
MATLAB practice
IPCV 2006, Budapest

Szabolcs Sergyán, László Csink

sergyan.szabolcs@nik.bmf.hu, csink.laszlo@nik.bmf.hu

Budapest Tech

MATLAB – p. 1/333



Contents

1. Fundamentals

2. MATLAB Graphics

3. Intensity Transformations and Spatial Filtering

4. Frequency Domain Processing

5. Edge Detection

6. Morphological Image Processing

7. Color Image Processing

MATLAB – p. 2/333



Chapter 1

Fundamentals

MATLAB – p. 3/333



Content

• Digital Image Representation
• Reading Images
• Displaying Images
• Writing Images
• Data Classes
• Image Types
• Converting between Data Classes and Image Types
• Array Indexing
• Some Important Standard Arrays
• Introduction to M-Function Programming

MATLAB – p. 4/333



Digital Image Representation

An image may be defined as a two-dimensional function,

f(x, y),

where x and y are spatial coordinates, and
f is the intensity of the image at (x, y) point.

When x, y, and the amplitude values of f are all finite,
discrete quantities, we call the image a digital image.

MATLAB – p. 5/333



Coordinate Conventions

in many image processing
books

in the Image Processing
Toolbox

MATLAB – p. 6/333



Images as Matrices

A digital image can be represented as a MATLAB matrix:

f =













f(1, 1) f(1, 2) · · · f(1,N)

f(2, 1) f(2, 2) · · · f(2,N)
...

...
. . .

...
f(M, 1) f(M, 2) · · · f(M,N)













MATLAB – p. 7/333



Reading Images

imread(’filename’)

Some examples:
• f=imread(’chestxray.jpg’);

• f=imread(’D:\myimages\chestxray.jpg’);

• f=imread(’.\myimages\chestxray.jpg’);

MATLAB – p. 8/333



Supported Image Formats

Format Description Recognized
Name Extensions

TIFF Tagged Image File Format .tif , .tiff

JPEG Joint Photographic
Experts Group

.jpg , .jpeg

GIF Graphics Interchange Format .gif

BMP Windows Bitmap .bmp

PNG Portable Network Graphics .png

XWD X Window Dump .xwd

MATLAB – p. 9/333



size function

size(imagematrix)

>> size(f)

ans =

494 600

>> [M,N]=size(f);

>> whos f

Name Size Bytes Class

f 494x600 296400 uint8 array

Grand total is 296400 elements using 296400 bytes

MATLAB – p. 10/333



Displaying Images

imshow(f,G)

• imshow(f, [low,high]) displays as black all
values less than or equal to low , and as white all
values greater than or equal to high .

• imshow(f, []) sets variable low to the minimum
value of array f and high to its maximum value.

MATLAB – p. 11/333



Displaying Images

An image with low dinamic range using by imshow(f) ,
and the result of scaling by using imshow(f, []) .

MATLAB – p. 12/333



Displaying Images

>> f=imread(’rose_512.tif’);
>> imshow(f)

MATLAB – p. 13/333



Displaying Images

>> f=imread(’rose_512.tif’);
>> g=imread(’cktboard.tif’);
>> imshow(f), figure, imshow(g)

MATLAB – p. 14/333



Writing Images

imwrite(f, ’filename’)

• imwrite(f, ’patient10_run1’, ’tif’)

• imwrite(f, ’patient10_run1.tif’)

imwrite(f, ’filename.jpg’, ’quality’, q)

The lower the number q the higher the degradation due to
JPEG compression.

MATLAB – p. 15/333



Writing Images

q = 100 q = 50 q = 25

q = 15 q = 5 q = 0

MATLAB – p. 16/333



Writing Images

imfinfo filename

>> imfinfo bubbles25.jpg

ans =

Filename: ’bubbles25.jpg’

FileModDate: ’02-Feb-2005 09:34:50’

FileSize: 13354

Format: ’jpg’

FormatVersion: ’’

Width: 720

Height: 688

BitDepth: 8

ColorType: ’grayscale’

FormatSignature: ’’

NumberOfSamples: 1

CodingMethod: ’Huffman’

CodingProcess: ’Sequential’

Comment: {}

MATLAB – p. 17/333



Writing Images

>> K=imfinfo(’bubbles25.jpg’);

>> image_bytes=K.Width * K.Height * K.BitDepth/8;

>> compressed_bytes=K.FileSize;

>> compression_ratio=image_bytes/compressed_bytes

compression_ratio =

37.0945

MATLAB – p. 18/333



Writing Images

imwrite(g, ’filename.tif’, ...
’compression’, ’parameter’, ...
’resolution’, [colres rowres])

’parameter’ : ’none’ no compression
’packbits’ packbits compression
’ccitt’ ccitt compression

[colres rowres] contains two integers that give the
column and row resolution in dots-per-unit (the default
values are [72 72]).

MATLAB – p. 19/333



Writing Images

>> f=imread(’cktboard.tif’);
>> res=round(200 * 2.25/1.5);
>> imwrite(f, ’sf.tif’, ’compression’, ...

’none’, ’resolution’, res)

MATLAB – p. 20/333



Writing Images

print -f no -d fileformat -r resno filename

no figure number in figure window
fileformat file format (in the earlier table)
resno resolution in dpi

MATLAB – p. 21/333



Data Classes
Name Description

double Double-precision, floating-point numbers in the approximate range
−10308 to 10308 (8 bytes per element).

uint8 Unsigned 8-bit integers in the range [0,255] (1 byte per element).

uint16 Unsigned 16-bit integers in the range [0,65535] (2 bytes per element).

uint32 Unsigned 32-bit integers in the range [0,4294967295] (4 bytes per ele-
ment).

int8 Signed 8-bit integers in the range [-128,127] (1 byte per element).

int16 Signed 16-bit integers in the range [-32768,32767] (2 bytes per element).

int32 Signed 32-bit integers in the range [-2147483648,2147483647] (4 bytes
per element).

single Single-precision floating-point numbers with values in the approximate
range −1038 to 1038 (4 bytes per element).

char Characters (2 bytes per element).

logical Values are 0 or 1 (1 byte per element).

MATLAB – p. 22/333



Image Types

• Intensity images
• Binary images
• Indexed images
• RGB images

MATLAB – p. 23/333



Intensity Images

An intensity image is a data matrix whose values have
been scaled to represent intensities. When the elements of
an intensity image are of class uint8 , or class uint16 ,
they have integer values in the range [0,255] and
[0,65535], respectively. If the image is of class double , the
values are floating-point numbers. Values of scaled, class
double intensity images are in the range [0,1] by
convention.

MATLAB – p. 24/333



Binary Images

A binary image is a logical array of 0s and 1s.

A numaric array is converted to binary using function
logical .

B=logical(A)

To test if an array is logical we use the islogical
function:

islogical(C)

If C is a logical array, this function returns a 1. Otherwise it
returns a 0.

MATLAB – p. 25/333



Converting between Data Classes

B=data_class_name(A)

If C is an array of class double in which all values are in
the range [0,255], it can be converted to an uint8 array
with the command D=uint8(C) .

If an array of class double has any values outside the
range [0,255] and it is converted to class uint8 , MATLAB
converts to 0 all values that are less than 0, and converts
to 255 all values that are greater than 255.

MATLAB – p. 26/333



Converting between Image Classes and Types

Name Converts Input to: Valid Input Image

Data Classes

im2uint8 uint8 logical , uint8 ,
uint16 , and double

im2uint16 uint16 logical , uint8 ,
unit16 , and double

mat2gray double (in range [0,1]) double

im2double double logical , uint8 ,
uint16 , and double

im2bw logical uint8 , uint16 , and
double

MATLAB – p. 27/333



Converting between Image Classes and Types

>> f=[-0.5 0.5;0.75 1.5]

f =

-0.5000 0.5000
0.7500 1.5000

>> g=im2uint8(f)

g =

0 128
191 255

MATLAB – p. 28/333



Converting between Image Classes and Types

>> A=randn(252);
>> B=mat2gray(A);
>> subplot(1,3,1), imshow(A), ...

subplot(1,3,2), imshow(A, []), ...
subplot(1,3,3), imshow(B)

MATLAB – p. 29/333



Converting between Image Classes and Types

>> h=uint8([25 50; 128 200]);
>> g=im2double(h)

g =

0.0980 0.1961
0.5020 0.7843

MATLAB – p. 30/333



Converting between Image Classes and Types

>> f=[1 2; 3 4];
>> g=mat2gray(f)

g =

0 0.3333
0.6667 1.0000

>> gb=im2bw(g, 0.6)

gb =

0 0
1 1

MATLAB – p. 31/333



Converting between Image Classes and Types

>> gb=f>2

gb =

0 0
1 1

>> gbv=islogical(gb)

gbv =

1

MATLAB – p. 32/333



Array Indexing

• Vector Indexing
• Matrix Indexing
• Selecting Array Dimensions

MATLAB – p. 33/333



Vector Indexing
>> v=[1 3 5 7 9]

v =

1 3 5 7 9

>> v(2)

ans =

3

>> w=v.’

w =

1

3

5

7

9

MATLAB – p. 34/333



Vector Indexing
>> v(1:3)

ans =
1 3 5

>> v(2:4)

ans =
3 5 7

>> v(3:end)

ans =
5 7 9

MATLAB – p. 35/333



Vector Indexing
>> v(:)

ans =

1

3

5

7

9

>> v(1:2:end)

ans =

1 5 9

>> v(end:-2:1)

ans =

9 5 1

MATLAB – p. 36/333



Vector Indexing

linspace(a, b, n)

>> x=linspace(1,5,3)

x =

1 3 5

>> v(x)

ans =

1 5 9

>> v([1 4 5])

ans =

1 7 9

MATLAB – p. 37/333



Matrix Indexing

>> A=[1 2 3; 4 5 6; 7 8 9]

A =
1 2 3
4 5 6
7 8 9

>> A(2,3)

ans =
6

MATLAB – p. 38/333



Matrix Indexing

>> C3=A(:,3)

C3 =

3

6

9

>> R2=A(2,:)

R2 =

4 5 6

>> T2=A(1:2,1:3)

T2 =

1 2 3

4 5 6

MATLAB – p. 39/333



Matrix Indexing

>> B=A;
>> B(:,3)=0

B =
1 2 0
4 5 0
7 8 0

MATLAB – p. 40/333



Matrix Indexing

>> A(end,end)

ans =

9

>> A(end,end-2)

ans =

7

>> A(2:end,end:-2:1)

ans =

6 4

9 7

>> E=A([1 3],[2 3])

E =

2 3

8 9

MATLAB – p. 41/333



Matrix Indexing
>> D=logical([1 0 0; 0 0 1; 0 0 0])

D =

1 0 0
0 0 1
0 0 0

>> A(D)

ans =

1
6

MATLAB – p. 42/333



Matrix Indexing

>> v=T2(:)

v =

1
4
2
5
3
6

MATLAB – p. 43/333



Matrix Indexing
>> s=sum(A(:))

s =
45

>> s1=sum(A)

s1 =
12 15 18

>> s2=sum(sum(A))

s2 =
45

MATLAB – p. 44/333



Matrix Indexing

>> f=imread(’rose.tif’);
>> fp=f(end:-1:1,:);

MATLAB – p. 45/333



Matrix Indexing

>> fc=f(257:768,257:768);

MATLAB – p. 46/333



Matrix Indexing

>> fs=f(1:8:end,1:8:end);

MATLAB – p. 47/333



Matrix Indexing

>> plot(f(512,:))

MATLAB – p. 48/333



Selecting Array Dimensions

operation(A, dim)

where operation denotes an applicable MATLAB
operation, A is an array and dim is a scalar.

>> k=size(A,1);

gives the size of A along its first dimension.

In the previous example we could have written the
command as
>> plot(f(size(f,1)/2,:))

Function ndims , with syntax d=ndims(A) gives the
number of dimensions of array A.

MATLAB – p. 49/333



Some Important Standard Arrays

zeros(M,N) generates an M×N matrix of 0s of class double .

ones(M,N) generates an M×N matrix of 1s of class double .

true(M,N) generates an M×N logical matrix of 1s.

false(M,N) generates an M×N logical matrix of 0s.

magic(M) generates an M×M"magic square".

rand(M,N) generates an M×N matrix whose entries are uni-
formly distributed random numbers in the interval
[0,1].

randn(M,N) generates an M×N matrix whose numbers are nor-
mally distributed random numbers with mean 0 and
variance 1.

MATLAB – p. 50/333



Some Important Standard Arrays

>> A=5* ones(3)

A =

5 5 5

5 5 5

5 5 5

>> magic(3)

ans =

8 1 6

3 5 7

4 9 2

>> B=rand(2,4)

B =

0.9501 0.6068 0.8913 0.4565

0.2311 0.4860 0.7621 0.0185

MATLAB – p. 51/333



M-Function Programming

• M-Files
• Operators
• Flow Control
• Code Optimization
• Interactive I/O
• Cell Arrays and Structures

MATLAB – p. 52/333



M-Files

M-Files in MATLAB can be

scripts that simply execute a series of MATLAB
statements, or they can be

functions that can accept argumens and can produce one
or more outputs.

MATLAB – p. 53/333



M-Files

The components of a function M-file are
• The function definition line
• The H1 line
• Help text
• The function body
• Comments

MATLAB – p. 54/333



M-Files
function [G,x] = planerot(x)

%PLANEROT Givens plane rotation.

% [G,Y] = PLANEROT(X), where X is a 2-component column vector ,

% returns a 2-by-2 orthogonal matrix G so that Y=G * X has Y(2)=0.

%

% Class support for input X:

% float: double, single

% Copyright 1984-2004 The MathWorks, Inc.

% $Revision: 5.10.4.1 $ $Date: 2004/04/10 23:30:05 $

if x(2) ˜= 0

r = norm(x);

G = [x’; -x(2) x(1)]/r;

x = [r; 0];

else

G = eye(2,class(x));

end

MATLAB – p. 55/333



Operators

• Arithmetic Operators
• Relational Operators
• Logical Operators and Functions

MATLAB – p. 56/333



Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

+ Array and matrix
addition

plus(A,B) a+b , A+B, or a+A.

- Array and matrix
subtraction

minus(A,B) a-b , A-B , A-a .

