cunstituicas

Nomenclatura
IUPAC - adicione fluoro-
cloro-
bromo-
l0do-
Cl |
exemplos: CH3—C|:H—CIIH'CH2CH3
CH,
3-metil-3-cloro-hexano

ao nome do alcano

Br

Ll

Trans-1-bromo-3-iodociclobutano



C. structure/properties

X=F
\+—. . = ClI
C— X: +—= means §—34& - Br

) / =
Increasing
electronegativity

C
Overlapof two | | "¢ Q - I
singly occupied }' X D / X

orbitals |/
Bond lengths (A)
H [ 1.39 H 178 H | 1.93 H |2.14
Ple @ Ble o
H7 S ||H7 TS& || BT TS 07 e
H ' H o 4 =18 H .I..

Bond strengths (kcal/mol)
108 85 70 57 )




Preparation - we will see many other ways in the future!
1. Free radical halogenation-

X2
R—H e R 5 SR

A or hv

BUT
* poor selectivity 1° versus 2° versus 3°

« little control often di, tri, etc. proctucts formed

2. allylic bromination - a special case
*We need only a small amount of Br, so

@) @)
N—Br + HBr N—H + Br,
(trace) (small amts)
@) @)
N- bromosuccinimide Chapter 6 3

(NBS)



a. overall reaction

H
| /  NBS/ trace HBr |
——C——CH=C ——>» —C—CH=C + HBT
| \ hv |
Note that the product
LY " .. - eactant
‘Br—Br: —— Br- + Br: Initiation step
. )
abstract = "
= [Br: +
. First
. Propagatior
- abstract H s Ste
Fim I > HBr + > P
‘Bri +
abstract Hy, s
- H.B.I': “+
J s
Three possible propagation steps




abstract H,
——

o | p— /\’ X First propagation
Br: + B ~
% . . step

/\|

\/

abstract H,,,
—_—

v G > step

@' = EXAMPLE

Cholesterol benzoate
M CHW

‘ ~
:Br:
@ f Second propagation

hv
_._.>
Br,
or
NBS/trace HBr (70%)
CgH;COO / Br
Cyclohexene in red Brominated only in the

allylic position




Reactions of alkyl halides - substitution

1. general reaction
The general case

R—L + N o=—= R—N + L

H,C (CH5),CH
Methyl group  |sopropyl group

- CH,CH, (CH,),C
Ethyl group tert-Butyl group

N = nucleophile - electron rich - Lewis base
R-L = electrophile - electron poor - Lewis acid
L = leaving group - must form a stable species (weak base e.g. X))

o C—/X

/AN

acidic character - electron deficient 6

Lewis acid




general examples:

Alcohols

Ethers

Mercaptans

Sulfides

Sulfonium ions

Primary amines

Secondary amines

“OH
R— OH -
“OR
R—OR -
“SH
R— SH —
"SR
R—SR -
R R,S
R_" SR2 =
“NH,
R'—' NH2 —
“NHR
R—NHR —

“NR;

NR;

“CN

N,

R—NR;
+
R—NRj
R—CN
R_ N3
R—X
R—H

(L Is not always X" in these examples)

Tertiary amines

Ammonium ions

Cyanides

Azides

Halides

Acetylenes

Hydrocarbons



Nucleophile (Nu:)

(@) HO:| K™ + HCc—I: ——/—

'Y Band

, + .o
(b) CH,S: Na + HaC— N(CHz); 12 e

HsC

(c) INCE K™+ CH—Cl: ———
H,C

(d) LI EE8 + CH,CH,CHr—N, :Ci ——/— =

(e) BE + HC—1: ——/—
CIZHZCHZ—S—CHZCIIIZ + H,O —> C|3H2CH2_S_CH20T2

cl Cl HO HO

mustard gas
WW1

Leaving group (:L)

\

HO—CH; + K 3l

HiCS— CH, + IN(CHa); + Na :I:

CH,
INC—CH  + K iCif
CH,

CH,CH,CH;—F: + Li"

:Cli + B

specific examples



Reaction mechanism - there are two: First we will look at
Sy2 - substitution nucleophilc bimolecular

1. Rate law:
rate = K[R-L][N] ie dependent on both
Dado concen. of nucleophile
empirico and electrophile

2. Mechanism - one step:




Energy

onD O DL

Transition state — in the
general case it is not exactly

ACti:’a“O” at the midpoint between
energy starting material and product
forward

Activation
-------- energy
f\ reverse
\
Ng + C—ili
W / ) SO /]

Reaction progress

10
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Stereochemistry in S, 2 mechanism:

