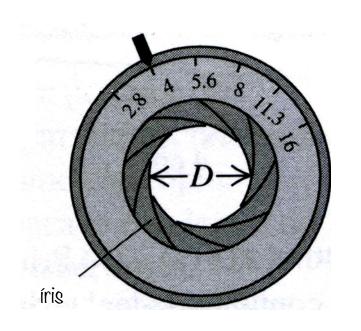
$$M = \frac{h'}{h} = -\frac{p'}{p}$$

28 mm 70mm

Máquina fotográfica escolha da distância focal da objetiva

 $28\,\text{mm}$

70 mm


50 mm

210 mm

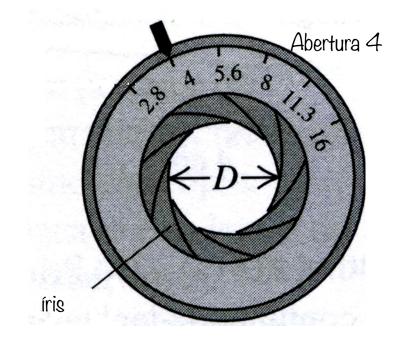
Máquina fotográfica escolha da abertura da objetiva

Em fotografia, utiliza-se o número f, para denominar a abertura da lente

Número
$$f = \frac{f}{D} = \frac{distância\ focal}{diâmetro\ efetivo\ da\ objetiva}$$

$$f = 28 \text{mm} \text{ N}^{\circ} f = 16 \text{ D} = 1,75 \text{mm}$$

$$f=70mm N^{\circ} f=2,8 D=25mm$$

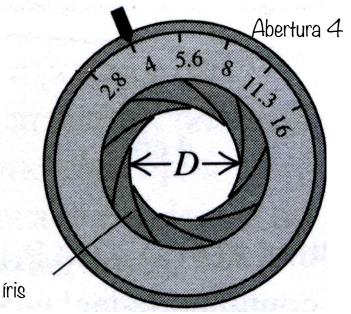

Máquina fotográfica escolha da abertura da objetiva

A intensidade de luz que atinge o filme (I) é proporcional à área efetiva da objetiva:

$$I \alpha (D)^{2}$$

$$I \alpha \frac{f}{(Num. f)^{2}}$$

A energia luminosa (E) que atinge o filme é produto da intensidade de luz (I) pelo tempo de exposição t; E= I.t



escolha da abertura da objetiva

Para aumentar a intensidade de luz de um fator 2, a abertura tem que aumentar de um fator $1/\sqrt{2}$.

Essa abertura é regulada pelo diafragma, na objetivo $\frac{\sqrt{2}}{\sqrt{2}}$ tem a forma de íris, com uma graduação, que var

f/2, f/2,8, f/4, f/5,6, f/8 e f/16

Máquina fotográfica escolha da velocidade

$$I \alpha (D)^{2}$$

$$I \alpha \frac{f}{(Num. f)^{2}}$$

Os tempos de exposição são dados em fração de segundos; 1/500, 1/250, 1/100, etc.

Ex.: quando a abertura passa de f/4 para f/5,6, o tempo de exposição tem que ser aumentado de um fator 2.

Ao reduzir a abertura de um fator 2, o tempo de exposição deve aumentar de um fator 4.

Abertura x Velocidade

Grandes aberturas (tempo de exposição curto) são úteis para fotografar objetos em movimento.

Abertura x Velocidade

Aberturas pequenas requerem longo tempo de exposição.

Essas condições são mais indicadas para fotografar objetos em repouso (paisagem).

Abertura x Velocidade

Exemplo

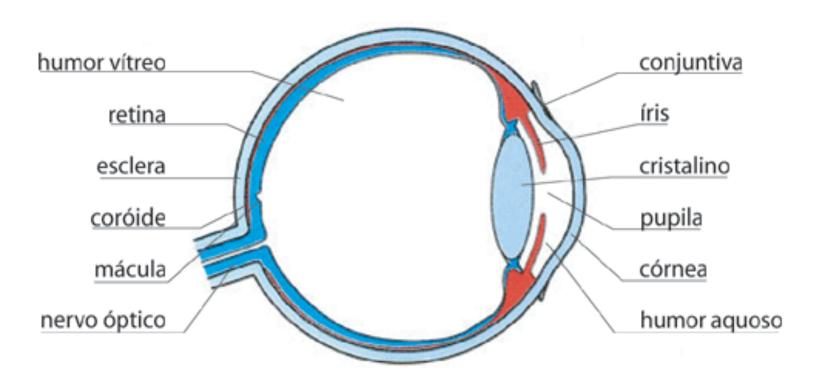
A lente de uma máquina fotográfica utilizando filmes de 35mm de largura tem uma distância focal de 55 mm e uma abertura de f/1,8. Sob certas circunstâncias de iluminação e para essa abertura, o tempo de exposição é de (1/500) s.

