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Chapter 1

Fundamentals
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Content
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• Reading Images
• Displaying Images
• Writing Images
• Data Classes
• Image Types
• Converting between Data Classes and Image Types
• Array Indexing
• Some Important Standard Arrays
• Introduction to M-Function Programming
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Digital Image Representation

An image may be defined as a two-dimensional function,

f(x, y),

where x and y are spatial coordinates, and
f is the intensity of the image at (x, y) point.

When x, y, and the amplitude values of f are all finite,
discrete quantities, we call the image a digital image.

MATLAB – p. 5/333



Coordinate Conventions

in many image processing
books

in the Image Processing
Toolbox
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Images as Matrices

A digital image can be represented as a MATLAB matrix:

f =













f(1, 1) f(1, 2) · · · f(1,N)

f(2, 1) f(2, 2) · · · f(2,N)
...

...
. . .

...
f(M, 1) f(M, 2) · · · f(M,N)












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Reading Images

imread(’filename’)

Some examples:
• f=imread(’chestxray.jpg’);

• f=imread(’D:\myimages\chestxray.jpg’);

• f=imread(’.\myimages\chestxray.jpg’);
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Supported Image Formats

Format Description Recognized
Name Extensions

TIFF Tagged Image File Format .tif , .tiff

JPEG Joint Photographic
Experts Group

.jpg , .jpeg

GIF Graphics Interchange Format .gif

BMP Windows Bitmap .bmp

PNG Portable Network Graphics .png

XWD X Window Dump .xwd
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size function

size(imagematrix)

>> size(f)

ans =

494 600

>> [M,N]=size(f);

>> whos f

Name Size Bytes Class

f 494x600 296400 uint8 array

Grand total is 296400 elements using 296400 bytes
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Displaying Images

imshow(f,G)

• imshow(f, [low,high]) displays as black all
values less than or equal to low , and as white all
values greater than or equal to high .

• imshow(f, []) sets variable low to the minimum
value of array f and high to its maximum value.
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Displaying Images

An image with low dinamic range using by imshow(f) ,
and the result of scaling by using imshow(f, []) .
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Displaying Images

>> f=imread(’rose_512.tif’);
>> imshow(f)
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Displaying Images

>> f=imread(’rose_512.tif’);
>> g=imread(’cktboard.tif’);
>> imshow(f), figure, imshow(g)

MATLAB – p. 14/333



Writing Images

imwrite(f, ’filename’)

• imwrite(f, ’patient10_run1’, ’tif’)

• imwrite(f, ’patient10_run1.tif’)

imwrite(f, ’filename.jpg’, ’quality’, q)

The lower the number q the higher the degradation due to
JPEG compression.
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Writing Images

q = 100 q = 50 q = 25

q = 15 q = 5 q = 0
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Writing Images

imfinfo filename

>> imfinfo bubbles25.jpg

ans =

Filename: ’bubbles25.jpg’

FileModDate: ’02-Feb-2005 09:34:50’

FileSize: 13354

Format: ’jpg’

FormatVersion: ’’

Width: 720

Height: 688

BitDepth: 8

ColorType: ’grayscale’

FormatSignature: ’’

NumberOfSamples: 1

CodingMethod: ’Huffman’

CodingProcess: ’Sequential’

Comment: {}
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Writing Images

>> K=imfinfo(’bubbles25.jpg’);

>> image_bytes=K.Width * K.Height * K.BitDepth/8;

>> compressed_bytes=K.FileSize;

>> compression_ratio=image_bytes/compressed_bytes

compression_ratio =

37.0945
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Writing Images

imwrite(g, ’filename.tif’, ...
’compression’, ’parameter’, ...
’resolution’, [colres rowres])

’parameter’ : ’none’ no compression
’packbits’ packbits compression
’ccitt’ ccitt compression

[colres rowres] contains two integers that give the
column and row resolution in dots-per-unit (the default
values are [72 72]).
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Writing Images

>> f=imread(’cktboard.tif’);
>> res=round(200 * 2.25/1.5);
>> imwrite(f, ’sf.tif’, ’compression’, ...