1 1

‘];’_A (Y. inversion .o / ‘e —

B = fy—C. Hil
2\\\\\ e .e \l,,,, 2

/ 3

s
1 / .o 1
\ . retention \ .o ~
C E - C I*: + ]

o7 G o wrA

3 3

Experimentally - always get inversion - backside attack

CHs CH,
Nal* + L C— —_— [r—— 4, " + Nal
H H
CH3CH,CH CH,CH,CH
SR Ingold - 1935 erErs

12

R-2-iodopentane S-2-iodopentane



Effect of nucleophile

The stronger the base - in general - the stronger the nucleophile.
Examples:

H,O: versus HO:"
CH3;0H: versus CH;0:-
H;N: versus NH,:"

Basicity factors

a. electronegativity of atom that contains the lone pair
b. inductive effects of substituents on lone pair
Cc. resonance effects - delocalization of lone pair

There Is one major exception to this factors:
The size of the orbital and polarizability

Nucleophilicity increases going from bottom to top row
In Periodic Table.

13



The siz ﬁf the orbital and

polarizability

Blucleophilicity Increases %oin1ga[)rloem

ottom to top’row In Periodic
_ﬁ.e,;..‘* orbital
back lobe
\ i
- I
Q;C—}{ —
i
p-
"hard.” small valence shell
H\
Qb —X — 3w
i

"soft." larce valence shell

(CH3CH,),S > (CH3CH,),0
(CH3)3;P > (CHg)N
->Br>Cl>F

little bonding

fransition state

more bonding T

fransition state



solvent effects on nucleophilicity
In general, nucleophiles are polar or ionic molecules
SO we need a to solvate them.
a. protic solvents, ie H,O, ROH, etc.

RO
N
A OR _
- @--H/ Hydrogen bonding decreases
R{ o nucleophilicity - particularily for
¥ small nucleophiles
"OR
b. polar, - very high bp.
I I
CH3CN CH3—S—CHj CH3—C—N(CHa),

Acetonitrile DMSO DMF



Leaving group effects:
The R-L bond should be as weak as
possible,
therefore,L should be as stable as
possible.
In other words, L should have:
a. an electron withdrawing group o

atom Acid pK, Leaving Group . Name

connected to L Good Leaving Groups

b. a polarizable atom connected to Hl -10 l lodide

c. as weakly basic as possible HBr _9 -Br Bromide
HCI -7 —Cl Chloride
HOSO,R =65 ~OSO,R Sulfonate
H,O" - 1.7 OH, Water

Bad Leaving Groups

HF + 3.2 =F Fluoride
H,S + 70 ~SH Thiolate
HCN + 9.2 “CN Cyanide
H,O +15.7 “OH Hydroxide

HOR +16-18 “OR Alkoxide




Effects in R - the alkyl group - primarily steric:
R Relative rates

CH;- 1.0
CH;CH,- 0.033

CH;CH,CH,- 0.013

(CH;),CH- 8.3 x 104

(CH,);CCH,- 2x 107
(CH;),C-  <<10~

Space-filling model m

H CH3
N\
N\ . W C—Br
H\\“C Br CH3‘ /
{ CH,

17



H,C

Nu> — }C—L —Q>  No substitution
H,C" /
CH,
£
7 »CH,
H3C‘_C/
Nu: C—DL — Very slow substitution
HY/
H
Neopentyl — L

So for any R-L compound, the relative rates of Sy 2:

CH;->1°>2°>3°



Energy

Syl - substitution nucleophilic unimolecular
1. rate law:

rate = K[R-L] not dependent upon the conc. of N:!
2. mechanism - two steps:

R
N | . _
R b =—= C + L SLOW
g S
R R
(ii) Ff
+ R
= o . C N \
Transition state Transition state for ion R + N — ~— FAST
r for ionization capture by nucleophile F\;‘ \ \/ R'' IC N
— / : R
R™ Br
R—Nu
R—Br 19
’-—

Reaction progress



ENergy — g

rate-determining
transition state <
\ Intermediate Nu,;_: _____ j— }{ '

Tl

T single
fransition
state

R—X + Nuc: ™ R—X + Nuc: ™
R—Nuc+ X~

R—Nuc + X~

Syl Si2




ionization /\ R R
(‘é‘. (slow) | | +/ deprotonation |
oo

————— B—Cm=0#y ———— B—C—DH -0

R/ “R aadtion 'L \H Br¥ or HyO:

(fast) a5 R

..

