Aldehydes and Ketones. Nucleophilic Addition to the Carbonyl Group

Nomenclature

IUPAC Nomenclature of Aldehydes

Base the name on the chain that contains the carbonyl group and replace the *-e* ending of the hydrocarbon by *-al*.

IUPAC Nomenclature of Aldehydes

4,4-dimethylpentanal

2-phenylpropanedial (keep the -e ending before -dial)

IUPAC Nomenclature of Aldehydes

when named as a substituent

when named as a suffix

formyl group

carbaldehyde or carboxaldehyde

Substitutive IUPAC Nomenclature of Ketones

Base the name on the chain that contains the carbonyl group and replace *-e* by *-one*. Number the chain in the direction that gives the lowest number to the carbonyl carbon.

Substitutive IUPAC Nomenclature of Ketones

3-hexanone

O || CH₃CHCH₂CCH₃ | CH₃

4-methyl-2-pentanone

4-methylcyclohexanone

Functional Class IUPAC Nomenclature of Ketones

$$CH_{3}CH_{2}CCH_{2}CH_{2}CH_{2}CH_{3}$$

$$\begin{array}{c}
O\\
\parallel\\
H_2C = CHCCH = CH_2
\end{array}$$

List the groups attached to the carbonyl separately in alphabetical order, and add the word *ketone*. Functional Class IUPAC Nomenclature of Ketones

$$CH_{3}CH_{2}CCH_{2}CH_{2}CH_{2}CH_{3}$$

ethyl propyl ketone

benzyl ethyl ketone

divinyl ketone

Structure and Bonding: The Carbonyl Group

Structure of Formaldehyde

planar bond angles: close to 120° C=O bond distance: 122 pm

The Carbonyl Group

very polar double bond

1-butene

propanal

dipole moment = 0.3D

dipole moment = 2.5D

Carbonyl group of a ketone is more stable than that of an aldehyde

heat of combustion 2475 kJ/mol

2442 kJ/mol

Alkyl groups stabilize carbonyl groups the same way they stabilize carbon-carbon double bonds, carbocations, and free radicals. Spread is greater for aldehydes and ketones than for alkenes

> O H 2475 kJ/mol

2442 kJ/mol

Heats of combustion of C₄H₈ isomeric alkenes

CH₃CH₂CH=CH₂ 2717 kJ/mol

cis-CH₃CH=CHCH₃ 2710 kJ/mol

trans-CH₃CH=CHCH₃ 2707 kJ/mol

> (CH₃)₂C=CH₂ 2700 kJ/mol

Resonance Description of Carbonyl Group

nucleophiles attack carbon; electrophiles attack oxygen

Bonding in Formaldehyde

Carbon and oxygen are *sp*² hybridized

Bonding in Formaldehyde

The half-filled p orbitals on carbon and oxygen overlap to form a π bond

17.3 Physical Properties Aldehydes and ketones have higher boiling than alkenes, but lower boiling points than alcohols.

boiling point

97°C

More polar than alkenes, but cannot form intermolecular hydrogen bonds to other carbonyl groups

Sources of Aldehydes and Ketones

Many aldehydes and ketones occur naturally

2-heptanone (component of alarm pheromone of bees)

Many aldehydes and ketones occur naturally

trans-2-hexenal (alarm pheromone of myrmicine ant)

Many aldehydes and ketones occur naturally

citral (from lemon grass oil)

Synthesis of Aldehydes and Ketones

A number of reactions already studied provide efficient synthetic routes to aldehydes and ketones.

from alkenes ozonolysis from alkynes hydration (via enol) from arenes **Friedel-Crafts** acylation from alcohols oxidation

aldehydes from carboxylic acids

Oxidação de Alcoois em aldeídos e cetonas. o dicromato de piridínio (também conhecido como Reagente de Cornforth e citado em algumas literaturas como Piridínio Dicromato - PDC) é um reagente que é muito usado devido a sua eficiência na oxidação seletiva de álcoois em

aldeídos e cetonon

benzaldehyde from benzoic acid

3-heptanone from propanal

Principles of Nucleophilic Addition to Carbonyl Groups: Hydration of Aldehydes and Ketones