. * Array multiplica-
tion

times(A,B) C=A. * B,
C(I,J)=A(I,J) * B(I,J) .

* Matrix multiplica-
tion

mtimes(A,B) A* B, standard matrix multiplica-
tion, or a* A, multiplication of a
scalar times all elements of A.

MATLAB – p. 57/333



Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

./ Array right divi-
sion

rdivide(A,B) C=A./B ,
C(I,J)=A(I,J)/B(I,J) .

.\ Array left division ldivide(A,B) C=A.\B ,
C(I,J)=B(I,J)/A(I,J) .

/ Matrix right divi-
sion

mrdivide(A,B) A/B is roughly the same
as A* inv(B) , depending on
computational accuracy.

\ Matrix left divi-
sion

mldivide(A,B) A\B is roughly the same
as inv(A) * B, depending on
computational accuracy.

MATLAB – p. 58/333



Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

.^ Array power power(A,B) If C=A.^B , then
C(I,J)=A(I,J)^B(I,J) .

^ Matrix power mpower(A,B) Square matrix to the scalar
power, or scalar to the square
matrix power.

.’ Vector and matrix
transpose

transpose(A) A.’ . Standard vector and
matrix transpose.

’ Vector and ma-
trix complex con-
jugate transpose

ctranspose(A) A’ . Standard vector and ma-
trix conjugate transpose.

MATLAB – p. 59/333



Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

+ Unary plus uplus(A) +A is the same as 0+A.

- Unary minus uminus(A) -A is the same as 0-A or -1 * A.

: Colon Discussed earlier.

MATLAB – p. 60/333



Image Arithmetic Functions

Function Description

imadd Adds two images; or adds a constant to an image.

imsubtract Subtracts two images; or subtracts a constant from an image.

immultiply Multiplies two image, where the multiplication is carried out be-
tween pairs of corresponding image elements; or multiplies a con-
stant times an image.

imdivide Divides two images, where the division is carried out between
pairs of corresponding image elements; or divides an image by
a constant.

imabsdiff Computes the absolute difference between two images.

imcomplement Complements an image.

imlincomb Computes a linear combination of two or more images.

MATLAB – p. 61/333



An Example

function [p,pmax,pmin,pn]=improd(f,g)
%IMPROD Computes the product of two images.
% [P,PMAX,PMIN,PN]=IMPROD(F,G) outputs the
% element-by-element product of two images,
% F and G, the product maximum and minimum
% values, and a normalized product array with
% values in the range [0,1]. The input images
% must be of the same size. They can be of
% class uint8, uint 16, or double. The outputs
% are of class double.

MATLAB – p. 62/333



An Example

fd=double(f);
gd=double(g);
p=fd. * gd;
pmax=max(p(:));
pmin=min(p(:));
pn=mat2gray(p);

MATLAB – p. 63/333



An Example

>> f=[1 2;3 4]; g=[1 2;2 1];

>> [p,pmax,pmin,pn]=improd(f,g)

p =

1 4

6 4

pmax =

6

pmin =

1

pn =

0 0.6000

1.0000 0.6000

MATLAB – p. 64/333



An Example

>> help improd

IMPROD Computes the product of two images.

[P,PMAX,PMIN,PN]=IMPROD(F,G) outputs the

element-by-element product of two images,

F and G, the product maximum and minimum

values, and a normalized product array with

values in the range [0,1]. The input images

must be of the same size. They can be of

class uint8, uint 16, or double. The outputs

are of class double.

>> help DIPUM

IMPROD Computes the product of two images.

MATLAB – p. 65/333



Some Words about max

C=max(A) If A is a vector, max(A) returns its largest element; if A is a
matrix, then max(A) treats the columns of A as vectors and
returns a row vector containing the maximum element from
each column.

C=max(A,B) Returns an array the same size as A and B with the largest
elements taken from A or B.

C=max(A,[ ],dim) Returns the largest elements along the dimension of A spec-
ified by dim .

[C,I]=max(...) Finds the indices of the maximum values of A, and returns
them in output vector I . If there are several identical maxi-
mum values, the index of the first one found is returned. The
dots indicate the syntax used on the right of any of the previ-
ous three forms.

MATLAB – p. 66/333



Relational Operations

Operator Name
< Less than

<= Less than or equal to

> Greater than

>= Greater than of equal to

== Equal to

~= Not equal to

MATLAB – p. 67/333



Relational Operators
>> A=[1 2 3;4 5 6;7 8 9];

>> B=[0 2 4;3 5 6;3 4 9];

>> A==B

ans =

0 1 0

0 1 1

0 0 1

>> A>=B

ans =

1 1 0

1 1 1

1 1 1
MATLAB – p. 68/333



Logical Operators

Operator Name
& AND

| OR

˜ NOT

MATLAB – p. 69/333



Logical Operators

>> A=[1 2 0;0 4 5];
>> B=[1 -2 3;0 1 1];
>> A&B

ans =

1 1 0
0 1 1

MATLAB – p. 70/333



Logical Functions

Function Comments

xor The xor function returns a 1 only if both operands are
logically different; otherwise xor returns a 0.

all The all function returns a 1 if all the elements in a vec-
tor are nonzero; otherwise all returns a 0. This function
operates columnwise on matrices.

any The any function returns a 1 if any of the elements in
a vector is nonzero; otherwise any returns a 0. This
function operates columnwise on matrices.

MATLAB – p. 71/333



Logical Functions
>> A=[1 2 3;4 5 6];

>> B=[0 -1 1;0 0 1];

>> xor(A,B)

ans =

1 0 0

1 1 0

>> all(A)

ans =

1 1 1

>> any(A)

ans =

1 1 1

>> all(B)

ans =

0 0 1

>> any(B)

ans =

0 1 1

MATLAB – p. 72/333



Logical Functions

Function Description

iscell(C) True if C is a cell array.

iscellstr(s) True if s is a cell array of strings.

ischar(s) True if s is a character string.

isempty(A) True if A is the empty array,[] .

isequal(A,B) True if A and B have identical elements and dimensions.

isfield(S,’name’) True if ’name’ is a field of structure S.

isfinite(A) True in the locations of array A that are finite.

isinf(A) True in the locations of array A that are infinite.

isletter(A) True in the locations of A that are letters of the alphabet.

MATLAB – p. 73/333



Logical Functions

Function Description

islogical(A) True if A is a logical array.

ismember(A,B) True in locations where elements of A are also in B.

isnan(A) True in the locations of A that are NaNs.

isnumeric(A) True if A is a numeric array.

isprime(A) True in locations of A that are prime numbers.

isreal(A) True if the elements of A have no imaginary parts.

isspace(A) True at locations where the elements of A are whitespace char-
acters.

issparse(A) True if A is a sparse matrix.

isstruct(A) True if S is a structure.

MATLAB – p. 74/333



Some Important Variables and Constants

Function Value Returned

ans Most recent answer (variable). If no output variable is assigned to an
expression, MATLAB automatically stores the result in ans .

eps Floating-point relative accuracy. This is the distance between 1.0 and
the next largest number representable using double-precision floating
point.

i (or j ) Imaginary unit, as in 1+2i .

NaNor nan Stands for Not-a-Number (e.g., 0/0).

pi 3.14159265358979

realmax The largest floating-point number that your computer can represent.

realmin The smallest floating-point number that your computer can represent.

computer Your computer type.

version MATLAB version string.

MATLAB – p. 75/333



Flow Control

Statement Description

if if , together with else and elseif , executes a group of state-
ments based on a specified logical condition.

for Executes a group of statements a fixed (specified) number of times.

while Executes a group of statements an indefinite number of times,
based on a specified logical condition.

break Terminates execution of a for or while loop.

continue Passes control to the next iteration of a for or while loop, skipping
any remaining statements in the body of the loop.

switch switch , together with case and otherwise , executes different
groups of statements, depending on a specified value or string.

return Causes execution to return to the invoking function.

try...catch Changes flow control if an error is detected during execution.

MATLAB – p. 76/333



if, else, and elseif

if expression
statements

end

if expression1
statements1

elseif expression2
statements2

else
statements3

end

MATLAB – p. 77/333



if, else, and elseif

function av=average(A)

%AVERAGE Computes the average value of an array.

% AV=AVERAGE(A) computes the average value of

% input array, A, which must be a 1-D or 2-D

% array.

% Check the validity of the input. (Keep in mind

% that a 1-D array is a special case of a 2-D

% array.)

if ndims(A)>2

error(’The dimensions of the input cannot exceed 2.’)

end

%Compute the average

av=sum(A(:))/length(A(:));

%or av=sum(A(:))/numel(A);

MATLAB – p. 78/333



for

for index=start:increment:end
statements

end

MATLAB – p. 79/333



for

count=0;
for k=0:0.1:1

count=count+1;
end

MATLAB – p. 80/333



for

for q=0:5:100
filename=sprintf(’series_%3d.jpg’,q);
imwrite(f,filename,’quality’,q);

end

MATLAB – p. 81/333



for

function s=subim(f,m,n,rx,cy)

%SUBIM Extracts a subimage, s, from a given image, f.

% The subimage is of size m-by-n, and the coordinates

% of its top, left corner are (rx,cy).

s=zeros(m,n);

rowhigh=rx+m-1;

colhigh=cy+n-1;

xcount=0;

for r=rx:rowhigh

xcount=xcount+1;

ycount=0;

for c=cy:colhigh

ycount=ycount+1;

s(xcount,ycount)=f(r,c);

end

end

MATLAB – p. 82/333



while

while expression
statements

end

MATLAB – p. 83/333



while

a=10;
b=5;
while a

a=a-1;
while b

b=b-1;
end

end

MATLAB – p. 84/333



break

fid = fopen(’fft.m’,’r’);
s = ’’;
while ˜feof(fid)

line = fgetl(fid);
if isempty(line)

break
end
s = strvcat(s,line);

end
disp(s)

MATLAB – p. 85/333



continue

fid = fopen(’magic.m’,’r’);
count = 0;
while ˜feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line,’%’,1)

continue
end
count = count + 1;

end
disp(sprintf(’%d lines’,count));

MATLAB – p. 86/333



switch

switch switch_expression
case case_expression

statement(s)
case {case_expression1, case_expression2,. . . }

statement(s)
otherwise

statement(s)
end

MATLAB – p. 87/333



switch

switch newclass
case ’uint8’

g=im2uint8(f);
case ’uint16’

g=im2uint16(f);
case ’double’

g=im2double(f);
otherwise

error(’Unknown or improper image class.’)
end

MATLAB – p. 88/333



return

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)

d = 1;
return

else
...

end

MATLAB – p. 89/333



try...catch

function matrix_multiply(A, B)

try

A * B

catch

errmsg = lasterr;

if(strfind(errmsg, ’Inner matrix dimensions’))

disp(’ ** Wrong dimensions for matrix

multiplication’)

elseif(strfind(errmsg, ’not defined for variables

of class’))

disp(’ ** Both arguments must be double matrices’)

end

end

MATLAB – p. 90/333



Code Optimization

• Vectorizing Loops
• Preallocating Arrays

MATLAB – p. 91/333



Vectorizing Loops

Vectorizing simply means converting for and while loops
to equivalent vector or matrix operations.

MATLAB – p. 92/333



A Simple Example
Suppose that we want to generate a 1-D function of the
form

f(x) = A sin(x/2π)

for x = 0, 1, 2, . . . ,M − 1.

A for loop to implement this computation is
for x=1:M %Array indices in MATLAB cannot be 0.

f(x)=A * sin((x-1)/(2 * pi));
end

The vectorized code:
x=0:M-1;
f=A * sin(x/(2 * pi));

MATLAB – p. 93/333



2-D indexing

[C,R]=meshgrid(c,r)

>> c=[0 1];

>> r=[0 1 2];

>> [C,R]=meshgrid(c,r)

C =

0 1

0 1

0 1

R =

0 0

1 1

2 2

>> h=R.ˆ2+C.ˆ2

h =

0 1

1 2

4 5

MATLAB – p. 94/333



Comparison for loops vs. vectorization

function [rt,f,g]=twodsin(A,u0,v0,M,N)

%TWODSIN Compares for loops vs. vectorization.

% The comparison is based on implementing the function

% f(x,y)=Asin(u0x+v0y) for x=0,1,2,...,M-1 and

% y=0,1,2,...,N-1. The inputs to the function are

% M and N and the constants in the function.

MATLAB – p. 95/333



Comparison for loops vs. vectorization

% First implement using for loops.

tic %Start timing.

for r=1:M

u0x=u0 * (r-1);

for c=1:N

v0y=v0 * (c-1);

f(r,c)=A * sin(u0x+v0y);

end

end

t1=toc; %End timing.

MATLAB – p. 96/333



Comparison for loops vs. vectorization

%Now implement using vectorization. Call the image g.

tic %Start timing;

r=0:M-1;

c=0:N-1;

[C,R]=meshgrid(c,r);

g=A* sin(u0 * R+v0* C);

t2=toc; %End timing

% Compute the ratio of the two times.

rt=t1/(t2+eps); % Use eps in case t2 is close to 0.

MATLAB – p. 97/333



Comparison for loops vs. vectorization

>> [rt,f,g]=twodsin(1,1/(4 * pi),1/(4 * pi),512,512);

>> rt

rt =

19.5833

>> g=mat2gray(g);

>> imshow(g)

MATLAB – p. 98/333



Preallocating Arrays
tic

for i=1:1024

for j=1:1024

f(i,j)=i+2 * j;

end

end

toc

Elapsed time is 30.484000 seconds.

tic

g=zeros(1024); %Preallocation

for i=1:1024

for j=1:1024

g(i,j)=i+2 * j;

end

end

toc

Elapsed time is 0.221000 seconds.

MATLAB – p. 99/333



Interactive I/O

disp(argument)

>> A=[1 2;3 4];

>> disp(A)

1 2

3 4

>> sc=’Digital Image Processing.’;

>> disp(sc)

Digital Image Processing.

>> disp(’This is another way to display text.’)

This is another way to display text.