- a) Determine o diâmetro da objetiva
- b) Calcule o tempo de exposição correto se o número f for modificado para f/4, com as mesmas condições de iluminação

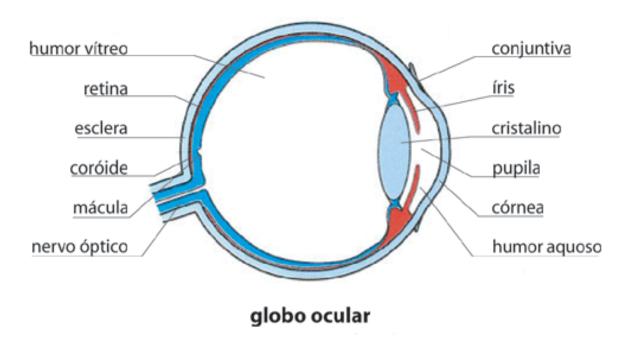
número
$$f = \frac{f}{D} \Rightarrow 1.8 = \frac{55mm}{D}$$

$$D = 30.6mm$$

A abertura diminui, então o tempo de exposição deve aumentar.

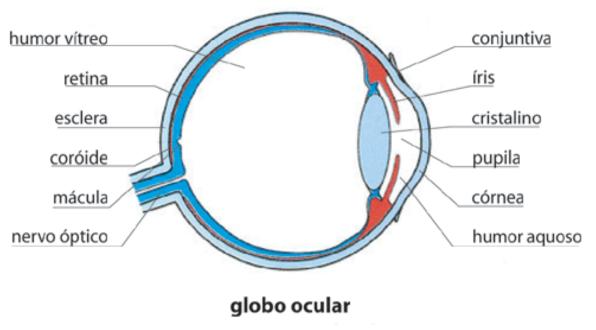

$$I \propto \frac{I}{(Num. f)^2}$$
 $E = I.t \implies I_1 t_1 = I_2 t_2$

$$\frac{t_1}{(num. f_1)^2} = \frac{t_2}{(num. f_2)^2}$$


$$\frac{t_1}{(1.8)^2} = \frac{t_2}{(4)^2} \implies t_2 = \left(\frac{4}{1.8}\right)^2 (1/500)s$$
$$t_2 \approx 5(1/500)s \approx (1/100)s.$$

A abertura diminui de um fator $\approx 2,2$ e o tempo de exposição aumenta de um fator ≈ 5 .

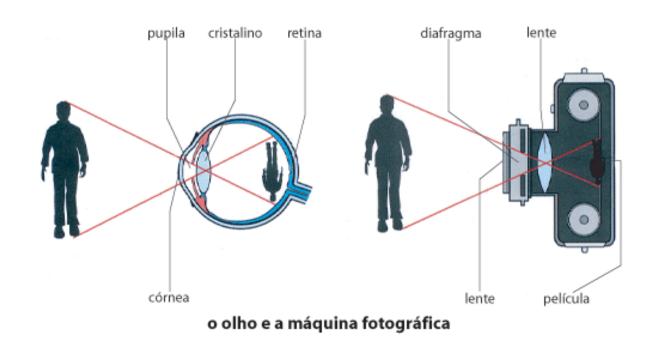
Olho



globo ocular

A forma do olho humano é quase esférica, com diâmetro aproximado de 25 mm. A parte frontal é ligeiramente mais encurvada, recoberta por uma membrana dura e transparente, a córnea.