:g.r:

OCH,CH,

H3C " LL'.C
[CH3}2CH l'-?H -CH,
()

retention of configuration

ol C _— Hjc Iy +
H.C'F N 1C+—CH,CH;
(CH,).CH  CH,CH; (CH,),CH

H,C CHCH
N b !
..—'-"'_'_'-'_ > 2

R |
frovm the hottom OCH.CH

planar carbocation (achiral)

inversion of configuration




effect of nucleophiles -
to a first approximation - none

CH, CH, CH,
| .. K N | |
H,C—C—Br: — = H,C—C—CN: + H,C—C—GH
| H,0:
CH, CH, CH;
:Br: (|3H3
C+
A He” O CH,
[
H30—<|>—E3}=
CH,

\

Energy

CH;

CH,

H,C—C—CN: | and | H,c—C—OH

CH,

<— Rate-determining step ——==—Product-determining steps —=

=
Reaction progress

22



solvents - we need a very polar solvent to stabilize the
carbocation - water and alcohols are good

T
R—O—H
d— O+
N P * o
X ol ™ X
R— L —_— —» R -] -} | —
Lo 7 % XX
7 N F D Y

Leaving group effects - same as for S 2 (weak R-L, stable L")

23



Effects in the alkyl group, R - primarily determined by the
stability of the carbocation, R*.
*R* Is unstabile - therefore, endothermic step
|]ate transition state resembles R*
stabilize R*, stabilize transition state, faster reaction
» destabilize R*, destabilize transition state, slower reaction

R H

| | |
R—C—|B > R—T—-L >>> H—C|3—L > H—C|3—L
H

H H

Tertiary Secondary Primary Methyl

Steric argument: R-L = sp® but R* sp? hybridized

Recall
24



H—

A special case - allylic substitution:

CH,;==CH~CH~=OCH;

CH3OH CHs
CH,~—CH-CH™Br —— + + HBr

Chs CHy0—CHjz~CH=CH—CH,j

mechanism - consistent with carbocation intermediate:

AR VH

+
15 & + @)
CHZ_CH_CI:H_BI’ R CH2=CH_CH_CH3 CH3/. .\H

CH, -Br I

allyl carbocation: CH,—CH=CH—CH, PReEDs I

H
|
C CHs, CHs

/\J\C/ - H\C/K/\C/ \/

C
| ] I |
H H

O—T

I

(l:'+\| 2;



Rearrangements from a carbocation -
Primarily a 1,2-H shift to form a more stable carbocation.

<|3' NaCN CN
CH3 CHCHj > CH—CH,CHj
DMF
\
CN

|
QCH;CHCHg

26



Cl?' NaCN CN
CHyCHCH; — CH—CH,CHj
DMF

mechanism: >‘<

CN

|
Cl QCH;CHCH3

| I/\* + CL

CH3 CHCHj, | —CHCH,4
H reg. 2°
carbocation
1,2 -H shift
CN + I
e C—CHCH
CH CH2CH3 'CN |1| 3
I I
CIZ—CHCH3 T CIZ—CHCHs

benzyl carbocation -

stabilized by
resonance Chapter 6 27



Difference between S 1 and S;2 - PRIMARILY
the structure of R

< Efficiency of the Sy 1 reaction No Sy 1 No Sy 1

CH, CH, CH, -

H,c—C— L  H,c—C—IL H—C— L H—C—IL

CH, H H H
Tertiary Secondary Primary Methyl
No Sy2 Efficiency of the Sy2 reaction >

*solvent polarity
strength of R-L bond

28



H. Elimination reactions - general reaction scheme:

H L
_(l?_(l‘,— t B — \ — / +L+HB
] [\
acid base L = leaving group

B = base

There are actually three mechanisms for this reaction
Chapter 6 29



l. E1 - elimination unimolecular - proceeds just like S\ 1-

first step forms carbocation - -
1. mechanism:

rate determining fast step

slow step

The general case

CH,

|
H,C—C i

CH,

H
chj “INU CH,
k M
—_— —_—
7\ P SRS Favored by a highly
H;C CH; H3C CHs  pasic nucleophile
H3(|3 c|:H3
N\ Si1 -
— ct "N —— H,C—C—Nu
i P \CH ..... | Favored by a highly
J 2 CH nucleophilic nucleophile
3

30
Note: potential competition with S,1 reaction




In GENERAL E1 is favored by a strong base, e.g.

Some specific examples

.. %E 1 %Sy 1
CH,CH,OH
LY 20 80
CH, (|TH2 CHs
H,C— C—Br: C H,C— C—OCH,CH,
.o / \ .
H,C~  CH,
CH, % CH;,
CH,CH,OH
N 93 7

CH,CH,0: Na*

Chapter 6 31



2. Orientation: the most substituted(most stable) olefin is formed

The general case

/ More substituted
— (major product)

P Less substituted
(minor product)

A specific example

HsC
6 Hydrogens | | 2 Hydrogens ot \C —CH
= / A\
H,C  :Br H,C WP i
2 CH4CH,OH "Ny (32%)
\ £ "4 N\ H,C
H,C CH, s CH; - \
__»_ C S CH2
YA
H,C CH;
| | | (8%)




