Sections 6.6 and 6.11

PI SYSTEMS

MOLECULAR ORBITAL DIAGRAMS

$PI(\pi)$ MOLECULAR ORBITAL SYSTEMS

TWO 2p ORBITALS - ETHYLENE

molecular orbitals.

ORBITAL ENERGY AND NODES

RELATIONSHIP BETWEEN NODES AND ENERGY

PI MOLECULAR ORBITAL SYSTEMS

THREE 2p ORBITALS - ALLYL ANION

Systems that have resonance form:

pi molecular orbital systems.

The interacting π bonds and unshared pairs rehybridize to form new system of orbitals.

FORMATION OF A PI MOLECULAR ORBITAL SYSTEM

Three atomic p orbitals combine to make a pi system of three molecular orbitals.

GENERAL PRINCIPLE

When the number of p orbitals forming a resonance system = n

..... they will "hybridize"

to form the same number (n) of pi molecular orbitals.

four 2p..... give four molecular orbitals (p+p+p+p \longrightarrow π_1 + π_2 + π_3 + π_4)

n 2p..... gives n molecular orbitals

BONDING IN A MOLECULE WITH A CONJUGATED PI SYSTEM

ALLYL ANION

$$CH_2 = CH - CH_2$$
 $- CH_2 - CH = CH_2$

PI MOLECULAR ORBITAL SYSTEMS

THREE 2p ORBITALS - ALLYL CATION

FORMATION OF A PI MOLECULAR ORBITAL SYSTEM

ALLYL CATION

$$CH_2 = CH + CH_2 + CH_2 - CH = CH_2$$

PI MOLECULAR ORBITAL SYSTEMS

FOUR 2p ORBITALS - BUTADIENE

FORMATION OF A PI MOLECULAR ORBITAL SYSTEM

BUTADIENE

CYCLIC RESONANCE SYSTEMS

CYCLIC PI MOLECULAR ORBITAL SYSTEMS HAVE DEGENERATE ORBITALS

DEGENERATE ORBITALS

In cyclic systems, or other systems with high symmetry, there will be <u>degenerate</u> molecular orbitals.

degenerate = same energy

For instance, the set of 2p orbitals in an atom is degenerate

2px 2py 2pz

and they fill singly before pairing electrons (Hund Rule)

BENZENE PI MOLECULAR ORBITALS

HÜCKEL PREDICTOR

HÜCKEL PREDICTOR

for cyclic conjugated systems

Inscribe the polygon which represents the cyclic system point down in a circle.

Places where the vertices of the polygon touch the circle define the pattern of energy levels (red lines).

CYCLOPENTADIENYL ANION

CYCLOPENTADIENYL ANION