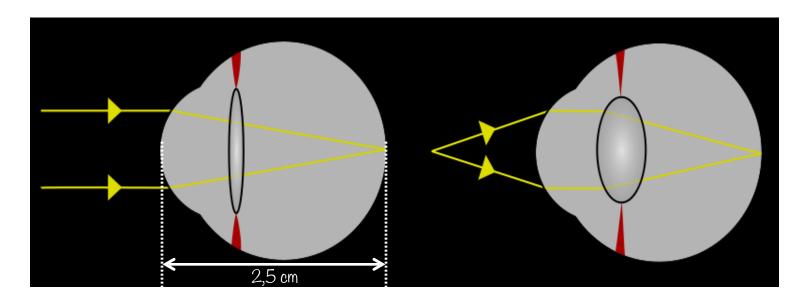
A região atrás da córnea contém um líquido, chamado de humor aquoso e a seguir vem o cristalino, uma lente em forma de cápsula com uma gelatina fibrosa dura no centro e progressivamente mais macia à medida que se aproxima da sua periferia. A íris, é um diafragma que controla a entrada de luz.



Atrás do cristalino, o olho está cheio de um líquido gelatinoso, chamado de humor vítreo.

Os índices de refração do humor vítreo, e do humor aquoso são aproximadamente iguais a 1,336, valor quase igual ao índice de refração da água.

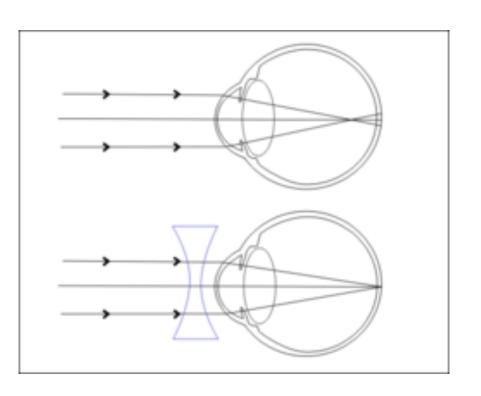
O cristalino apesar de não ser homogêneo, possui um índice de refração de 1,437. Esse valor não é muito diferente do índice de refração do humor vítreo e do humor aquoso; a maior parte da refração ocorre na superfície externa da córnea.

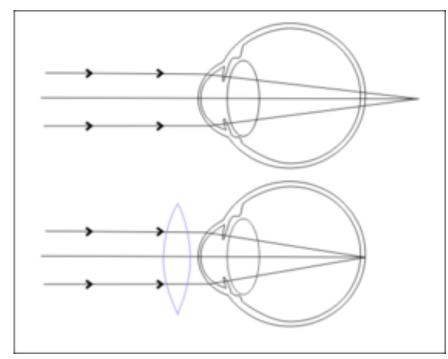

O olho e máquina fotográfica

Abertura da íris-varia de f/2 a f/8- para controlar a intensidade de luz.

Distância focal ajustável para que a imagem se forme sobre a retina

Acomodação




Distância objeto	Distância Focal
0,25m	1,59 cm
1 m	1,67 cm
3 m	1,69 cm
100 m	1,70 cm
∞	1,70 cm

Ponto Próximo - 25cm

Menor distância para a qual é possível obter uma imagem nítida na retina.

Problemas de acomodação e correção

Miopia

Hipermetropia

Problemas de acomodação e correção

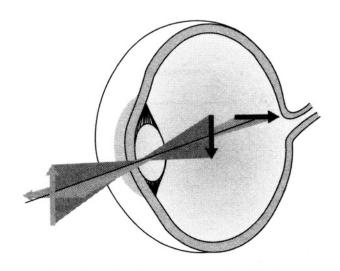


FIGURA 36.9 As imagens de linhas verticais se formam antes da retina para este olho com astigmatismo.

Astigmatismo

Córnea ou cristalino, não são esféricos (como a superfície de um câmara de pneu)

Correção: lentes cilíndricas

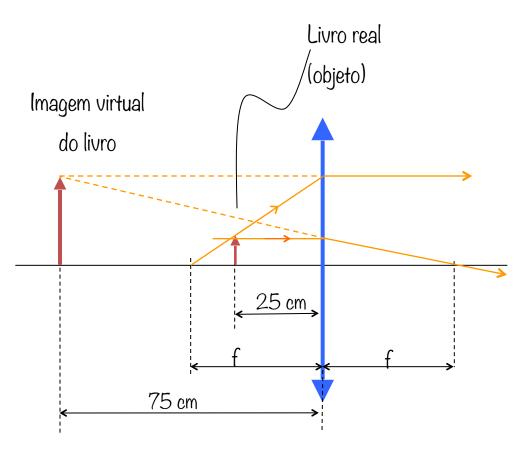
Exemplo 1

Uma pessoa com hipermetropia tem seu ponto próximo a 75 cm. Utilizando óculos de leitura, a distância do ponto próximo do sistema lente-olhos é deslocado para 25 cm. Isto é, se um objeto é colocado a 25 cm das lentes, uma imagem virtual é formada a uma distância de 75 cm na frente das lentes.