MATLAB – p. 100/333



Interactive I/O

t=input(’message’)

t=input(’messages’,’s’)

>> t=input(’Enter your data: ’,’s’)

Enter your data: 1, 2, 4

t =

1, 2, 4

>> class(t)

ans =

char

>> size(t)

ans =

1 7

MATLAB – p. 101/333



Interactive I/O
>> n=str2num(t)

n =

1 2 4

>> size(n)

ans =

1 3

>> class(n)

ans =

double

MATLAB – p. 102/333



Interactive I/O

[a,b,c,...]=strread(cstr,’format,...
’param’,’value’)

>> t=’12.6, x2y, z’;

>> [a,b,c]=strread(t,’%f%q%q’,’delimiter’,’,’)

a =

12.6000

b =

’x2y’

c =

’z’

>> d=char(b)

d =

x2y

MATLAB – p. 103/333



Save variables on disk

save(’filename’, ’var1’, ’var2’, ...)

saves the specified variables in filename.mat .

save(’filename’, ’-struct’, ’s’)

saves all fields of the scalar structure s as individual
variables within the file filename.mat .

MATLAB – p. 104/333



Load variables from disk

load(’filename’)

loads all the variables from filename.mat .

load(’filename’, ’X’, ’Y’, ’Z’)

loads just the specified variables from the MAT-file.

S=load(...)

returns the contents of a MAT-file in the variable S. S is a
struct containing fields that match the variables retrieved.

MATLAB – p. 105/333



Display directory listing

files=dir(’match’)

returns the list of files with name match in the current
directory to an m-by-1 structure with the fields
name: Filename
date : Modification date
bytes : Number of bytes allocated to the file
isdir : 1 if name is a directory; 0 if not

MATLAB – p. 106/333



Cell Arrays

Cell array is a multidimensional array whose elements are
copies of other arrays.

>> C={’gauss’,[1 0;1 0],3}

C =

’gauss’ [2x2 double] [3]

>> C{1}

ans =

gauss

>> C{2}

ans =

1 0

1 0

>> C{3}

ans =

3

MATLAB – p. 107/333



Pass or return variable numbers of arguments

function varargout = foo(n)

returns a variable number of arguments from function
foo.m .

function y = bar(varargin)

accepts a variable number of arguments into function
bar.m .

The varargin and varargout statements are used only
inside a function M-file to contain the optional arguments to
the function. Each must be declared as the last argument
to a function, collecting all the inputs or outputs from that
point onwards. In the declaration, varargin and
varargout must be lowercase.

MATLAB – p. 108/333



Structures

Structures allow grouping of a collection of dissimilar data
into a single variable. The elements of structures are
addressed by names called fields.

>> S.char_string=’gauss’;

>> S.matrix=[1 0;1 0];

>> S.scalar=3;

>> S

S =

char_string: ’gauss’

matrix: [2x2 double]

scalar: 3

>> S.matrix

ans =

1 0

1 0

MATLAB – p. 109/333



Chapter 2

MATLAB Graphics

MATLAB – p. 110/333



Plotting Your Data
>> x=0:0.2:12;

>> y1=bessel(1,x);

>> y2=bessel(2,x);

>> y3=bessel(3,x);

>> h=plot(x,y1,x,y2,x,y3);

>> set(h,’LineWidth’,2,{’LineStyle’},{’--’;’:’;’-.’} )

>> set(h,{’Color’},{’r’;’g’;’b’})

>> axis([0 12 -0.5 1])

>> grid on

>> xlabel(’Time’)

>> ylabel(’Amplitude’)

>> legend(h,’First’,’Second’,’Third’)

>> title(’Bessel Functions’)

>> [y,ix]=min(y1);

>> text(x(ix),y,’First Min \rightarrow’,...

’HorizontalAlignment’,’right’)

>> print -depsc -tiff -r200 myplot

MATLAB – p. 111/333



Plotting Your Data

0 2 4 6 8 10 12
−0.5

0

0.5

1

Time

A
m

pl
itu

de
Bessel Functions

First Min →

First
Second
Third

MATLAB – p. 112/333



Creating Plots

>> t=0:pi/100:2 * pi;

>> y=sin(t);

>> plot(t,y)

>> grid on

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

MATLAB – p. 113/333



Creating Plots

>> y2=sin(t-0.25);

>> y3=sin(t-0.5);

>> plot(t,y,t,y2,t,y3)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

MATLAB – p. 114/333



Specifying Line Style

>> plot(t,y,’-’,t,y2,’--’,t,y3,’:’)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

MATLAB – p. 115/333



Specifying the Color and Size of Lines

>> x=-pi:pi/10:pi;

>> y=tan(sin(x))-sin(tan(x));

>> plot(x,y,’--rs’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10)

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

MATLAB – p. 116/333



Adding Plots to an Existing Graph

>> semilogx(1:100,’+’)

>> hold on

>> plot(1:3:300,1:100,’--’)

>> hold off

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

MATLAB – p. 117/333



Plotting Only the Data Points

>> x=0:pi/15:4 * pi;

>> y=exp(2 * cos(x));

>> plot(x,y,’r+’)

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

MATLAB – p. 118/333



Plotting Markers and Lines

>> x=0:pi/15:4 * pi;

>> y=exp(2 * cos(x));

>> plot(x,y,’-r’,x,y,’ok’)

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

MATLAB – p. 119/333



Line Plots of Matrix Data

>> Z=peaks;

>> plot(Z)

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

8

10

MATLAB – p. 120/333



Plotting with Two Y-Axes

>> t=0:pi/20:2 * pi;

>> y=exp(sin(t));

>> plotyy(t,y,t,y,’plot’,’stem’)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

MATLAB – p. 121/333



Combining Linear and Logarithmic Axes

>> t=0:900;

>> A=1000;

>> a=0.005;

>> b=0.005;

>> z1=A* exp(-a * t);

>> z2=sin(b * t);

>> [haxes,hline1,hline2]=plotyy(t,z1,t,z2,’semilogy’ ,’plot’);

>> axes(haxes(1))

>> ylabel(’Semilog Plot’)

>> axes(haxes(2))

>> ylabel(’Linear Plot’)

>> set(hline2,’LineStyle’,’--’)

MATLAB – p. 122/333



Combining Linear and Logarithmic Axes

0 100 200 300 400 500 600 700 800 900
10

1

10
2

10
3

S
em

ilo
g 

P
lo

t

0 100 200 300 400 500 600 700 800 900
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Li
ne

ar
 P

lo
t

MATLAB – p. 123/333



Specifying Ticks and Tick Labels

>> x=-pi:.1:pi;

>> y=sin(x);

>> plot(x,y)

>> set(gca,’XTick’,-pi:pi/2:pi)

>> set(gca,’XTickLabel’,{’-pi’,’-pi/2’,’0’,’pi/2’,’p i’})

>> xlabel(’-\pi \leq \Theta \leq \pi’)

>> ylabel(’sin(\Theta)’)

>> title(’Plot of sin(\Theta)’)

>> text(-pi/4,sin(-pi/4),’\leftarrow sin(-\pi\div4)’, ...

’HorizontalAlignment’,’left’)

MATLAB – p. 124/333



Specifying Ticks and Tick Labels

−pi −pi/2 0 pi/2 pi
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−π ≤ Θ ≤ π

si
n(

Θ
)

Plot of sin(Θ)

← sin(−π÷4)

MATLAB – p. 125/333



Setting Line Properties on an Existing Plot

>> set(findobj(gca,’Type’,’line’,’Color’,[0 0 1]),...

’Color’,[0.5 0 0.5],’LineWidth’,2)

−pi −pi/2 0 pi/2 pi
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−π ≤ Θ ≤ π

si
n(

Θ
)

Plot of sin(Θ)

← sin(−π÷4)

MATLAB – p. 126/333



Chapter 3

Intensity Transformations
and Spatial Filtering

MATLAB – p. 127/333



Content

• Background
• Intensity Transformation Functions
• Histogram Processing and Function Plotting
• Spatial Filtering
• Image Processing Toolbox Standard Spatial Filters

MATLAB – p. 128/333



Background
The spatial domain processes are denoted by the
expression

g(x, y) = T [f(x, y)]

where f(x, y) is the input image, g(x, y) is the output
(processed) image, and T is an operator on f , defined over
a specified neighborhood about point (x, y).

MATLAB – p. 129/333



Intensity Transformation Functions

The simplest form of the transformation T is when the
neighborhood is of size 1 × 1 (a single pixel). In this case,
the value of g at (x, y) depends only on the intensity of f at
that point, and T becomes an intensity or gray-level
transformation function.

MATLAB – p. 130/333



Function imadjust

g=imadjust(f,[low_in high_in],...
[low_out high_out],gamma)

MATLAB – p. 131/333



Function imadjust

>> f=imread(’breast.tif’);

MATLAB – p. 132/333



Function imadjust

>> g1=imadjust(f,[0 1],[1 0]);

MATLAB – p. 133/333



Function imadjust

>> g2=imadjust(f,[0.5 0.75],[0 1]);

MATLAB – p. 134/333



Function imadjust

>> g3=imadjust(f,[],[],2);

MATLAB – p. 135/333



Histogram Processing and Function Plotting

• Generating and Plotting Image Histograms
• Histogram Equalization
• Histogram Matching (Specification)

MATLAB – p. 136/333



Generating and Plotting Image Histograms

The histogram of a digital image with L total possible
intensity levels in the range [0, G] is defined as the discrete
function

h(rk) = nk

where rk is the kth intensity level in the interval [0, G] and
nk is the number of pixels in the image whose intensity
level is rk. The value of G is 255 for images of class
uint8 , 65535 for images of class uint16 , and 1.0 for
images of class double . Keep in mind that indices in
MATLAB cannot be 0, so r1 corresponds to intensity level
0, r2 corresponds to intensity level 1, and so on, with rL

corresponding to level G. Note also that G = L − 1 for
images of class uint8 and uint16 .

MATLAB – p. 137/333



Generating and Plotting Image Histograms

Often, it is useful to work with normalized histograms,
obtained simply by dividing all elements of h(rk) by the
total number of pixels in the image, which we denote by n:

p(rk) =
h(rk)

n
=

nk

n

for k = 1, 2, . . . , L.

MATLAB – p. 138/333



Generating and Plotting Image Histograms

h=imhist(f,b)

where f is the input image, h is its histogram, h(rk), and b
is the number of bins used in forming the histogram (if b is
not included in the argument, b=256 is used by default). A
bin is simply a subdivision of the intensity scale. For
example, if we are working with uint8 images and we let
b=2 , then the intensity scale is subdivided into two ranges:
0 to 127 and 128 to 255. The resulting histogram will have
two values: h(1) equal to the number of pixels in the
image with values in the interval [0, 127], and h(2) equal to
the number of pixels with values in the interval [128, 255].

MATLAB – p. 139/333



Generating and Plotting Image Histograms

>> f=imread(’breast.tif’);
>> imshow(f), imhist(f)

MATLAB – p. 140/333



Generating and Plotting Image Histograms

>> h=imhist(f);

>> h1=h(1:10:256);

>> horz=1:10:256;

>> bar(horz,h1)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)

MATLAB – p. 141/333



Generating and Plotting Image Histograms

>> h=imhist(f);

>> h1=h(1:10:256);

>> horz=1:10:256;

>> stem(horz,h1,’fill’)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)

MATLAB – p. 142/333



Generating and Plotting Image Histograms

>> h=imhist(f);

>> plot(h)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)

MATLAB – p. 143/333



Some Useful Plotting Function

• plot(horz,v,’color_linestyle_marker’)

• bar(horz,v,width)

• stem(horz,v,’color_linestyle_marker’,’fill’)

• axis([horzmin horzmax vertmin vertmax])

• xlabel(’text string’,’fontsize’,size)

• ylabel(’text string’,’fontsize’,size)

• text(xloc,yloc,’text string’,’fontsize’,size)

• title(’titlestring’)

MATLAB – p. 144/333



Some Useful Plotting Function

Symbol Color Symbol Line Style Symbol Marker

k Black - Solid + Plus sign

w White -- Dashed o Circle

r Red : Dotted * Asterisk

g Green -. Dash-dot . Point

b Blue none No line x Cross

c Cyan s Square

y Yellow d Diamond

m Magenta none No marker

MATLAB – p. 145/333



Histogram Equalization

sk =
k

∑

j=0

nj

n
k = 0, 1, 2, . . . , L − 1

where n is the total number of pixels in the image, nk is the
number of pixels that have gray level rk, and L is the total
number of possible gray levels in the image. A processed
image is obtained by mapping each pixel with level rk in
the input image into a corresponding pixel with level sk in
the output image.

MATLAB – p. 146/333



Histogram Equalization

g=histeq(f,nlev)

where f is the input image and nlev is the number of
intensity levels specified for the output image. If nlev is
equal to L (the total number of possible levels in the input
image), then histeq implements the transformation
function (described on the previous slide), directly. If nlev
is less than L, then histeq attempts to distribute the
levels so that they will approximate a flat histogram. Unlike
imhist , the default value in histeq is nlev=64 .

MATLAB – p. 147/333



Histogram Equalization

>> f=imread(’pollen.tif’);
>> imshow(f)
>> figure, imhist(f)
>> ylim(’auto’)
>> g=histeq(f,256);
>> figure, imshow(g)
>> figure, imhist(g)
>> ylim(’auto’)

MATLAB – p. 148/333



Histogram Equalization

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

MATLAB – p. 149/333



Histogram Equalization

>> hnorm=imhist(f)./numel(f);

>> %Cummulative distribution function:

>> cdf=cumsum(hnorm);

>> x=linspace(0,1,256);

>> plot(x,cdf)

>> axis([0 1 0 1])

>> set(gca,’xtick’,0:.2:1)

>> set(gca,’ytick’,0:.2:1)

>> xlabel(’Input intensity values’,’fontsize’,9)

>> ylabel(’Output intensity values’,’fontsize’,9)

>> %Specify text in the body of the graph:

>> text(0.18,0.5,’Transformation function’,...

>> ’fontsize’,9)

MATLAB – p. 150/333



Histogram Equalization

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input intensity values

O
ut

pu
t i

nt
en

si
ty

 v
al

ue
s

Transformation function

MATLAB – p. 151/333



Histogram Matching

It is useful in some applications to be able to specify the
shape of the histogram that we wish the processed image
to have. The method used to generate a processed image
that has a specified histogram is called histogram
matching.

g=histeq(f,hspec)

where f is the input image, hspec is the specified
histogram (a row vector of specified values), and g is the
input image, whose histogram approximates the specified
histogram, hspec .