’none’, ’resolution’, res)
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Writing Images

print -f no -d fileformat -r resno filename

no figure number in figure window
fileformat file format (in the earlier table)
resno resolution in dpi
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Data Classes
Name Description

double Double-precision, floating-point numbers in the approximate range
−10308 to 10308 (8 bytes per element).

uint8 Unsigned 8-bit integers in the range [0,255] (1 byte per element).

uint16 Unsigned 16-bit integers in the range [0,65535] (2 bytes per element).

uint32 Unsigned 32-bit integers in the range [0,4294967295] (4 bytes per ele-
ment).

int8 Signed 8-bit integers in the range [-128,127] (1 byte per element).

int16 Signed 16-bit integers in the range [-32768,32767] (2 bytes per element).

int32 Signed 32-bit integers in the range [-2147483648,2147483647] (4 bytes
per element).

single Single-precision floating-point numbers with values in the approximate
range −1038 to 1038 (4 bytes per element).

char Characters (2 bytes per element).

logical Values are 0 or 1 (1 byte per element).
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Image Types

• Intensity images
• Binary images
• Indexed images
• RGB images
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Intensity Images

An intensity image is a data matrix whose values have
been scaled to represent intensities. When the elements of
an intensity image are of class uint8 , or class uint16 ,
they have integer values in the range [0,255] and
[0,65535], respectively. If the image is of class double , the
values are floating-point numbers. Values of scaled, class
double intensity images are in the range [0,1] by
convention.
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Binary Images

A binary image is a logical array of 0s and 1s.

A numaric array is converted to binary using function
logical .

B=logical(A)

To test if an array is logical we use the islogical
function:

islogical(C)

If C is a logical array, this function returns a 1. Otherwise it
returns a 0.
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Converting between Data Classes

B=data_class_name(A)

If C is an array of class double in which all values are in
the range [0,255], it can be converted to an uint8 array
with the command D=uint8(C) .

If an array of class double has any values outside the
range [0,255] and it is converted to class uint8 , MATLAB
converts to 0 all values that are less than 0, and converts
to 255 all values that are greater than 255.

MATLAB – p. 26/333



Converting between Image Classes and Types

Name Converts Input to: Valid Input Image

Data Classes

im2uint8 uint8 logical , uint8 ,
uint16 , and double

im2uint16 uint16 logical , uint8 ,
unit16 , and double

mat2gray double (in range [0,1]) double

im2double double logical , uint8 ,
uint16 , and double

im2bw logical uint8 , uint16 , and
double
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Converting between Image Classes and Types

>> f=[-0.5 0.5;0.75 1.5]

f =

-0.5000 0.5000
0.7500 1.5000

>> g=im2uint8(f)

g =

0 128
191 255

MATLAB – p. 28/333



Converting between Image Classes and Types

>> A=randn(252);
>> B=mat2gray(A);
>> subplot(1,3,1), imshow(A), ...

subplot(1,3,2), imshow(A, []), ...
subplot(1,3,3), imshow(B)
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Converting between Image Classes and Types

>> h=uint8([25 50; 128 200]);
>> g=im2double(h)

g =

0.0980 0.1961
0.5020 0.7843
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Converting between Image Classes and Types

>> f=[1 2; 3 4];
>> g=mat2gray(f)

g =

0 0.3333
0.6667 1.0000

>> gb=im2bw(g, 0.6)

gb =

0 0
1 1
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Converting between Image Classes and Types

>> gb=f>2

gb =

0 0
1 1

>> gbv=islogical(gb)

gbv =

1
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Array Indexing

• Vector Indexing
• Matrix Indexing
• Selecting Array Dimensions
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Vector Indexing
>> v=[1 3 5 7 9]

v =

1 3 5 7 9

>> v(2)

ans =

3

>> w=v.’