- a) Qual a potência das lentes dos óculos (potência da lente =1/f)?.
- b) Qual a ampliação lateral da imagem formada pelas lentes?

Solução

Objeto virtual a 75 cm (é o que olho vê no final)


$$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'} = \frac{1}{25cm} + \frac{1}{(-75cm)}$$

$$\frac{1}{f} = \frac{3-1}{75cm} = \frac{2}{0,75m} = \frac{1}{f} = 2,67 \text{ m}^{-1} = 2,67 \text{ diptrias}$$

$$f = 37,5cm$$

f>O, Lente convergente,

$$M = -\frac{p'}{p} = -\frac{-75cm}{25cm} = 3$$

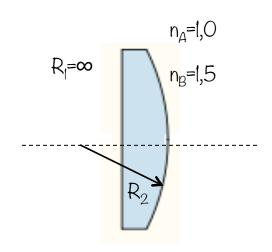
Exemplo 2

O ponto próximo de uma pessoa com hipermetropia está a 100 cm em frente ao olho. (a) Para ver com nitidez um objeto situado a uma distância de 25 cm do olho, qual é potencia da lente corretora?

(b) Se a lente corretora tiver uma face plana e for feita de um vidro com índice de refração igual 1,5, qual deve ser o raio de curvatura da superfície curva da lente?

Solução

A lente deve formar uma imagem virtual a 100 cm do olho quando o objeto for colocado a uma distância confortável, no ponto próximo, igual a 25 cm do olho.


Assim temos: p=25 cm e p'=-100 cm (virtual)

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'} = \frac{1}{25cm} + \frac{1}{(-100cm)}$$

$$\frac{1}{f} = \frac{4-1}{100cm} = \frac{3}{100cm} \Rightarrow f = 33cm$$

$$P = \frac{1}{f} = 3.3 \text{ m}^{-1} = 3.3 \text{ dioptrias}$$

f>O lente convergente!

$$\frac{1}{f} = (n-1)(\frac{1}{\infty} - \frac{1}{R_2})$$

$$3,3 = -\frac{0,5}{R_2} \Rightarrow R_2 = \frac{0,5}{3,3m}$$

$$R_2 = -0.15m$$

Exemplo 3 - miopia

Uma pessoa não pode perceber com clareza objetos além de de 50 cm.

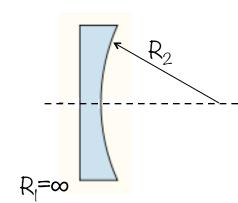
- a) Qual seria a distância focal da lente receitada para corrigir esse problema de acomodação?
- b) Qual a potência dessa lente?
- c) supondo que essa lente seja fabricada com uma face plana e de um vidro com índice de refração igual a 1,5, qual será o raio de curvatura da outra superfície

Solução

O objetivo da lente corretora é deslocar objetos do infinito até um ponto em que possam ser focalizados pelo olho; para uma distância de 50 cm do olho.

Essa será uma imagem virtual para o olho, pois ainda estará a frente da lente corretora (isto é do lado oposto aos raios emergentes).

Assim: $p=\infty$, p'=-50cm.

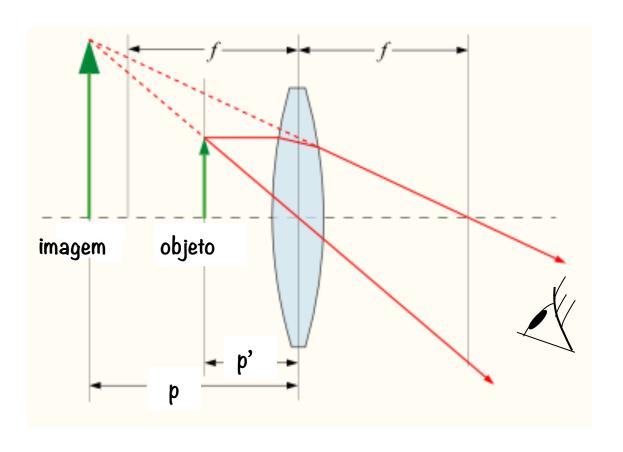

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'} \implies \frac{1}{f} = \frac{1}{\infty} - \frac{1}{50cm}$$