MATLAB – p. 152/333



Histogram Matching

0 50 100 150 200 250

0

1

2

3

4

5

6

x 10
4

0 50 100 150 200 250

0

1

2

3

4

5

6

x 10
4

MATLAB – p. 153/333



Histogram Matching

function p=twomodegauss(m1,sig1,m2,sig2,A1,A2,k)

%TWOMODEGAUSS Generates a bimodal Gaussian function.

% P=TWOMODEGAUSS(M1,SIG1,M2,SIG2,A1,A2,K) generates a b imodal,

% Gaussian-like function in the interval [0,1]. P is a

% 256-element vector normalized so that SUM(P) equals 1. The

% mean and standard deviation of the modes are (M1,SIG1) and

% (M2,SIG2), respectively. A1 and A2 are the amplitude value s

% of the two modes. Since the output is normalized, only the

% relative values of A1 and A2 are important. K is an offset

% values that raises the "floor" of the function. A good set

% of values to try is M1=0.15, SIG1=0.05, M2=0.75, SIG2=0.05 ,

% A1=1, A2=0.07, and K=0.002.

MATLAB – p. 154/333



Histogram Matching

c1=A1* (1/((2 * pi)ˆ0.5) * sig1);

k1=2 * (sig1ˆ2);

c2=A2* (1/((2 * pi)ˆ0.5) * sig2);

k2=2 * (sig2ˆ2);

z=linspace(0,1,256);

p=k+c1 * exp(-((z-m1).ˆ2)./k1)+...

c2 * exp(-((z-m2).ˆ2)./k2);

p=p./sum(p(:));

MATLAB – p. 155/333



Histogram Matching

function p=manualhist

%MANUALHIST Generates a bimodal histogram interactively.

% P=MANUALHIST generates a bimodal histogram using

% TWOMODEGAUSS(m1,sig1,m2,sig2,A1,A2,k). m1 and m2 are th e

% means of the two modes and must be in the range [0,1]. sig1

% and sig2 are the standard deviations of the two modes. A1

% and A2 are amplitude values, and k is an offset value that

% raises the "floor" of histogram. The number of elements in

% the histogram vector P is 256 and sum(P) is normalized to 1.

% MANUALHIST repeatedly prompts for the parameters and plot s

% the resulting histogram until the user types an ’x’ to quit,

% and then it returns the last histogram computed.

%

% A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,

% 0.07, 0.002).

MATLAB – p. 156/333



Histogram Matching

%Initialize.

repeats=true;

quitnow=’x’;

%Compute a default histogram in case the user quits before

%estimating at least one histogram.

p=twomodegauss(0.15,0.05,0.75,0.05,1,0.07,0.002);

%Cycle until x is input.

while repeats

s=input(’Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:’,’s ’);

if s==quitnow

break

end

MATLAB – p. 157/333



Histogram Matching

%Convert the input string to a vector of numerical values and

%verify the number of inputs.

v=str2num(s);

if numel(v)˜=7

disp(’Incorrect number of inputs.’)

continue

end

p=twomodegauss(v(1),v(2),v(3),v(4),v(5),v(6),v(7));

%Start a new figure and scale the axes. Specifying only xlim

%leaves ylim on auto.

figure, plot(p)

xlim([0 255])

end

MATLAB – p. 158/333



Histogram Matching

>> f=imread(’moon_phobos.tif’);

>> p=manualhist;

Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:x

>> g=histeq(f,p);

>> imshow(g)

>> figure, imhist(g)

MATLAB – p. 159/333



Histogram Matching

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250

0

1

2

3

4

5

6

x 10
4

MATLAB – p. 160/333



Spatial Filtering

Neighborhood processing consists of
• defining a center point, (x, y);
• performing an operation that involves only the pixels in

a predefined neighborhood about that center point;
• letting the result of that operation be the "response" of

the process at that point; and
• repeating the process for every point in the image.

If the computations performed on the pixels of the
neighborhoods are linear, the operation is called linear
spatial filtering; otherwise it is called nonlinear spatial
filtering.

MATLAB – p. 161/333



Linear Spatial Filtering
The mechanics of linear spatial filtering:

MATLAB – p. 162/333



Linear Spatial Filtering

The process consists simply of moving the center of the
filter mask w from point to point in an image f . At each
point (x, y), the response of the filter at that point is the
sum of products of the filter coefficients and the
corresponding neighborhood pixels in the area spanned by
the filter mask. For a mask of size m × n, we assume
typically that m = 2a + 1 and n = 2b + 1, where a and b are
nonnegative integers.
There are two closely related concepts that must be
understood clearly when performing linear spatial filtering.
Correlation is the process of passing the mask w by the
image array f in the manner described earlier.
Mechanically, convolution is the same process, except that
w is rotated by 180◦ prior to passing it by f .

MATLAB – p. 163/333



Linear Spatial Filtering

Figure shows a one-dimensional function, f , and a
mask w.

To perform the correlation of the two functions, we
move w so that its rightmost point coincides with the
origin of f .

There are points between the two functions that do
not overlap. The most common way to handle this
problem is to pad f with as many 0s as are nec-
essary to guarantee that there will always be corre-
sponding points for the full excursion of w past f .

MATLAB – p. 164/333



Linear Spatial Filtering

The first value of correlation is the sum of products of
the two functions in the position shown in the figure.

Next, we move w one location to the right and repeat
the process.

After four shifts, we encounter the first nonzero value
of the correlation, which is 2 · 1 = 2.

The ending geometry is shown in this figure.

If we proceed in this manner until w moves com-
pletely past f we would get this result.

MATLAB – p. 165/333



Linear Spatial Filtering

The label ’full’ is a flag used by the IPTa to
indicate correlation using a padded image and
computed in the manner just described.

The IPT provides another option, denoted by
’same’ that produces a correlation that is the
same size as f . This computation also uses
zero padding, but the starting position is with
the center point of the mask aligned with the ori-
gin of f . The last computation is with the center
point of the mask aligned with the last point in f .

aImage Processing Toolbox of MATLAB

MATLAB – p. 166/333



Linear Spatial Filtering

The preceding concepts extend easily to images, as
illustrated in the following figures.

MATLAB – p. 167/333



Linear Spatial Filtering

Correlation

MATLAB – p. 168/333



Linear Spatial Filtering

Convolution

MATLAB – p. 169/333



Linear Spatial Filtering

g=imfilter(f,w,filtering_mode,...
boundary_options,size_options)

where f is the input image, w is the filter mask, g is the
filtered result, and the other parameters are summarized in
the following table.

MATLAB – p. 170/333



Linear Spatial Filtering
Options Description

Filtering Mode

’corr’ Filtering is done using correlation. This is the default.

’conv’ Filtering is done using convolution.

Boundary Options

P The boundaries of the input image are extended by padding with a
value, P. This is the default, with value 0.

’replicate’ The size of the image is extended by replicating the values in its
outer border.

’symmetric’ The size of the image is extended by mirror-reflecting it across its
border.

’circular’ The size of the image is extended by treating the image as one
period a 2-D periodic function.

Size Options

’full’ The output is of the same size as the extended (padded) image.

’same’ The output is of the same size as the input. This is the default.

MATLAB – p. 171/333



Linear Spatial Filtering

>> f=imread(’original_test_pattern.tif’);
>> f=double(f);
>> w=ones(31);

MATLAB – p. 172/333



Linear Spatial Filtering

>> gd=imfilter(f,w);
>> imshow(gd,[])

MATLAB – p. 173/333



Linear Spatial Filtering

gr=imfilter(f,w,’replicate’);
imshow(gr,[])

MATLAB – p. 174/333



Linear Spatial Filtering

>> gs=imfilter(f,w,’symmetric’);
>> imshow(gs,[])

MATLAB – p. 175/333



Linear Spatial Filtering

>> gc=imfilter(f,w,’circular’);
>> imshow(gc,[])

MATLAB – p. 176/333



Linear Spatial Filtering

>> f8=im2uint8(f);
>> g8r=imfilter(f8,w,’replicate’);
>> imshow(g8r,[])

MATLAB – p. 177/333



Nonlinear Spatial Filtering
Nonlinear spatial filtering is based on neighborhood
operations also, and the mechanics of defining m × n
neighborhoods by sliding the center point through an
image are the same as discussed in linear spatial filtering.
Nonlinear spatial filtering is based on nonlinear operations
involving the pixels of a neighborhood. For example, letting
the response at each center point be equal to the
maximum pixel value in its neighborhood is a nonlinear
filtering operation. Another basic difference is that the
concept of a mask is not as prevalent in nonlinear
processing. The ides of filtering carries over, but the "filter"
should be visualized as a nonlinear function that operates
on the pixels of a neighborhood, and whose response
constitutes the response of the operation at the center
pixel of the neighborhood.

MATLAB – p. 178/333



Nonlinear Spatial Filtering

The IPT provides two functions for performing general
nonlinear filtering: nlfilter and colfilt . The former
performs operations directly in 2-D, while colfilt
organizes the data in the form of columns. Altough
colfilt requires more memory, it generally executes
significantly faster than nlfilter . In most image
processing applications speed is an overriding factor, so
colfilt is preferred over nlfilter for implementing
generalized nonlinear spatial filtering.

MATLAB – p. 179/333



Nonlinear Spatial Filtering

Given an input image, f , of size M × N , and a
neighborhood of size m× n, function colfilt generates a
matrix, call it A, of maximum size mn × MN , in which each
column corresponds to the pixels encompassed by the
neighborhood centered at a location in the image. For
example, the first column corresponds to the pixels
encompassed by the neighborhood when its center is
located at the top, leftmost point in f . All required padding
is handled transparently by colfilt .

MATLAB – p. 180/333



Nonlinear Spatial Filtering

g=colfilt(f,[m n],’sliding’,@fun,parameters)

where mand n are the dimensions of the filter region,
’sliding’ indicates that the process is one of sliding the
m × n region from pixel to pixel in the input image f , @fun
references a function, which we denote arbitrarily as fun ,
and parameters indicates parameters (separated by
commas) that may be required by function fun . The
symbol @is called a function handle, a MATLAB data type
that contains information used in referencing a function.

MATLAB – p. 181/333



Nonlinear Spatial Filtering

fp=padarray(f,[r c],method,direction)

where f is the input image, fp is the padded image,
[r c] gives the number of rows and columns, by which to
pad f , and method and direction are as explained in
the next table.

MATLAB – p. 182/333



Nonlinear Spatial Filtering

Options Description

Method

’symmetric’ The size of the image is extended by mirror-reflecting it across its
border.

’replicate’ The size of the image is extended by replicating the values in its
outer border.

’circular’ The size of the image is extended by treating the image as one
period of a 2-D periodic function.

Direction

’pre’ Pad before the first element of each dimension.

’post’ Pad after the last element of each dimension.

’both’ Pad before the first element and after the last element of each di-
mension. This is the default.

MATLAB – p. 183/333



Nonlinear Spatial Filtering

>> f=[1 2;3 4];
>> fp=padarray(f,[3 2],’replicate’,’post’)

fp =

1 2 2 2
3 4 4 4
3 4 4 4
3 4 4 4
3 4 4 4

MATLAB – p. 184/333



Nonlinear Spatial Filtering

function v=gmean(A)

%The length of the columns of A is always mn.
mn=size(A,1);
v=prod(A,1).ˆ(1/mn);

>> f=padarray(f,[5 5],’replicate’);
>> g=colfilt(f,[5 5],’sliding’,@gmean);

MATLAB – p. 185/333



Nonlinear Spatial Filtering

MATLAB – p. 186/333



IPT Standard Spatial Filters

• Linear Spatial Filters
• Nonlinear Spatial Filters

MATLAB – p. 187/333



Linear Spatial Filters

w=fspecial(’type’,parameters)

where ’type’ specifies the filter type, and parameters
further define the specified filter. The spatial filters
supported by fspecial are summarized in the following
table, including applicable parameters for each filter.

MATLAB – p. 188/333



Linear Spatial Filters
Type Syntax and Parameters

’average’ fspecial(’average’,[r c]) . A rectangular averaging filter of
size r ×c . The default is 3 × 3. A single number instead of [r c]

specifies a square filter.

’disk’ fspecial(’disk’,r) . A circular averaging filter (within a square
of size 2r +1) with radius r . The default radius is 5.

’gaussian’ fspecial(’gaussian’,[r c],sig) . A Gaussian lowpass filter
of size r ×c and standard deviation sig (positive). The defaults are
3×3 and 0.5. A single number instead of [r c] specifies a square
filter.

’laplacian’ fspecial(’laplacian’,alpha) . A 3× 3 Laplacian filter whose
shape is specified by alpha , a number in the range [0, 1]. The
default value for alpha is 0.5.

’log’ fspecial(’log’,[r c],sig) . Laplacian of a Gaussian (LoG)
filter of size r timesc and standard deviation sig (positive). The de-
faults are 5×5 and 0.5. A single number instead of [r c] specifies
a square filter.

MATLAB – p. 189/333



Linear Spatial Filters

Type Syntax and Parameters

’motion’ fspecial(’motion’,len,theta) . Outputs a filter that, when con-
volved with an image, approximates linear motion (of a camera with
respect to the image) of len pixels. The direction of motion is theta ,
mesaured in degrees, counterclockwise from the horizontal. The de-
faults are 9 and 0, which represents a motion of 9 pixels in the hori-
zontal direction.

’prewitt’ fspecial(’prewitt’) . Outputs a 3 × 3 Prewitt mask, wv, that ap-
proximates a vertical gradient. A mask for the horizontal gradient is
obtained by transposing the result: wh=wv’ .

’sobel’ fspecial(’sobel’) . Outputs a 3 × 3 Sobel mask, sv , that ap-
proximates a vertical gradient. A mask for the horizontal gradient is
obtained by transposing the result: sh =sv’ .

’unsharp’ fspecial(’unsharp’,alpha) . Outputs a 3 × 3 unsharp filter. Pa-
rameter alpha controls the shape; it must be greater than or equal to
0 and less than or equal to 1.0; the default is 0.2.