	Equilibrium Constants and Relative Rates of Hydration				
C=O		hydrate	K	%	Relative rate
CH ₂ =	0	CH ₂ (OH) ₂	2300	>99.9	2200
CH ₃ CH=O		CH ₃ CH(OH) ₂	1.0	50	1.0
(CH ₃)	₃CCH=O	(CH ₃) ₃ CCH(OH) ₂	0.2	17	0.09
(CH ₃)	₂ C=O	$(CH_3)_2C(OH)_2$	0.0014	0.14	0.0018

When does equilibrium favor hydrate?

when carbonyl group is destabilized
•alkyl groups stabilize C=O
•electron-withdrawing groups destabilize C=O

Mechanism of Hydration (base-catalyzed)

Step 1:

Mechanism of Hydration (base)

Mechanism of Hydration (acid-catalyzed)

Mechanism of Hydration (acid-catalyzed)

Mechanism of Hydration (acid-catalyzed) Step 3: $\bullet \bullet$ Η _ $\bullet \bullet$ Н + •• Н . ($\bullet \bullet$ •• •• • $\bullet \bullet$

Cyanohydrin Formation

Cyanohydrin Formation

Cyanohydrin Formation

2,4-Dichlorobenzaldehyde cyanohydrin (100%)

Acetone cyanohydrin is used in the synthesis of methacrylonitrile (see problem 17.7).

Acetal Formation

Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage

Acetal formation Imine formation Enamine formation Compounds related to imines The Wittig reaction

Recall Hydration of Aldehydes and Ketones

Alcohols Under Analogous Reaction with Aldehydes and Ketones

Hemiacetal reacts further in acid to yield an acetal

Benzaldehyde diethyl acetal (66%)

Diols Form Cyclic Acetals

In general:

Position of equilibrium is usually unfavorable for acetal formation from ketones.

Important exception: Cyclic acetals can be prepared from ketones.

Example

 H_2O

benzene *p*-toluenesulfonic acid

Mechanism of Acetal Formation

First stage is analogous to hydration and leads to hemiacetal acid-catalyzed nucleophilic addition of alcohol to C=O

Mechanism

C = 0: H - 0: + R

Mechanism

C=**O**⁺ :0: Н

Η

R

R : O: C = O + H

Mechanism of Acetal Formation

Second stage is hemiacetal-to-acetal conversion

involves carbocation chemistry

:0 H

Carbocation is stabilized by delocalization of unshared electron pair of oxygen

reverse of acetal formation; hemiacetal is intermediate

application:

aldehydes and ketones can be "protected" as acetals.

Acetals as Protecting Groups
Example

The conversion shown cannot be carried out directly... \mathbf{O} $CH_3CCH_2CH_2C \equiv CH$ 1. NaNH₂ 2. CH₃I \mathbf{O} $CH_3CCH_2CH_2C \equiv CCH_3$

because the carbonyl group and the carbanion are incompatible functional groups.

Strategy

protect C=O
alkylate
restore C=O

Example: Protect

$\bigcup_{i=1}^{O} O_{i} O_{i$

benzene *p*-toluenesulfonic acid

Reaction with Primary Amines: Imines

Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage

Acetal formation Imine formation Compounds related to imines Enamines The Wittig reaction

Imine (Schiff's Base) Formation

Example

N-Benzylidenemethylamine (70%)

N-Benzylidenemethylamine (70%)

Example

$\langle \rangle = 0 + (CH_3)_2 CHCH_2 NH_2$

$= NCH_2CH(CH_3)_2 + H_2O$

N-Cyclohexylideneisobutylamine (79%)

N-Cyclohexylideneisobutylamine (79%)

Reaction with Derivatives of Ammonia

(81-93%)

Reaction with Derivatives of Ammonia

etc.

(73%)

Example

a phenylhydrazone (87-91%)

Example

Reaction with Secondary Amines: Enamines

The Wittig Reaction

Synthetic method for preparing alkenes. One of the reactants is an aldehyde or ketone. The other reactant is a phosphorus ylide.