w =

1

3

5

7

9
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Vector Indexing
>> v(1:3)

ans =
1 3 5

>> v(2:4)

ans =
3 5 7

>> v(3:end)

ans =
5 7 9

MATLAB – p. 35/333



Vector Indexing
>> v(:)

ans =

1

3

5

7

9

>> v(1:2:end)

ans =

1 5 9

>> v(end:-2:1)

ans =

9 5 1
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Vector Indexing

linspace(a, b, n)

>> x=linspace(1,5,3)

x =

1 3 5

>> v(x)

ans =

1 5 9

>> v([1 4 5])

ans =

1 7 9
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Matrix Indexing

>> A=[1 2 3; 4 5 6; 7 8 9]

A =
1 2 3
4 5 6
7 8 9

>> A(2,3)

ans =
6
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Matrix Indexing

>> C3=A(:,3)

C3 =

3

6

9

>> R2=A(2,:)

R2 =

4 5 6

>> T2=A(1:2,1:3)

T2 =

1 2 3

4 5 6
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Matrix Indexing

>> B=A;
>> B(:,3)=0

B =
1 2 0
4 5 0
7 8 0
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Matrix Indexing

>> A(end,end)

ans =

9

>> A(end,end-2)

ans =

7

>> A(2:end,end:-2:1)

ans =

6 4

9 7

>> E=A([1 3],[2 3])

E =

2 3

8 9
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Matrix Indexing
>> D=logical([1 0 0; 0 0 1; 0 0 0])

D =

1 0 0
0 0 1
0 0 0

>> A(D)

ans =

1
6
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Matrix Indexing

>> v=T2(:)

v =

1
4
2
5
3
6
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Matrix Indexing
>> s=sum(A(:))

s =
45

>> s1=sum(A)

s1 =
12 15 18

>> s2=sum(sum(A))

s2 =
45
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Matrix Indexing

>> f=imread(’rose.tif’);
>> fp=f(end:-1:1,:);
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Matrix Indexing

>> fc=f(257:768,257:768);
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Matrix Indexing

>> fs=f(1:8:end,1:8:end);
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Matrix Indexing

>> plot(f(512,:))
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Selecting Array Dimensions

operation(A, dim)

where operation denotes an applicable MATLAB
operation, A is an array and dim is a scalar.

>> k=size(A,1);

gives the size of A along its first dimension.

In the previous example we could have written the
command as
>> plot(f(size(f,1)/2,:))

Function ndims , with syntax d=ndims(A) gives the
number of dimensions of array A.
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Some Important Standard Arrays

zeros(M,N) generates an M×N matrix of 0s of class double .

ones(M,N) generates an M×N matrix of 1s of class double .

true(M,N) generates an M×N logical matrix of 1s.

false(M,N) generates an M×N logical matrix of 0s.

magic(M) generates an M×M"magic square".

rand(M,N) generates an M×N matrix whose entries are uni-
formly distributed random numbers in the interval
[0,1].

randn(M,N) generates an M×N matrix whose numbers are nor-
mally distributed random numbers with mean 0 and
variance 1.
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Some Important Standard Arrays

>> A=5* ones(3)

A =

5 5 5

5 5 5

5 5 5

>> magic(3)

ans =

8 1 6

3 5 7

4 9 2

>> B=rand(2,4)

B =

0.9501 0.6068 0.8913 0.4565

0.2311 0.4860 0.7621 0.0185
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M-Function Programming

• M-Files
• Operators
• Flow Control
• Code Optimization
• Interactive I/O
• Cell Arrays and Structures
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M-Files

M-Files in MATLAB can be

scripts that simply execute a series of MATLAB
statements, or they can be

functions that can accept argumens and can produce one
or more outputs.
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M-Files

The components of a function M-file are
• The function definition line
• The H1 line
• Help text
• The function body
• Comments
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M-Files
function [G,x] = planerot(x)

%PLANEROT Givens plane rotation.