MATLAB – p. 190/333



Linear Spatial Filters

>> w=fspecial(’laplacian’,0)

w =

0 1 0
1 -4 1
0 1 0

MATLAB – p. 191/333



Linear Spatial Filters

>> f=imread(’moon.tif’);

MATLAB – p. 192/333



Linear Spatial Filters

>> g1=imfilter(f,w,’replicate’);
>> imshow(g1,[])

MATLAB – p. 193/333



Linear Spatial Filters

>> f2=im2double(f);
>> g2=imfilter(f2,w,’replicate’);
>> imshow(g2,[])

MATLAB – p. 194/333



Linear Spatial Filters

>> g=f2-g2;
>> imshow(g)

MATLAB – p. 195/333



Linear Spatial Filters

>> f=imread(’moon.tif’);
>> w4=fspecial(’laplacian’,0);
>> w8=[1 1 1;1 -8 1;1 1 1];
>> f=im2double(f);
>> g4=f-imfilter(f,w4,’replicate’);
>> g8=f-imfilter(f,w8,’replicate’);
>> imshow(f)
>> figure, imshow(g4)
>> figure, imshow(g8)

MATLAB – p. 196/333



Linear Spatial Filters

MATLAB – p. 197/333



Nonlinear Spatial Filters

g=ordfilt2(f,order,domain

This function creates the output image g by replacing each
element of f by the order -th element in the sorted set of
neighbors specified by the nonzero elements in domain .
Here, domain is an m × n matrix of 1s and 0s that specify
the pixel locations in the neighborhood that are to be used
in the computation. In this sense, domain acts like a mask.
The pixels in the neighborhood that corresponds to 0 in the
domain matrix are not used in the computation.

MATLAB – p. 198/333



Nonlinear Spatial Filters

Min filter of size m × n:
g=ordfilt2(f,1,ones(m,n))

Max filter of size m × n:
g=ordfilt2(f,m * n,ones(m,n))

Median filter of size m × n:
g=ordfilt2(f,median(1:m * n),ones(m,n))

MATLAB – p. 199/333



Nonlinear Spatial Filters

g=medfilt2(f,[m n],padopt

where the tuple [m n] defines a neighborhood of size
m × n over which the median is computed, and padopt
specifies one of three possible border padding options:
’zeros (the default), ’symmetric’ in which f is
extended symmetrically by mirror-reflecting it across its
border, and ’indexed’ , in which f is padded with 1s if it
is of class double and with 0s otherwise. The default form
of this function is g=medfilt2(f) which uses a 3 × 3
neighborhood to compute the median, and pads the border
of the input with 0s.

MATLAB – p. 200/333



Nonlinear Spatial Filters

>> f=imread(’ckt-board.tif’);
>> fn=imnoise(f,’salt & pepper’,0.2);
>> gm=medfilt2(fn);
>> gms=medfilt2(fn,’symmetric’);
>> subplot(2,2,1), imshow(f)
>> subplot(2,2,2), imshow(fn)
>> subplot(2,2,3), imshow(gm)
>> subplot(2,2,4), imshow(gms)

MATLAB – p. 201/333



Nonlinear Spatial Filters

MATLAB – p. 202/333



Chapter 4

Frequency Domain
Processing

MATLAB – p. 203/333



Content

• The 2-D Discrete Fourier Transform
• Computing and Visualizing the 2-D DFT in MATLAB
• Filtering in the Frequency Domain

MATLAB – p. 204/333



The 2-D Discrete Fourier Transform

Let f(x, y), for x = 0, 1, 2, . . . ,M − 1 and
y = 0, 1, 2, . . . , N − 1, denote an M × N image. The 2-D,
discrete Fourier transform (DFT) of f , denoted by F (u, v),
is given by the equation

F (u, v) =
M−1
∑

x=0

N−1
∑

y=0

f(x, y)e−j2π(ux/M+vy/N)

for u = 0, 1, 2, . . . ,M − 1 and v = 0, 1, 2, . . . , N − 1.

MATLAB – p. 205/333



The 2-D Discrete Fourier Transform

The frequency domain is simply the coordinate system
spanned by F (u, v) with u and v as (frequency) variables.
This is analogous to the spatial domain studied in the
previous lecture, which is the coordinate systam spanned
by f(x, y), with x and y as (spatial) variables. The M × N
rectangular region defined by u = 0, 1, 2, . . . ,M − 1 and
v = 0, 1, 2, . . . , N − 1 is often referred to as the frequency
rectangle.

MATLAB – p. 206/333



The 2-D Discrete Fourier Transform

The inverse, discrete Fourier transform is given by

f(x, y) =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F (u, v)ej2π(ux/M+vy/N)

for x = 0, 1, 2, . . . ,M − 1 and y = 0, 1, 2, . . . , N − 1. Thus,
given F (u, v), we can obtain f(x, y) back by means of the
inverse DFT. The values of F (u, v) in this equation
sometimes are referred to as the Fourier coefficients of the
expansion.

MATLAB – p. 207/333



The 2-D Discrete Fourier Transform

Because array indices in MATLAB start at 1, rather than 0,
F(1,1) and f(1,1) in MATLAB corresponds to the
mathematical quantities F (0, 0) and f(0, 0) in the transform
and its inverse.

MATLAB – p. 208/333



The 2-D Discrete Fourier Transform

Even if f(x, y) is real, its transform in general is complex.
The principal method of visually analyzing a transform is to
compute its spectrum and display it as an image. Letting
R(u, v) and I(u, v) represent the real and imaginary
components of F (u, v), the Fourier spectrum is defined as

|F (u, v)| =
√

R2(u, v) + I2(u, v)

The phase angle of the transform is defined as

φ(u, v) = tan−1

[

I(u, v)

R(u, v)

]

MATLAB – p. 209/333



The 2-D Discrete Fourier Transform

The power spectrum is defined as the square of the
magnitude:

P (u, v) = |F (u, v)|2 = R2(u, v) + I2(u, v)

For purposes of visualization it typically is immaterial
whether we view |F (u, v)| or P (u, v).

MATLAB – p. 210/333



The 2-D Discrete Fourier Transform

If f(x, y) is real, its Fourier transform is conjugate
symmetric about the origin; that is,

F (u, v) = F ∗(−u,−v)

which implies that the Fourier spectrum also is symmetric
about the origin:

|F (u, v)| = |F (−u,−v)|

MATLAB – p. 211/333



The 2-D Discrete Fourier Transform

It can be shown by direct substitution into the equation for
F (u, v) that

F (u, v) = F (u + M, v) = F (u, v + N) = F (u + M, v + N)

In other words, the DFT is infinitely periodic in both the u
and v directions, with the periodicity determined by M and
N . Periodicity is also a property of the inverse DFT:

f(x, y) = f(x + M, y) = f(x, y + N) = f(x + M, y + N)

MATLAB – p. 212/333



The 2-D Discrete Fourier Transform

Fourier spectrum showing back-to-back half periods in the
interval [0,M − 1].

MATLAB – p. 213/333



The 2-D Discrete Fourier Transform

Centered spectrum in the interval [0,M − 1] obtained by
multiplying f(x) by (−1)x prior to computing the Fourier
transform.

MATLAB – p. 214/333



Computing and Visualizing the 2-D DFT in MATLAB

The DFT and its inverse are obtained in practice using a
fast Fourier transform (FFT) algorithm. The FFT of an
M × N image array f is obtained in the toolbox with
function fft2 , which has the simple syntax:

F=fft2(f)

This function returns a Fourier
transform that is also of size M×N ,
with the data arranged in the form
shown in figure; that is, with the ori-
gin of the data at the top left, and
with four quarter periods meeting at
the center of the frequency rectan-
gle.

MATLAB – p. 215/333



Computing and Visualizing the 2-D DFT in MATLAB

As explained later, it is necessary to pad the input image
with zeros when the Fourier transform is used for filtering.
In this case, the syntax becomes

F=fft2(f,P,Q)

With this syntax, fft2 pads the input with the required
number of zeros so that the resulting function is of size
P × Q.
The Fourier spectrum is obtained by using function abs :

S=abs(F)

which computes the magnitude (square root of the sum of
the squares of the real and imaginary parts) of each
element of the array.

MATLAB – p. 216/333



Computing and Visualizing the 2-D DFT in MATLAB

Visual analysis of the spec-
trum by displaying it as an im-
age is an important aspect of
working in the frequency do-
main. As an illustration, con-
sider the simple image, f , in
the figure.

MATLAB – p. 217/333



Computing and Visualizing the 2-D DFT in MATLAB

>> F=fft2(f);
>> S=abs(F);
>> imshow(S,[])

MATLAB – p. 218/333



Computing and Visualizing the 2-D DFT in MATLAB

IPT function fftshift can be used to move the origin of
the transform to the center of the frequency rectangle. The
syntax is

Fc=fftshift(F)

where F is the transform computed using fft2 and Fc is
the centered transform. Function fftshift operates by
swapping quadrants of F. For example if a=[1 2;3 4] ,
fftshift(a)=[4 3;2 1] .

MATLAB – p. 219/333



Computing and Visualizing the 2-D DFT in MATLAB

>> Fc=fftshift(F);
>> imshow(abs(Fc),[])

MATLAB – p. 220/333



Computing and Visualizing the 2-D DFT in MATLAB

>> S2=log(1+abs(Fc));
>> imshow(S2,[])

MATLAB – p. 221/333



Computing and Visualizing the 2-D DFT in MATLAB

Function ifftshift reverses the centering. Its syntax is
F=ifftshift(Fc)

This function can be used to convert a function that is
initially centered on a rectangle to a function whose center
is at the top, left corner of the rectangle.

MATLAB – p. 222/333



Computing and Visualizing the 2-D DFT in MATLAB

While on the subject of centering, keep in mind that the
center of the frequency rectangle is at (M/2, N/2) if the
variables u and v run from 0 to M − 1 and N − 1,
respectively. For example, the center of an 8 × 8 frequency
square is at point (4, 4), which is the 5th point along each
axis, counting up from (0, 0). If, as in MATLAB, the
variables run from 1 to M and 1 to N , respectively, then the
center of the square is at (M/2 + 1, N/2 + 1). In the case
of our 8 × 8 example, the center would be at point (5, 5),
counting up from (1, 1). Obviously, the two centers are the
same point, but this can be a source of confusion when
deciding how to specify the location of DFT centers in
MATLAB computations.

MATLAB – p. 223/333



Computing and Visualizing the 2-D DFT in MATLAB

If M and N are odd, the center for MATLAB computations
is obtained by rounding M/2 and N/2 down to the closest
integer. The rest of the analysis is as in the previous slide.
For example, the center of a 7 × 7 region is at (3, 3) if we
count up from (0, 0) and at (4, 4) if we count up from (1, 1).
Using MATLAB’s function floor , and keeping in mind that
the origin is at (1, 1), the center of the frequency rectangle
for MATLAB computations is at

[floor(M/2)+1,floor(N/2)+1]

The center given by this expression is valid both for odd
and even values of M and N .

MATLAB – p. 224/333



Computing and Visualizing the 2-D DFT in MATLAB

We point out that the inverse Fourier transform is computed
using function ifft2 , which has the basic syntax

f=ifft2(F)

where F is the Fourier transform and f is the resulting
image.

MATLAB – p. 225/333



Computing and Visualizing the 2-D DFT in MATLAB

If the input used to compute F is real, the inverse in theory
should be real. In practice, however output of ifft2 often
has very small imaginary components resulting from
round-off errors that are characteristic of floating point
computations. Thus, it is good practice to extract the real
part of the result after computing the inverse to obtain an
image consisting only of real values. The tow operations
can be combined:
>> f=real(ifft2(F));

As in the forward case, this function has the alternate
format ifft2(F,P,Q) , which pads F with zeros so that its
size is P × Q before computing the inverse.

MATLAB – p. 226/333



Filtering in the Frequency Domain

• Fundamental Concepts
• Basic Steps in DFT Filtering
• An M-function for Filtering in the Frequency Domain

MATLAB – p. 227/333



Fundamental Concepts

Formally, the discrete convolution of two function f(x, y)
and h(x, y) of size M × N is denoted by f(x, y) ∗ h(x, y)
and is defined by the expression

f(x, y) ∗ h(x, y) =
M−1
∑

m=0

N−1
∑

n=0

f(m,n)h(x − m, y − n).

The minus sign simply means that function h is mirrored
about the origin.

MATLAB – p. 228/333



Fundamental Concepts

f(x, y) = F−1 [F (u, v)] (x, y) =

=
1

MN

M−1
∑

u=0

N−1
∑

v=0

F (u, v)ej2π(ux/M+vy/N)

g(x, y) = F−1 [G(u, v)] (x, y) =

=
1

MN

M−1
∑

u=0

N−1
∑

v=0

G(u, v)ej2π(ux/M+vy/N)

MATLAB – p. 229/333



Fundamental Concepts

f ∗ g =

M−1X

m=0

N−1X

n=0

f(m, n)g(x − m, y − n) =

=

M−1X

m=0

N−1X

n=0

f(m, n)

 

1

MN

M−1X
u=0

N−1X
v=0

G(u, v)ej2π(u(x−m)/M+v(y−n)/N)

!

=

=
1

MN

M−1X

u=0

N−1X

v=0

G(u, v)ej2π(ux/M+vy/N)
·

·

 

M−1X

m=0

N−1X
n=0

f(m, n)e−j2π(um/M+vn/N)

!
=

=
1

MN

M−1X
u=0

N−1X
v=0

G(u, v)ej2π(ux/M+vy/N)
· F (u, v) =

= (F )−1 [F (u, v)G(u, v)]

MATLAB – p. 230/333



Fundamental Concepts

The foundation for linear filtering in both spatial and
frequency domains is the convolution theorem, which may
be written as

f(x, y) ∗ h(x, y) ⇔ H(u, v)F (u, v)

and, conversely,

f(x, y)h(x, y) ⇔ H(u, v) ∗ H(u, v)

Here, the symbol "∗" indicates convolution of the two
functions, and the expressions on the sides of the double
arrow constitute a Fourier transform pair.

MATLAB – p. 231/333



Fundamental Concepts

The previous equation is really nothing more than an
implementation for

1. flipping one function about the origin;

2. shifting that function with respect to the other by
changing the values of (x, y); and

3. computing a sum of products over all values of m and
n, for each displacement (x, y).