J. E2 - elimination bimolecular - one step just like S\ 2
1. mechanism:

E2 i
C—C/ - Nu—H + C=C + L

Chapter 6 33



Strong bases are needed for E2 - but there is competition

with

\CH/

:l§3.r:

CH,

+ -_—-

Bu,N :Cl:
A
acetone
— —
Na :0CH,CH,
-
HOCH,CH,

Chapter 6

H,C CH,
X CH/
:Cl:
Sn2 Product
H,C H.C
3 3 \CH /CH3
/C=CH2 ¥ I
= :OCH,CHj
E2 Product S\ 2 Product
(75%) (25%)

34



2. Stereochemistry - (there is none for E1- forms
an achiral carbocation) - but for E2 -
anti-peri-planar stereochemistry

- = > .n X L
D W D\
G B ~e—c.
7 X7 N |7 ©
H - 8 HL
L
! L
180° 120° 60° 0°
\ J
-

Dihedral angle between C—H and C-L




2. Stereochemistry - (there is none for E1- forms

an achiral carbocation) - but for E2 -
anti-peri-planar stereochemistry

(@)

Dihedral
angle = 180°

H\
G-
\ o /

120° gauche

Chapter 6

Dihedral
H | angle = 60°

L

-
-~

R

Dihedral

H |angle = 120°
I

I

jé\V

\
\
\l

—




Nu:
P

)

L

'NU?-’\

H

ll',

B
S

The 180° E2 reaction:
the electrons in the C—H bond displace

The disfavored

The favored backside
displacement in the
Sy2 reaction the leaving group from the rear
=—C /~ 0
"3 H L
L s
Nu: —
| Nu:
The 0° E2 mimics the frontside Sy2 reaction:

the electrons in the C—H bond displace
the leaving group from the front

frontside Sy2
displacement




Tosylate, an excellent
leaving group (see Fig. 6.48)

CH; CHj

T

I—0




3. Orientation - mainly follows the Saytzeff rule (most
substituted olefin) - HOWEVER - there is another pattern!
The Hofmann orientation - the least substituted

olefin is formed:

Hofmann rule

Saytzeff rule

:é.r:

PN

Na  :OR

HOCH,

+ — e

Na :OR

HOCH;

P W o T LW

(cis and trans isomers)

o W

(cis and trans isomers)
Minor
(2%)

P T

Major
(98%)
Hofmann

g W o
(cis and trans isomers)
Major
(69%)

g AR

Minor

Saytzeff (31%)

The difference Iin orientation here is related to the nature of the

leaving group, L...




The orientational preference for the Hofmann rule

IS derived from a change in the nature of the E2
mechanism. Let us first look at the third mechanism -
E1cB - elimination unimolecular carbon base:

g i
| P .
Elreacton  C—C R \"\ + S Nl —n
[ \D) B CR s
L /
+
C=C
N, .
H ) N —H
E 1cB reaction ? C/ : W
- S — R = ..’\ :/ —_— L:
/ \ 2 cC—C

L ﬂ
fast step rate determining slow
Chapter 6 step 40



nereis a spectrum of reaction mecnanisms!
The transition states look like:

5 H ;
\ ; \\ | f . C :_;;+C'/
7‘:;0/ "
\ F = \
8 Ce==C”
Wi , L
i 3 5"‘_
. E1cB-Like Central E1-Like .
G SEeTe wee o3 |
pure pure
HofmannE1chb -q Saytzeft

-F or -N(NMe),




NOW REMEMBER - that the stability of carbanions is:

)
L

Tertiary

| |
AL = 28
R H H
Secondary Primary

H

|
cS

PSS
H

Methyl

Carbanion stability

b

Chapter 6

42



NOW REMEMBER - that the stability of carbanions is:

In this transition state, there is
a partial negative charge on a

primary carbon
I i3

~N
N

=7}

o

/
| SRS
o

This transition state, which
leads to the more substituted
alkene, has a partial negative
charge on a secondary carbon

Hofmann

Saytzeff
e ——

\/\/\

cis/trans Isomers




https://www.youtube.com/wat

Syl ch?v=JmcVgE2WKBE

https://www.youtube.com/watch
S. .2 ?v=h5xvaP6blZ|&feature=youtu.
N be&t=66

Universidade de Surrey

https://www.youtube.com/watch
?v=TnY1S5IldVql

https://www.youtube.com/watch
ISomeria 7y=RrBigAz70 JY

44



e Overall Summary

SN2

Mainly SN2

Except with a
hindered
strong base
and then E2

Mainly SN2
wiht weak base

(ICN',RCO>5 )

Mainly E2 with
strong bases

No SN2

In solvolysis
gives SN1/E1

Low T SN1

With strong
bases E2
dominates
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