% [G,Y] = PLANEROT(X), where X is a 2-component column vector ,

% returns a 2-by-2 orthogonal matrix G so that Y=G * X has Y(2)=0.

%

% Class support for input X:

% float: double, single

% Copyright 1984-2004 The MathWorks, Inc.

% $Revision: 5.10.4.1 $ $Date: 2004/04/10 23:30:05 $

if x(2) ˜= 0

r = norm(x);

G = [x’; -x(2) x(1)]/r;

x = [r; 0];

else

G = eye(2,class(x));

end
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Operators

• Arithmetic Operators
• Relational Operators
• Logical Operators and Functions
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Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

+ Array and matrix
addition

plus(A,B) a+b , A+B, or a+A.

- Array and matrix
subtraction

minus(A,B) a-b , A-B , A-a .

. * Array multiplica-
tion

times(A,B) C=A. * B,
C(I,J)=A(I,J) * B(I,J) .

* Matrix multiplica-
tion

mtimes(A,B) A* B, standard matrix multiplica-
tion, or a* A, multiplication of a
scalar times all elements of A.
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Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

./ Array right divi-
sion

rdivide(A,B) C=A./B ,
C(I,J)=A(I,J)/B(I,J) .

.\ Array left division ldivide(A,B) C=A.\B ,
C(I,J)=B(I,J)/A(I,J) .

/ Matrix right divi-
sion

mrdivide(A,B) A/B is roughly the same
as A* inv(B) , depending on
computational accuracy.

\ Matrix left divi-
sion

mldivide(A,B) A\B is roughly the same
as inv(A) * B, depending on
computational accuracy.
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Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

.^ Array power power(A,B) If C=A.^B , then
C(I,J)=A(I,J)^B(I,J) .

^ Matrix power mpower(A,B) Square matrix to the scalar
power, or scalar to the square
matrix power.

.’ Vector and matrix
transpose

transpose(A) A.’ . Standard vector and
matrix transpose.

’ Vector and ma-
trix complex con-
jugate transpose

ctranspose(A) A’ . Standard vector and ma-
trix conjugate transpose.
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Arithmetic Operators

Operator Name MATLAB Comments

Function and Examples

+ Unary plus uplus(A) +A is the same as 0+A.

- Unary minus uminus(A) -A is the same as 0-A or -1 * A.

: Colon Discussed earlier.
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Image Arithmetic Functions

Function Description

imadd Adds two images; or adds a constant to an image.

imsubtract Subtracts two images; or subtracts a constant from an image.

immultiply Multiplies two image, where the multiplication is carried out be-
tween pairs of corresponding image elements; or multiplies a con-
stant times an image.

imdivide Divides two images, where the division is carried out between
pairs of corresponding image elements; or divides an image by
a constant.

imabsdiff Computes the absolute difference between two images.

imcomplement Complements an image.

imlincomb Computes a linear combination of two or more images.
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An Example

function [p,pmax,pmin,pn]=improd(f,g)
%IMPROD Computes the product of two images.
% [P,PMAX,PMIN,PN]=IMPROD(F,G) outputs the
% element-by-element product of two images,
% F and G, the product maximum and minimum
% values, and a normalized product array with
% values in the range [0,1]. The input images
% must be of the same size. They can be of
% class uint8, uint 16, or double. The outputs
% are of class double.
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An Example

fd=double(f);
gd=double(g);
p=fd. * gd;
pmax=max(p(:));
pmin=min(p(:));
pn=mat2gray(p);
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An Example

>> f=[1 2;3 4]; g=[1 2;2 1];

>> [p,pmax,pmin,pn]=improd(f,g)

p =

1 4

6 4

pmax =

6

pmin =

1

pn =

0 0.6000

1.0000 0.6000
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An Example

>> help improd

IMPROD Computes the product of two images.