MATLAB – p. 232/333



Fundamental Concepts

Filtering in the spatial domain consists of convolving an
image f(x, y) with a filter mask, h(x, y). According to the
convolution theorem, we can obtain the same result in the
frequency domain by multiplying F (u, v) by H(u, v), the
Fourier transform of the spatial filter. It is customary to
refer to H(u, v) as the filter transfer function.

MATLAB – p. 233/333



Fundamental Concepts

Basically, the idea in frequency
domain filtering is to select a fil-
ter transfer function that modifies
F (u, v) in a specified manner. For
example, the filter in the figure has
a transfer function that, when mul-
tiplied by a centered F (u, v), at-
tenuates the high-frequency com-
ponents of F (u, v), while leaving
the low frequencies relatively un-
changed. Filters with this charac-
teristic are called lowpass filters.

MATLAB – p. 234/333



Fundamental Concepts

Based on the convolution theorem, we know that to obtain
the corresponding filtered image in the spatial domain we
simply compute the inverse Fourier transform of the
product H(u, v)F (u, v). It is important to keep in mind that
the process just described is identical to what we would
obtain by using convolution in the spatial domain, as long
as the filter mask, h(x, y), is the inverse Fourier transform
of H(u, v). In practice, spatial convolution generally is
simplified by using small masks that attempt to capture the
salient features of their frequency domain counterparts.

MATLAB – p. 235/333



Fundamental Concepts

As noted earlier images and their transforms are
automatically considered periodic if we elect to work with
DFTs to implement filtering. It is not difficult to visualize
that convolving periodic functions can cause interference
between adjacent periodics if the periods are close with
respect to the duration of the nonzero parts of the
functions. This interference, called wraparound error, can
be avoided by padding the functions with zeros, in the
followin manner.

MATLAB – p. 236/333



Fundamental Concepts

Assume that functions f(x, y) and h(x, y) are of size A × B
and C × D, respectively. We form two expanded (padded)
functions, both of size P × Q by appending zeros to f and
g. It can be shown that wraparound error is avoided by
choosing

P ≥ A + C − 1

and
Y ≥ B + D − 1

Most of the work in this chapter deals with functions of the
same size, M × N , in which case we use the following
padding values: P ≥ 2M − 1 and Q ≥ 2N − 1.

MATLAB – p. 237/333



Fundamental Concepts

function PQ=paddedsize(AB,CD,PARAM)

%PADDEDSIZE Computes padded sizes useful for FFT-based fil tering.

% PQ=PADDEDSIZE(AB), where AB is a two-element size vector,

% computes the two-element size vector PQ=2 * AB.

%

% PQ=PADDEDSIZE(AB,’PWR2’) computes the vector PQ such tha t

% PQ(1)=PQ(2)=2ˆnextpow2(2 * m), where m is MAX(AB).

%

% PQ=PADDEDSIZE(AB,CD), where AB and CD are two-element siz e

% vectors, computes the two-element size vector PQ. The elem ents

% of PQ are the smallest even integers greater than or equal to

% AB+CD-1.

%

% PQ=PADDEDSIZE(AB,CD,’PWR2’) computes the vector PQ such that

% PQ(1)=PQ(2)=2ˆnextpow2(2 * m), where m is MAX([AB CD]).

MATLAB – p. 238/333



Fundamental Concepts
if nargin==1

PQ=2* AB;

elseif nargin==2 & ˜ischar(CD)

PQ=AB+CD-1;

PQ=2* ceil(PQ/2);

elseif nargin==2

m=max(AB); %Maximum dimension.

% Find power-of-2 at least twice m.

P=2ˆnextpow2(2 * m);

PQ=[P,P];

elseif nargin==3

m=max([AB CD]); %Maximum dimension.

P=2ˆnextpow2(2 * m);

PQ=[P,P];

else

error(’Wrong number of inputs.’)

end

MATLAB – p. 239/333



Fundamental Concepts

With PQthus computed using function paddedsize, we use
the following syntax for fft2 to compute the FFT using
zero padding:

F=fft2(f,PQ(1),PQ(2))

This syntax simply appends enough zeros to f such that
the resulting image is of size PQ(1) ×PQ(2) , and then
computes the FFT as previously described. Note that
when using padding the filter function in the frequency
domain must be of size PQ(1) ×PQ(2) also.

MATLAB – p. 240/333



Fundamental Concepts

The image, f , in the figure is used to illustrate the
difference between filtering with and without padding. In
the following discussion we use function lpfilter to
generate a Gaussian lowpass filter with a specified value of
sigma (sig ).

MATLAB – p. 241/333



Fundamental Concepts
>> f=imread(’square_original.tif’);
>> [M,N]=size(f);
>> F=fft2(f);
>> sig=10;
>> H=lpfilter(’gaussian’,M,N,sig);
>> G=H.* F;
>> g=real(ifft2(G));
>> imshow(g,[])

MATLAB – p. 242/333



Fundamental Concepts
>> PQ=paddedsize(size(f));

%Compute the FFT with padding.
>> Fp=fft2(f,PQ(1),PQ(2));
>> Hp=lpfilter(’gaussian’,PQ(1),PQ(2),2 * sig);
>> Gp=Hp. * Fp;
>> gp=real(ifft2(Gp));
>> gpc=gp(1:size(f,1),1:size(f,2));
>> imshow(gp,[])
>> imshow(gpc,[])

MATLAB – p. 243/333



Basic Steps in DFT Filtering

1. Obtain the padding parameters using function
paddedsize :
PQ=paddedsize(size(f));

2. Obtain the Fourier transform with padding:
F=fft2(f,PQ(1),PQ(2));

3. Generate a filter function, H, of size PQ(1) ×PQ(2)
using any of the methods discussed later. The filter
must be in the format shown in the left side figure on
the next slide. If it is centered instead, as in the right
side figure on the next slide, let H=fftshift(H)
before using the filter.

MATLAB – p. 244/333



Basic Steps in DFT Filtering

MATLAB – p. 245/333



Basic Steps in DFT Filtering

4. Multiply the transform by the filter:
G=H.* F

5. Obtain the real part of the inverse FFT of G:
g=real(ifft2(G));

6. Crop the top, left rectangle to the original size:
g=g(1:size(f,1),1:size(f,2));

MATLAB – p. 246/333



Basic Steps in DFT Filtering

MATLAB – p. 247/333



Basic Steps in DFT Filtering

It is well known from linear system theory that, under
certain mild conditions, inputting an impulse into a linear
system completely characterizes the system. When
working with finite, discrete data, as we do, the response of
a linear system, including the response to an impulse, also
is finite. If the linear system is just a spatial filter, then we
can completely determine the filter simply by observing its
response to an impulse. A filter determined in this manner
is called a finite-impulse-response (FIR) filter.

MATLAB – p. 248/333



An M-function for Filtering in the Frequency Domain

function g=dftfilt(f,H)

%DFTFILT Performs frequency domain filtering.

% G=DFTFILT(F,H) filters F in the frequency domain using the

% filter transfer function H. The output, G, is the filtered

% image, which has the same size as F. DFTFILT automatically p ads

% F to be the same size as H. Function PADDEDSIZE can be used

% to determine an appropriate size for H.

%

% DFTFILT assumes that F is real and that H is a real, uncentere d,

% circularly-symmetric filter function.

%Obtain the FFT of the padded input.

F=fft2(f,size(H,1),size(H,2));

%Perform filtering.

g=real(ifft2(H. * F));

%Crop to original size.

g=g(1:size(f,1),1:size(f,2));

MATLAB – p. 249/333



Obtaining Frequency Domain Filters from Spatial Filters

Function freqz2 computes the frequency response of FIR
filters. The result is the desired filter in the frequency
domain. Th syntax of interest in the present discussion is

H=freqz2(h,R,C)

where h is a 2-D spatial filter and H is the corresponding
2-D frequency domain filter. Here, R is the number of rows,
and C the number of columns that we wish filter H to have.
Generally, we let R=PQ(1) and C=PQ(2) . If freqz2 is
written without an output argument, the absolute value of H
is displayed on the MATLAB desktop as a 3-D perspective
plot.

MATLAB – p. 250/333



Obtaining Frequency Domain Filters from Spatial Filters

>> f=imread(’bld.tif’);

MATLAB – p. 251/333



Obtaining Frequency Domain Filters from Spatial Filters

>> F=fft2(f);
>> S=fftshift(log(1+abs(F)));
>> S=gscale(S);
>> imshow(S)

MATLAB – p. 252/333



Obtaining Frequency Domain Filters from Spatial Filters

>> h=fspecial(’sobel’)’

h =

1 0 -1
2 0 -2
1 0 -1

>> freqz2(h)

MATLAB – p. 253/333



Obtaining Frequency Domain Filters from Spatial Filters

>> PQ=paddedsize(size(f));
>> H=freqz2(h,PQ(1),PQ(2));
>> H1=ifftshift(H);

MATLAB – p. 254/333



Obtaining Frequency Domain Filters from Spatial Filters

>> imshow(abs(H),[])
>> figure, imshow(abs(H1),[])

MATLAB – p. 255/333



Obtaining Frequency Domain Filters from Spatial Filters

>> gs=imfilter(double(f),h);
>> gf=dftfilt(f,H1);
>> imshow(gs,[])
>> figure,imshow(gf,[])

MATLAB – p. 256/333



Obtaining Frequency Domain Filters from Spatial Filters

>> figure, imshow(abs(gs),[])
>> figure, imshow(abs(gf),[])

MATLAB – p. 257/333



Obtaining Frequency Domain Filters from Spatial Filters

>> figure, imshow(abs(gs)>0.2 * abs(max(gs(:))))
>> figure, imshow(abs(gf)>0.2 * abs(max(gf(:))))

MATLAB – p. 258/333



Obtaining Frequency Domain Filters from Spatial Filters

>> d=abs(gs-gf);
>> max(d(:))

ans =

5.5156e-013

>> min(d(:))

ans =

0

MATLAB – p. 259/333



Chapter 5

Edge Detection

MATLAB – p. 260/333



Edge detection

• Edges can be found in an image, where sudden
intesity changing is sensed.

• The changing can be determined from the derivatives
of the intensity function.

• In an image we should use gradient instead of
derivates.

• Gradient vector:

[

∂f
∂x
∂f
∂y

]

• Length of the gradient vector:

√

(

∂f

∂x

)2

+

(

∂f

∂y

)2

MATLAB – p. 261/333



edge function

MATLAB function:
[g,t]=edge(f,’method’,parameters)

Possible method values:
• ’prewitt’

• ’sobel’

• ’roberts’

• ’log’

• ’zerocross’

• ’canny’

MATLAB – p. 262/333



Prewitt detector

Masks:







−1 −1 −1

0 0 0

1 1 1













−1 0 1

−1 0 1

−1 0 1







MATLAB function:
[g,t]=edge(f,’prewitt’,T,dir)

MATLAB – p. 263/333



Sobel detector

Masks:







−1 −2 −1

0 0 0

1 2 1













−1 0 1

−2 0 2

−1 0 1







MATLAB function:
[g,t]=edge(f,’sobel’,T,dir)

MATLAB – p. 264/333



Roberts detector

Masks:

[

−1 0

0 1

] [

0 −1

1 0

]

MATLAB function:
[g,t]=edge(f,’roberts’,T,dir)

MATLAB – p. 265/333



Laplacion of Gaussian detector

Mask equation: −
[

r2 − σ2

σ4

]

e−
r2

2σ2

This mask smoothes the image, then makes the second
derivative. In this filtered image the edge detector
searches 0-crossings.

MATLAB function:
[g,t]=edge(f,’log’,T,sigma)

MATLAB – p. 266/333



Zero-crossing detector

It is very similar with the previous one, but the filter mask
(H) can be determined by the user.

MATLAB function:
[g,t]=edge(f,’zerocross’,T,H)

MATLAB – p. 267/333



Canny detector

1. The image is smoothed using a Gaussian filter with a
specified standard deviation, σ, to reduce noise.

2. The local gradient and edge direction are computed at
each point.

3. The computed edges are thined by nonmaximal
suppression.

4. The ridge pixels are then thresholded using two
thresholds, T1 and T2, with T1 < T2. Ridge pixels with
values greater than T2 are said to be "strong" edge
pixels. Ridge pixels with values between T1 and T2
are said to be "weak" edge pixels.

MATLAB – p. 268/333



Canny detector

5. Finally, the algorithm performs edge linking by
incorporation the weak pixels that are 8-connected to
the strong pixels.

MATLAB function:
[g,t]=edge(f,’canny’,T,sigma)

MATLAB – p. 269/333



Chapter 6

Morphological Image
Processing

MATLAB – p. 270/333



Dilation

IPT function imdilate performs dilation. Its basic calling
syntax is

A2=imdilate(A,B)

where A and A2 are binary images, and B is a matrix of 0s
and 1s that specifies the structuring element.

MATLAB – p. 271/333



Dilation

>> A=imread(’broken-text.tif’);
>> B=[0 1 0;1 1 1;0 1 0];
>> A2=imdilate(A,B);

MATLAB – p. 272/333



Structuring Element

IPT function strel constructs structuring elements with a
variety of shapes and sizes. Its basic syntax is

se=strel(shape,parameters)

where shape is a string specifying the desired shape, and
parameters is a list of parameters that specify
information about the shape, such as its size.

MATLAB – p. 273/333



Structuring Element

Syntax Forms Description

strel(’diamond’,R) Creates a flat, diamond-shaped structuring element,
where R specifies the distance from the structuring el-
ement origin to the extreme points of the diamond.

strel(’disk’,R) Creates a flat, disk-shaped structuring element with
radius R.

strel(’line’,LEN,DEG) Creates a flat, linear structuring element, where LEN

specifies the length, and DEGspecifies the angle (in
degrees) of the line, as measured in a counterclock-
wise direction from the horizontal axes.

strel(’octagon’,R) Creates a flat, octagonal structuring element, where
R specifies the distance from the structuring element
origin to the sides of the octagon, as measured along
the horizontal and vertical axes. R must be a nonneg-
ative multiple of 3.