A key property of ylides is that they have a negatively polarized carbon and are nucleophilic.

Figure 17.12 Charge distribution in a ylide

The Wittig Reaction

dimethyl sulfoxide (DMSO) or tetrahydrofuran (THF) is the customary solvent

Planning an Alkene Synthesis via the Wittig Reaction

Retrosynthetic Analysis

There will be two possible Wittig routes to an alkene.

Analyze the structure retrosynthetically.

Disconnect the doubly bonded carbons. One will come from the aldehyde or ketone, the other from the ylide.

Preparation of Ylides

Ylides are prepared from alkyl halides by a two-stage process.

The first step is a nucleophilic substitution. Triphenylphosphine is the nucleophile.

Preparation of Ylides

In the second step, the phosphonium salt is treated with a strong base in order to remove a proton from the carbon bonded to phosphorus.

Preparation of Ylides

Typical strong bases include organolithium reagents (RLi), and the conjugate base of dimethyl sulfoxide as its sodium salt $[NaCH_2S(O)CH_3]$.

Stereoselective Addition to

Carbonyl Groups

Nucleophilic addition to carbonyl groups sometimes leads to a mixture of stereoisomeric products.

Steric Hindrance to Approach of Reagent

Hat

this methyl group hinders approach of nucleophile from top

preferred direction of approach is to less hindered (bottom) face of carbonyl group Biological reductions are highly stereoselective

pyruvic acid \rightarrow S-(+)-lactic acid

enzyme is lactate dehydrogenase

One face of the substrate can bind to the enzyme better than the other.

Change in geometry from trigonal to tetrahedral is stereoselective. **Bond formation** occurs preferentially from one side rather than the other.

Oxidation of Aldehydes

in aqueous solution

17.16

Baeyer-Villiger Oxidation

of Ketones

Oxidation of ketones with peroxy acids gives esters by a novel rearrangement.

Oxygen insertion occurs between carbonyl carbon and larger group. Methyl ketones give acetate esters.

Reaction is stereospecific. Oxygen insertion occurs with retention of configuration.

First step is nucleophilic addition of peroxy acid to the carbonyl group of the ketone.

R-C-R' | 0-OCR" || 0

Н

$\begin{array}{ccccccccc} O & O & O & O \\ \parallel & \parallel & \parallel & \parallel \\ RCR' + R"COOH & \longrightarrow & ROCR' + R"COH \end{array}$

Second step is migration of group R from carbon to oxygen. The weak O--O bond breaks in this step.

Certain bacteria use hydrocarbons as a source of carbon. Oxidation proceeds via ketones, which then undergo oxidation of the Baeyer-Villiger type.

Base-Catalyzed Enolization: Enolate Anions and the Aldol Reaction

18.6 Base-Catalyzed Enolization: Enolate Anions

Orbitial Picture of Base-catalyzed Enolization

The more stable this ion, the more favorable this process becomes

What stablizes enolate ions?

Acidity of Typical Aldehydes and Ketones

β -Diketones are much more acidic

The enolates of β -diketones are stabilized; negative charge is shared by both oxygens

The Aldol Condensation

A basic solution contains comparable amounts of the aldehyde and its enolate.

Aldehydes undergo nucleophilic addition.

Enolate ions are nucleophiles.

What about nucleophilic addition of enolate to aldehyde?

(β–Hydroxy Carbonyl Compound)

Aldol Product

(β–Hydroxy Carbonyl Compound)

This product is called an "aldol" because it is both an aldehyde and an alcohol

Aldol Addition of Acetaldehyde

Aldol Addition of n-Butanal

Aldol Condensation

Aldol Condensation of Butanal

dehydration of β -hydroxy aldehyde can be catalyzed by either acids or bases

in base, the enolate is formed

the enolate loses hydroxide to form the α , β -unsaturated aldehyde

Aldol reactions of ketones

Formation of Aldol Product from Acetone is not thermodynamically favorable: *cf.* hydration of acetone [4-hydroxy-4methylpentan-2-one]

the equilibrium constant for aldol addition reactions of ketones is usually unfavorable

Intramolecular Aldol Condensation