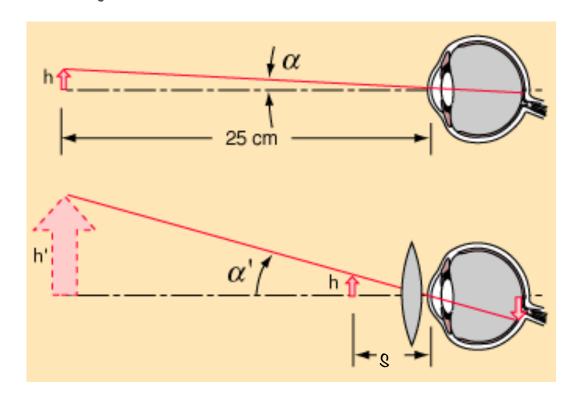
$$f = -50cm$$

Potência da Lente: P=1/f (f em metros)

$$f=0,5m$$
, $P=-2$ dioptrias

A lente corretora deve ser divergente!


$$\frac{1}{f} = (n-1)(\frac{1}{\infty} - \frac{1}{R_2})$$


$$-\frac{1}{0.5m} = -\frac{0.5}{R_2} \implies R_2 = 0.5x0.5m = 0.25m$$

$$R_2 = 25cm$$

Ponto próximo=25 cm

$$M_{\alpha}$$
= aumento angular $\longrightarrow M_{\alpha} = \frac{25cm}{f}$

Para pequenos ângulos

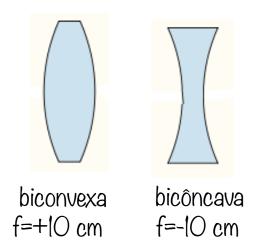
$$\alpha = \frac{h}{25}$$
 $\alpha' = \frac{h}{s}$

$$M_{\alpha} = \frac{\alpha'}{\alpha} = \frac{h/s}{h/25} = \frac{25}{s}$$

Quanto maior o valor de s', maior o aumento, e isso acontece quando s≅f.

Se o objeto é colocado aproximadamente no ponto focal da lupa s≅f

Obs.: com o valor de f em centímetros


aumento	Distância focal da lupa
2x	12,5
4x	6,25
5x	5,0
- 10x	2,5
-20x	1,25

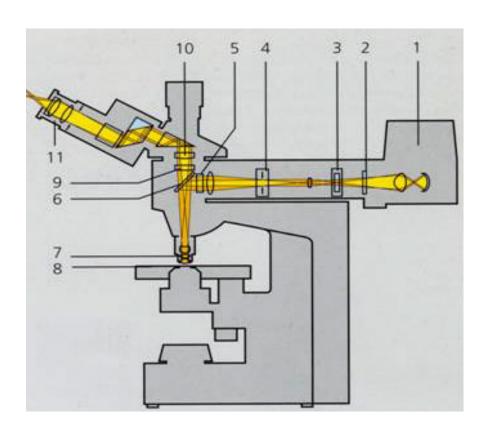
Exemplo

Você dispõe de duas lentes de plástico, uma bicôncava, e outra biconvexa, ambas com distância focal com valor absoluto igual a 10,0 cm.

(a) qual das duas lentes pode ser usada como lupa?

(b) Qual a ampliação angular?

Para atuar com uma lupa, precisamos de uma lente convergente.


Portanto, somente a lente biconvexa poderá serve para esses fim.

$$M_{\theta} = \frac{25cm}{f} = \frac{25cm}{10cm} = 2,5$$

A ampliação angular será de 2,5x.

Microscópio composto

7- objetiva

8- objeto

11- ocular

Microscópio composto

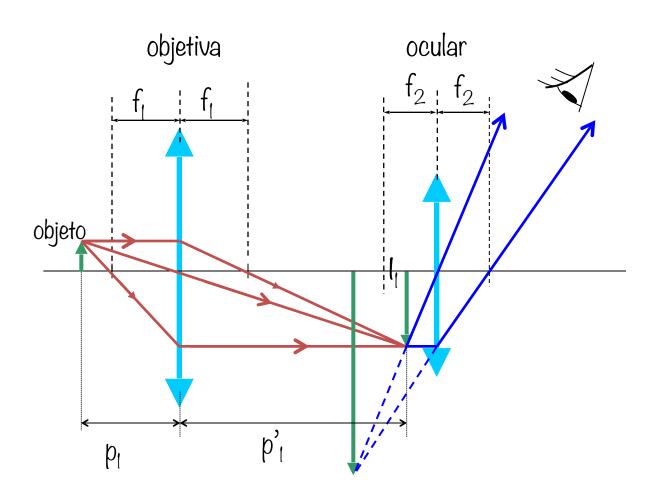
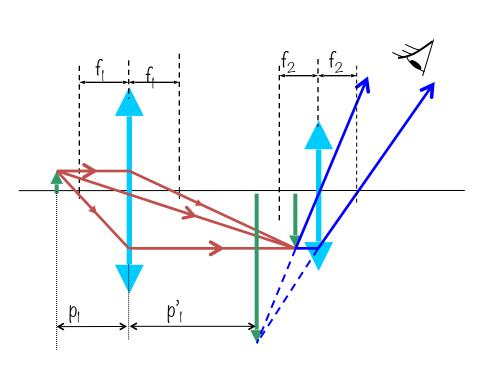