MATLAB – p. 274/333



Structuring Element

Syntax Forms Description

strel(’pair’,OFFSET) Creates a flat structuring element containing two
members. One member is located at the origin.
The second member’s location is specified by
the vector OFFSET, which must be a two-element
vector of integers.

strel(’periodicline’,P,V) Creates a flat structuring element containing
2* P+1 members. V is a two-element vector con-
taining integer-valued row and column offsets.
One structuring element member is located at
the origin. The other members are located at
1* V, -1 * V, 2* V, -2 * V, ... , P* V, and -P * V.

MATLAB – p. 275/333



Structuring Element

Syntax Forms Description

strel(’rectangle’,MN) Creates a flat, rectangle-shaped structuring element,
where MN specifies the size. MN must be a two-
element vector of nonnegative integers. The first ele-
ment of MNis the number of rows in the structuring el-
ement; the second element is the number of columns.

strel(’square’,W) Creates a square structuring element whose width is
Wpixels. Wmust be a nonnegative integer scalar.

strel(NHOOD) Creates a structuring element of arbitrary shape.
NHOODis a matrix of 0s and 1s that specifies the
shape.

MATLAB – p. 276/333



Dilation

>> originalI=imread(’cameraman.tif’);
>> se=strel(’disk’,2);
>> dilatedI=imdilate(originalI,se);

MATLAB – p. 277/333



Erosion

>> A=imread(’wirebond-mask.tif’);
>> se=strel(’disk’,10);
>> A2=imerode(A,se);
>> se=strel(’disk’,5);
>> A3=imerode(A,se);
>> A4=imerode(A,strel(’disk’,20));
>> subplot(2,2,1), imshow(A),...
subplot(2,2,2), imshow(A2),...
subplot(2,2,3), imshow(A3),...
subplot(2,2,4), imshow(A4)

MATLAB – p. 278/333



Erosion

MATLAB – p. 279/333



Labeling Connected Components

IPT function bwlabel computes all the connected
components in a binary image. The calling syntax is

[L,num]=bwlabel(f,conn)

where f is an input binary image and conn specifies the
desired connectivity (either 4 or 8). Output L is called a
label matrix, and num (optional) gives the total number of
connected components found. If parameter conn is
omitted, its value defaults to 8.

MATLAB – p. 280/333



Labeling Connected Components

>> f=imread(’ten-objects.tif’);

>> [L,n]=bwlabel(f);

>> [r,c]=find(L==3);

>> rbar=mean(r);

>> cbar=mean(c);

>> imshow(f)

>> hold on

>> for k=1:n

[r,c]=find(L==k);

rbar=mean(r);

cbar=mean(c);

plot(cbar,rbar,’Marker’,’o’, ’MarkerEdgeColor’,’k’,. ..

’MarkerFaceColor’,’k’, ’MarkerSize’,10)

plot(cbar,rbar,’Marker’,’ * ’, ’MarkerEdgeColor’,’w’)

end

MATLAB – p. 281/333



Labeling Connected Components

MATLAB – p. 282/333



Chapter 7

Color Image Processing

MATLAB – p. 283/333



Content

• Color Image Representation in MATLAB
• Converting to Other Color Spaces

MATLAB – p. 284/333



Color Image Representation in MATLAB

• RGB Images
• Indexed Images
• IPT Functions for Manipulating RGB and Indexed

Images

MATLAB – p. 285/333



RGB Images

An RGB color image is an M × N × 3 array of color pixels,
where each color pixel is a triplet corresponding to the red,
green, and blue components of an RGB image at a specific
spatial location.

MATLAB – p. 286/333



RGB Images

The data class of the component images determines their
range of values. If an RGB images is of class double , the
range of values is [0, 1]. Similarly, the range of values is
[0, 255] of [0, 65535] for RGB images of class uint8 or
uint16 , respectively. The number of bits used to
represent the pixel values of the component images
determines the bit depth of an RGB image.

MATLAB – p. 287/333



RGB Images

Let fR , fG , and fB represent three RGB component
images. An RGB image is formed from these images by
using the cat (concatenate) operator to stack the images:

rgb_image=cat(3,fR,fG,fB)

The order in which images are placed in the operand
matters. In general, cat(dim,A1,A2,...) concatenates
the arrays along the dimension specified by dim . For
example, if dim=1 , the arrays are arranged vertically, if
dim=2 , they are arranged horizontally, and, if dim=3 , they
are stacked in the third dimension.

MATLAB – p. 288/333



RGB Images

If all component images are identical, the result is a
gray-scale image. Let rgb_image denote an RGB image.
The following commands extract the three component
images:
>> fR=rgb_image(:,:,1);
>> fG=rgb_image(:,:,2);
>> fB=rgb_image(:,:,3);

MATLAB – p. 289/333



RGB Images

The RGB color space usually is shown graphically as an
RGB color cube, as depicted in the figure. The vertices of
the cube are the primary (red, green, and blue) and
secondary (cyan, magenta, and yellow) colors of light.

MATLAB – p. 290/333



RGB Images
function rgbcube(vx,vy,vz)

%RGBCUBE Displays an RGB cube on the MATLAB desktop.

% RGBCUBE(VX,VY,VZ) displays an RGB color cube, viewed from point

% (VX,VY,VZ). With no input arguments, RGBCUBE uses (10,10, 4)

% as the default viewing coordinates. To view individual col or

% planes, use the following viewing coordinates, where the f irst

% color in the sequence is the closest to the viewing axis, and the

% other colors are as seen from that axis, proceeding to the ri ght

% (ob above), and then moving clockwise.

%

% --------------------------------------------

% COLOR PLANE ( VX, VY, VZ)

% --------------------------------------------

% Blue-Magenta-White-Cyan ( 0, 0, 10)

% Red-Yellow-White-Magenta ( 10, 0, 0)

% Green-Cyan-White-Yellow ( 0, 10, 0)

% Black-Red-Magenta-Blue ( 0,-10, 0)

% Black-Blue-Cyan-Green (-10, 0, 0)

% Black-Red-Yellow-Green ( 0, 0,-10)

MATLAB – p. 291/333



RGB Images

%Set up paramteres for function patch.

vertices_matrix=[0 0 0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0;1 1 1];

faces_matrix=[1 5 6 2;1 3 7 5;1 2 4 3;2 4 8 6;3 7 8 4;5 6 8 7];

colors=vertices_matrix;

%The order of the cube vertices was selected to be the same as

%the order of the (R,G,B) colors (e.g., (0,0,0) corresponds to

%black, (1,1,1) corresponds to white, and so on.)

%Generate RGB cube using function patch.

patch(’Vertices’,vertices_matrix,’Faces’,faces_matr ix,...

’FaceVertexCData’,colors,’FaceColor’,’interp’,...

’EdgeAlpha’,0)

MATLAB – p. 292/333



RGB Images

%Set up viewing point.

if nargin==0

vx=10; vy=10; vz=4;

elseif nargin ˜=3

error(’Wrong number of inputs.’)

end

axis off

view([vx, vy, vz])

axis square

MATLAB – p. 293/333



Indexed Images
An indexed image has two components: a data matrix of integers, X,
and a colormap matrix , map. Matrix map is an m × 3 array of class
double containing floating-point values in the range [0, 1]. The length,
m, of the map is equal to the number of colors it defines. Each row of
mapspecifies the red, green, and blue components of a single color.
An indexed images uses "direct mapping" of pixel intensity values to
colormap values. The color of each pixel is determined by using the
corresponding value of integer matrix X as a pointer into map. If X is of
class double , then all of its components with value 2 point to the
second row, and so on. If X is of class uint8 or uint16 , then all
components with value 0 point to the first row in map, all components
with value 1 point to the second row, and so on.

MATLAB – p. 294/333



Indexed Images

MATLAB – p. 295/333



Indexed Images

To display an indexed image we write
>> imshow(X,map)

or, alternatively,
>> image(X)
>> colormap(map)

A colormap is stored with an indexed image and is
automatically loaded with the image when function imread
is used to load the image.
>>[X,map]=imread(...)

MATLAB – p. 296/333



Indexed Image

Sometimes it is necessary to approximate an indexed
image by one with fewer colors. For this we use function
imapprox , whose syntax is

[Y,newmap]=imapprox(X,map,n)

This function returns an array Y with colormap newmap,
which has at most n colors. The input array X can be of
class uint8 , uint16 , or double . The output Y is of class
uint8 if n is less than or equal to 256. If n is greater than
256, Y is of class double .

MATLAB – p. 297/333



Indexed Images

MATLAB provides several predefined color maps,
accessed using the command
>> colormap(map_name)

which sets the colormap to the matrix map_name; an
example is
>> colormap(copper)

where copper is one of the predefined MATLAB
colormaps. If the last image displayed was an indexed
image, this command changes its colormap to copper .
Alternatively, the image can be displayed directly with the
desired colormap:
>> imshow(X,copper)

MATLAB – p. 298/333



Indexed Images
Name Description

autumn Varies smoothly from red, through orange, to yellow.

bone A gray-scale colormap with a higher value for the blue component.
This colormap is useful for adding an "electronic" look to gray-scale
images.

colorcube Contains as many regularly spaced colors in RGB color space as pos-
sible, while attempting to provide more steps of gray, pure red, pure
green, and pure blue.

cool Consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

copper Varies smoothly from black to bright copper.

flag Consists of the colors red, white, blue, and black. This colormap com-
pletely changes color with each index increment.

gray Returns a linear gray-scale colormap.

hot Varies smoothly from black, through shades of red, orange, and yellow,
to white.

MATLAB – p. 299/333



Indexed Images
Name Description

hsv Varies the hue component of the hue-saturation-value color model. The
colors begin with red, pass through yellow, green, cyan, blue, magenta,
and return to red. The colormap is particularly appropriate for displaying
periodic functions.

jet Ranges from blue to red, and passes through the colors cyan, yellow, and
orange.

lines Produces a colormap of colors specified by the ColorOrder property and
a shade of gray. Consult online help regarding function ColorOrder .

pink Contains pastel shades of pink. The pink colormap provides sepia tone
colorization of grayscale photographs.

prism Repeats the six colors red, orange, yellow, green, blue, and violet.

spring Consists of colors that are shades of magenta and yellow.

summer Consists of colors that are shades of green and yellow.

white This is an all white monochrome colormap.

winter Consists of colors that are shades of blue and green.

MATLAB – p. 300/333



Manipulating RGB and Indexed Images

Function Purpose

dither Creates an indexed image from an RGB image by
dithering.

grayslice Creates an indexed image from a gray-scale intensity
image by multilevel thresholding.

gray2ind Creates an indexed image from a gray-scale intensity
image.

ind2gray Creates a gray-scale intensity image from an indexed
image.

rgb2ind Creates an indexed image from an RGB image.

ind2rgb Creates an RGB image from an indexed image.

rgb2gray Creates a gray-scale image from an RGB image.

MATLAB – p. 301/333



Manipulating RGB and Indexed Images

>> f=imread(’iris.tif’);

MATLAB – p. 302/333



Manipulating RGB and Indexed Images

>> [X1,map1]=rgb2ind(f,8,’nodither’);
>> imshow(X1,map1)

MATLAB – p. 303/333



Manipulating RGB and Indexed Images

>> [X2,map2]=rgb2ind(f,8,’dither’);
>> imshow(X2,map2)

MATLAB – p. 304/333



Manipulating RGB and Indexed Images

>> g=rgb2gray(f);
>> g1=dither(g);
>> figure, imshow(g); figure, imshow(g1)

MATLAB – p. 305/333



Converting to Other Color Spaces

• NTSC Color Space
• The YCbCr Color Space
• The HSV Color Space
• The CMY and CMYK Color Spaces
• The HSI Color Space

MATLAB – p. 306/333



NTSC Color Space

The NTSC Color System is used in television in the United
States. One of the main advantages of this format is that
gray-scale information is separate from color data. In the
NTSC format, image data consists of three components:

• luminance (Y)
• hue (I)
• saturation (Q)

The luminance component represents gray-scale
information, and the other two components carry the color
information of a TV signal.

MATLAB – p. 307/333



NTSC Color Space
The YIQ components are obtained from the RGB
components of an image using the transfromation







Y

I

Q






=







0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312













R

G

B







Note that the elements of the first row sum to 1 and the
elements of the next two rows sum to 0. This is as
expected because for a gray-scale image all the RGB
components are equal, so the I and Q components should
be 0 for such an image.

MATLAB – p. 308/333



NTSC Color Space

Function rgb2ntsc performs the transformation:

yiq_image=rgb2ntsc(rgb_image)

where the input RGB image can be of class uint8 ,
uint16 , or double . The output image is an M × N × 3
array of class double . Component image
yiq_image(:,:,1) is the luminance,
yiq_image(:,:,2) is the hue, and yiq_image(:,:,3)
is the saturation image.

MATLAB – p. 309/333



NTSC Color Space

Similarly, the RGB components are obtained from the YIQ
components using the transformation:







R

G

B






=







1.000 0.956 0.621

1.000 −0.272 −0.647

1.000 −1.106 1.703













Y

I

Q







IPT function ntsc2rgb implements this equation:

rgb_image=ntsc2rgb(yiq_image)

Both the input and output images are of class double .

MATLAB – p. 310/333



The YCbCr Color Space

The YCbCr color space is used widely in digital video. In
this format, luminance information is represented by a
single component, Y, and color information is stored as two
color-difference components, Cb and Cr. Component Cb is
the difference between the blue component and a
reference value, and component Cr is the difference
between the red component and a reference value.

MATLAB – p. 311/333



The YCbCr Color Space

The transformation used by IPT to convert from RGB to
YCbCr is






Y

Cb

Cr






=







16

128

128






+







65.481 128.553 24.966

−37.797 −74.203 112.000

112.000 −93.786 −18.214













R

G

B







MATLAB – p. 312/333



The YCbCr Color Space

The conversion function is

ycbcr_image=rgb2ycbcr(rgb_image)

The input RGB image can be of class uint8 , uint16 , or
double . The output image is of the same class as the
input. A similar transformation converts from YCbCr back
to RGB:

rgb_image=ycbcr2rgb(ycbcr_image)

The input YCbCr image can be of class uint8 , uint16 , or
double . The output image is of the same class as the
input.

MATLAB – p. 313/333



The HSV Color Space

HSV (hue, saturation, value) is one of several color
systems used by people to select colors from a color wheel
or palette. This color system is considerably closer than
the RGB system to the way in which humans experience
and describe color sensations. In artist’s terminology, hue,
saturation, and value refer approximately to tint, shade,
and tone.

MATLAB – p. 314/333



The HSV Color Space

MATLAB – p. 315/333



The HSV Color Space

The MATLAB function for converting from RGB to HSV is
rgb2hsv , whose syntax is

hsv_image=rgb2hsv(rgb_image)

The input RGB image can be of class uint8 , uint16 , or
double ; the output image is of class double . The function
for converting from HSV back to RGB is hsv2rgb :

rgb_image=hsv2rgb(hsv_image)

The input image must be of class double . The output also
is of class double .

MATLAB – p. 316/333



The CMY Color Space

The conversion is performed using the simple equation






C

M

Y






=







1

1

1






−







R

G

B







where the assumption is that all color values have been
normaized to the range [0, 1].

MATLAB – p. 317/333



The CMY Color Space

Function imcomplement can be used to convert from
RGB to CMY:

cmy_image=imcomplement(rgb_image)

We use this function also to convert a CMY image to RGB:

rgb_image=imcomplement(cmy_image)

MATLAB – p. 318/333



The HSI Color Space

When humans view a color object, we tend to describe it
by its hue, saturation, and brightness. Hue is an attribute
that describes a pure color, whereas saturation gives a
mesaure of the degree to which a pure color is diluted by
white light. Brightness is a subjective descriptor that is
practically impossible to measure. It embodies the
achromatic description of intensity and is a key factor in
describing color sensation. We do know that intensity (gray
level) is a most useful descriptor of monochromatic
images. This quantity definitely is measurable and easily
interpretable.
The color space we are about to present, called the HSI
(hue, saturation, intensity) color space.

MATLAB – p. 319/333



Converting Colors from RGB to HSI

Given an image in RGB color format, the H component of
each RGB pixel is obtained usint the equation

H =

{

θ ifB ≤ G

360◦ − θ ifB > G

with

θ = cos−1







1
2
[(R − G) + (R − B)]

√

(R − G)2 + (R − B) (G − B)







MATLAB – p. 320/333



Converting Colors from RGB to HSI

The saturation component is given by

S = 1 −
3

(R + G + B)
[min(R,G,B)]

Finally, the intensity component is given by

I =
1

3
(R + G + B)

MATLAB – p. 321/333



Converting Colors from RGB to HSI

It is assumed that the RGB values have been normalized
to the range [0, 1], and that angle θ is measured with
respect to the red axis of the HSI space. Hue can be
normalized to the range [0, 1] by dividing by 360◦ all values
resulting from the equation for H. The other two HSI
components already are in this range if the given RGB
values are in the interval [0, 1].

MATLAB – p. 322/333



Converting Colors from RGB to HSI

function hsi=rgb2hsi(rgb)

%RGB2HSI Converts an RGB image to HSI.

% HSI=RGB2HSI(RGB) converts an RGB image to HSI. The input im age

% is assumed to be of size M-by-N-by-3, where the third dimens ion

% accounts for three image planes: red, green, and blue, in th at

% order. If all RGB component images are equal, the HSI conver sion

% is undefined. The input image can be of class double (with va lues

% in the range [0,1]), uint8, or uint16.

%

% The output image, HSI, is of class double, where:

% hsi(:,:,1)=hue image normalized to the range [0,1] by

% dividing all angle values by 2 * pi.

% hsi(:,:,2)=saturation image, in the range [0,1].

% hsi(:,:,3)=intensity image, in the range [0,1].

MATLAB – p. 323/333



Converting Colors from RGB to HSI

% Extract the individual component images.

rgb=im2double(rgb);

r=rgb(:,:,1);

g=rgb(:,:,2);

b=rgb(:,:,3);

% Implement the conversion equations.

num=0.5 * ((r-g)+(r-b));

den=sqrt((r-g).ˆ2+(r-b). * (g-b));

theta=acos(num./(den+eps));

H=theta;

H(b>g)=2 * pi-H(b>g);

H=H/(2 * pi);

MATLAB – p. 324/333



Converting Colors from RGB to HSI

num=min(min(r,g),b);
den=r+g+b;
den(den==0)=eps;
S=1-3. * num./den;

H(S==0)=0;

I=(r+g+b)/3;

% Combine all three results into an hsi image.
hsi=cat(3,H,S,I);

MATLAB – p. 325/333



Converting Color from HSI to RGB

Given values of HSI in the interval [0, 1], we now find the
corresponding RGB values in the same range. The
applicable equations depend on the values of H. There are
three sectors of interest, corresponding to the 120◦

intervals in the separation of primaries. We begin by
multiplying H by 360◦, which returns the hue to its original
range of [0◦, 360◦].

MATLAB – p. 326/333



Converting Color from HSI to RGB

RG sector (0◦ ≤ H < 120◦): When H is in this sector, the
RGB components are given by the equations

B = I (1 − S)

R = I

[

1 +
S cos H

cos(60◦ − H)

]

and
G = 3I − (R + B)

MATLAB – p. 327/333



Converting Color from HSI to RGB

GB sector (120◦ ≤ H < 240◦): If the given value of H is in
this sector, we first subtract 120◦ from it:

H = H − 120◦

Then the RGB components are

G = I (1 − S)

B = I

[

1 +
S cos H

cos(60◦ − H)

]

R = 3I − (G + B)

MATLAB – p. 328/333



Converting Color from HSI to RGB

BR sector (240◦ ≤ H ≤ 360◦): Finally, if H is in this range,
we subtract 240◦ from it:

H = H − 240◦

Then the RGB components are

R = I (1 − S)

G = I

[

1 +
S cos H

cos(60◦ − H)

]

B = 3I − (R + G)

MATLAB – p. 329/333



Converting Color from HSI to RGB

function rgb=hsi2rgb(hsi)

%HSI2RGB Converts an HSI image to RGB.

% RGB=HSI2RGB(HSI) converts an HSI image to RGB, where HSI

% is assumed to be of class double with:

% hsi(:,:,1)=hue image, assumed to be in the range

% [0,1] by having been divided by 2 * pi.

% hsi(:,:,2)=saturation image, in the range [0,1].

% hsi(:,:,3)=intensity image, in the range [0,1].

%

% The components of the output image are:

% rgb(:,:,1)=red.

% rgb(:,:,2)=green.

% rgb(:,:,3)=blue.

MATLAB – p. 330/333



Converting Color from HSI to RGB

% Extract the individual HSI component images.

H=hsi(:,:,1) * 2* pi;

S=hsi(:,:,2);

I=hsi(:,:,3);

% Implement the conversion equations.

R=zeros(size(hsi,1),size(hsi,2));

G=zeros(size(hsi,1),size(hsi,2));

B=zeros(size(hsi,1),size(hsi,2));

% RG sector (0<=H<2 * pi/3).

idx=find((0<=H)&(H<2 * pi/3));

B(idx)=I(idx). * (1-S(idx));

R(idx)=I(idx). * (1+S(idx). * cos(H(idx))./...

cos(pi/3-H(idx)));

G(idx)=3 * I(idx)-(R(idx)+B(idx));

MATLAB – p. 331/333



Converting Color from HSI to RGB
% BG sector (2 * pi/3<=H<4 * pi/3).

idx=find((2 * pi/3<=H)&(H<4 * pi/3));

R(idx)=I(idx). * (1-S(idx));

G(idx)=I(idx). * (1+S(idx). * cos(H(idx)-2 * pi/3)./...

cos(pi-H(idx)));

B(idx)=3 * I(idx)-(R(idx)+G(idx));

% BR sector.

idx=find((4 * pi/3<=H)&(h<=2 * pi));

G(idx)=I(idx). * (1-S(idx));

B(idx)=I(idx). * (1+S(idx). * cos(H(idx)-4 * pi/3)./...

cos(5 * pi/3-H(idx)));

R(idx)=3 * I(idx)-(G(idx)+B(idx));

% Combine all three results into an RGB image. Clip to [0,1] to

% compensate for floating-point arithmetic rounding effec ts.

rgb=cat(3,R,G,B);

rgb=max(min(rgb,1),0);

MATLAB – p. 332/333



References

• R. C. Gonzalez, R. E. Woods, S. L. Ed-
dins: Digital Image Processing Using
MATLAB. Pearson Prentice Hall, 2004

• R. C. Gonzalez, R. E. Woods: Digital Image
Processing. Prentice Hall, 2002

• http://www.imageprocessingplace.com

• MATLAB Documentation
(http://www.mathworks.com )

MATLAB – p. 333/333


	Contents
	Chapter 1
	Content
	Digital Image Representation
	Coordinate Conventions
	Images as Matrices
	Reading Images
	Supported Image Formats
		exttt {size} function
	Displaying Images
	Displaying Images
	Displaying Images
	Displaying Images
	Writing Images
	Writing Images
	Writing Images
	Writing Images
	Writing Images
	Writing Images
	Writing Images
	Data Classes
	Image Types
	Intensity Images
	Binary Images
	Converting between Data Classes
	large Converting between Image Classes and Types
	large Converting between Image Classes and Types
	large Converting between Image Classes and Types
	large Converting between Image Classes and Types
	large Converting between Image Classes and Types
	large Converting between Image Classes and Types
	Array Indexing
	Vector Indexing
	Vector Indexing
	Vector Indexing
	Vector Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Matrix Indexing
	Selecting Array Dimensions
	Some Important Standard Arrays
	Some Important Standard Arrays
	M-Function Programming
	M-Files
	M-Files
	M-Files
	Operators
	Arithmetic Operators
	Arithmetic Operators
	Arithmetic Operators
	Arithmetic Operators
	Image Arithmetic Functions
	An Example
	An Example
	An Example
	An Example
	Some Words about 	exttt {max}
	Relational Operations
	Relational Operators
	Logical Operators
	Logical Operators
	Logical Functions
	Logical Functions
	Logical Functions
	Logical Functions
	large Some Important Variables and Constants
	Flow Control
		exttt {if}, 	exttt {else}, and 	exttt {elseif}
		exttt {if}, 	exttt {else}, and 	exttt {elseif}
		exttt {for}
		exttt {for}
		exttt {for}
		exttt {for}
		exttt {while}
		exttt {while}
		exttt {break}
		exttt {continue}
		exttt {switch}
		exttt {switch}
		exttt {return}
		exttt {try...catch}
	Code Optimization
	Vectorizing Loops
	A Simple Example
	2-D indexing
	large Comparison 	exttt {for} loops vs. vectorization
	large Comparison 	exttt {for} loops vs. vectorization
	large Comparison 	exttt {for} loops vs. vectorization
	large Comparison 	exttt {for} loops vs. vectorization
	Preallocating Arrays
	Interactive I/O
	Interactive I/O
	Interactive I/O
	Interactive I/O
	Save variables on disk
	Load variables from disk
	Display directory listing
	Cell Arrays
	large Pass or return variable numbers of arguments
	Structures
	Chapter 2
	Plotting Your Data
	Plotting Your Data
	Creating Plots
	Creating Plots
	Specifying Line Style
	Specifying the Color and Size of Lines
	Adding Plots to an Existing Graph
	Plotting Only the Data Points
	Plotting Markers and Lines
	Line Plots of Matrix Data
	Plotting with Two Y-Axes
	large Combining Linear and Logarithmic Axes
	large Combining Linear and Logarithmic Axes
	Specifying Ticks and Tick Labels
	Specifying Ticks and Tick Labels
	large Setting Line Properties on an Existing Plot
	Chapter 3
	Content
	Background
	Intensity Transformation Functions
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	Function 	exttt {imadjust}
	large Histogram Processing and Function Plotting
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	large Generating and Plotting Image Histograms
	Some Useful Plotting Function
	Some Useful Plotting Function
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Histogram Matching
	Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Linear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	Nonlinear Spatial Filtering
	IPT Standard Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Linear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	Nonlinear Spatial Filters
	Chapter 4
	Content
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	The 2-D Discrete Fourier Transform
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	
ormalsize Computing and Visualizing the 2-D DFT in MATLAB
	Filtering in the Frequency Domain
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Fundamental Concepts
	Basic Steps in DFT Filtering
	Basic Steps in DFT Filtering
	Basic Steps in DFT Filtering
	Basic Steps in DFT Filtering
	Basic Steps in DFT Filtering
	
ormalsize An M-function for Filtering in the Frequency Domain
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	
ormalsize Obtaining Frequency Domain Filters from Spatial Filters
	Chapter 5
	Edge detection
		exttt {edge} function
	Prewitt detector
	Sobel detector
	Roberts detector
	Laplacion of Gaussian detector
	Zero-crossing detector
	Canny detector
	Canny detector
	Chapter 6
	Dilation
	Dilation
	Structuring Element
	Structuring Element
	Structuring Element
	Structuring Element
	Dilation
	Erosion
	Erosion
	Labeling Connected Components
	Labeling Connected Components
	Labeling Connected Components
	Chapter 7
	Content
	large Color Image Representation in MATLAB
	RGB Images
	RGB Images
	RGB Images
	RGB Images
	RGB Images
	RGB Images
	RGB Images
	RGB Images
	Indexed Images
	Indexed Images
	Indexed Images
	Indexed Image
	Indexed Images
	Indexed Images
	Indexed Images
	large Manipulating RGB and Indexed Images
	large Manipulating RGB and Indexed Images
	large Manipulating RGB and Indexed Images
	large Manipulating RGB and Indexed Images
	large Manipulating RGB and Indexed Images
	Converting to Other Color Spaces
	NTSC Color Space
	NTSC Color Space
	NTSC Color Space
	NTSC Color Space
	The YCbCr Color Space
	The YCbCr Color Space
	The YCbCr Color Space
	The HSV Color Space
	The HSV Color Space
	The HSV Color Space
	The CMY Color Space
	The CMY Color Space
	The HSI Color Space
	large Converting Colors from RGB to HSI
	large Converting Colors from RGB to HSI
	large Converting Colors from RGB to HSI
	large Converting Colors from RGB to HSI
	large Converting Colors from RGB to HSI
	large Converting Colors from RGB to HSI
	large Converting Color from HSI to RGB
	large Converting Color from HSI to RGB
	large Converting Color from HSI to RGB
	large Converting Color from HSI to RGB
	large Converting Color from HSI to RGB
	large Converting Color from HSI to RGB
	large Converting Color from HSI to RGB
	References