Imagem virtual, invertida

Aumento total=M

M=aumento transversal da objetiva x aumento angular da ocular \rightarrow M=m₁.M₀

$$m_1 = -\frac{p_1'}{p_1}$$
 $M_{\theta} = \frac{25cm}{f_2}$ *

Como em geral o objeto está muito próximo do foco da objetiva e p'₁ é muito maior que p₁;

$$p_1 \cong f_1 \implies m_1 = -\frac{p'_1}{f_1}$$

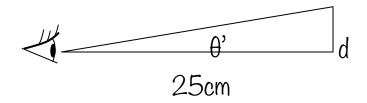
$$* M = -\frac{p'_1 \cdot (25cm)}{f_1 \cdot f_2}$$

O sinal negativo indica que a imagem é invertida.

Obs.: com os valores de p_1 , f_1 e f_2 em centímetros

Exemplo

A objetiva de um microscópio com distância focal de 5,0 mm forma uma imagem a uma distância de 16 mm. A ocular possui distância focal de 26,0 mm.


- (a) Qual a ampliação angular do microscópio?
- (b) Sabendo-se que o olho nu pode separar dois pontos na vizinhança do ponto próximo quando a distância entre os pontos for aproximadamente igual a O,1 mm, determine a a separação mínima entre dois pontos que pode ser resolvida por esse microscópio?

 f_1 e f_2 são positivos pois ambas as lentes são convergentes e p'1 é positivo porque a imagem formada pela objetiva é real.

Temos: $p'_1=16,5$ cm, $f_1=0,5$ cm e $f_2=2,6$ cm

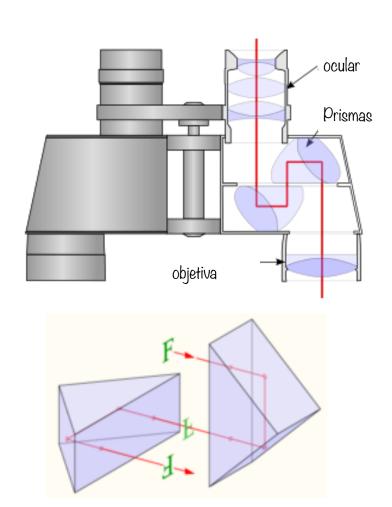
$$M = -\frac{p'_{1}.(25cm)}{f_{1}.f_{2}} \implies M = -\frac{(16,5cm).(25cm)}{(0,5cm).(2,6cm)} \approx -317$$

continua

Na imagem observada, para d=0,1 mm

$$M = -\frac{\theta'}{\theta} \implies \theta = -\frac{\theta'}{M}$$

$$\theta = -\frac{0,004}{-317} = 1,3x10^{-5} rad$$

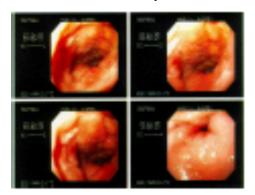

 $tg\theta' \approx \theta' = (0,1 \text{ cm})/(25 \text{ cm})(0,004 \text{ rad})$

No objeto, isso corresponderia a uma separação entre dois pontos igual a d':

$$d' = (25cm).\theta$$
 \Rightarrow $d' = (25cm).1,3x10^{-5}$
 $d' = 3,3x10^{-4}cm = 3,3 \mu m$

Utilizando esse microscópio dois pontos separados por uma distância igual a cerca de 3 µm podem ser distinguidos.

Binóculo


Binóculos de Galileu (mesmo principio da luneta de Galileu)

Microscópios acoplados a fibras óticas

endoscopia