[P,PMAX,PMIN,PN]=IMPROD(F,G) outputs the

element-by-element product of two images,

F and G, the product maximum and minimum

values, and a normalized product array with

values in the range [0,1]. The input images

must be of the same size. They can be of

class uint8, uint 16, or double. The outputs

are of class double.

>> help DIPUM

IMPROD Computes the product of two images.
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Some Words about max

C=max(A) If A is a vector, max(A) returns its largest element; if A is a
matrix, then max(A) treats the columns of A as vectors and
returns a row vector containing the maximum element from
each column.

C=max(A,B) Returns an array the same size as A and B with the largest
elements taken from A or B.

C=max(A,[ ],dim) Returns the largest elements along the dimension of A spec-
ified by dim .

[C,I]=max(...) Finds the indices of the maximum values of A, and returns
them in output vector I . If there are several identical maxi-
mum values, the index of the first one found is returned. The
dots indicate the syntax used on the right of any of the previ-
ous three forms.
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Relational Operations

Operator Name
< Less than

<= Less than or equal to

> Greater than

>= Greater than of equal to

== Equal to

~= Not equal to
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Relational Operators
>> A=[1 2 3;4 5 6;7 8 9];

>> B=[0 2 4;3 5 6;3 4 9];

>> A==B

ans =

0 1 0

0 1 1

0 0 1

>> A>=B

ans =

1 1 0

1 1 1

1 1 1
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Logical Operators

Operator Name
& AND

| OR

˜ NOT

MATLAB – p. 69/333



Logical Operators

>> A=[1 2 0;0 4 5];
>> B=[1 -2 3;0 1 1];
>> A&B

ans =

1 1 0
0 1 1
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Logical Functions

Function Comments

xor The xor function returns a 1 only if both operands are
logically different; otherwise xor returns a 0.

all The all function returns a 1 if all the elements in a vec-
tor are nonzero; otherwise all returns a 0. This function
operates columnwise on matrices.

any The any function returns a 1 if any of the elements in
a vector is nonzero; otherwise any returns a 0. This
function operates columnwise on matrices.
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Logical Functions
>> A=[1 2 3;4 5 6];

>> B=[0 -1 1;0 0 1];

>> xor(A,B)

ans =

1 0 0

1 1 0

>> all(A)

ans =

1 1 1

>> any(A)

ans =

1 1 1

>> all(B)

ans =

0 0 1

>> any(B)

ans =

0 1 1
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Logical Functions

Function Description

iscell(C) True if C is a cell array.

iscellstr(s) True if s is a cell array of strings.

ischar(s) True if s is a character string.

isempty(A) True if A is the empty array,[] .

isequal(A,B) True if A and B have identical elements and dimensions.

isfield(S,’name’) True if ’name’ is a field of structure S.

isfinite(A) True in the locations of array A that are finite.

isinf(A) True in the locations of array A that are infinite.

isletter(A) True in the locations of A that are letters of the alphabet.
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Logical Functions

Function Description

islogical(A) True if A is a logical array.

ismember(A,B) True in locations where elements of A are also in B.

isnan(A) True in the locations of A that are NaNs.

isnumeric(A) True if A is a numeric array.

isprime(A) True in locations of A that are prime numbers.

isreal(A) True if the elements of A have no imaginary parts.

isspace(A) True at locations where the elements of A are whitespace char-
acters.

issparse(A) True if A is a sparse matrix.

isstruct(A) True if S is a structure.
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Some Important Variables and Constants

Function Value Returned

ans Most recent answer (variable). If no output variable is assigned to an
expression, MATLAB automatically stores the result in ans .

eps Floating-point relative accuracy. This is the distance between 1.0 and
the next largest number representable using double-precision floating
point.

i (or j ) Imaginary unit, as in 1+2i .

NaNor nan Stands for Not-a-Number (e.g., 0/0).

pi 3.14159265358979

realmax The largest floating-point number that your computer can represent.

realmin The smallest floating-point number that your computer can represent.

computer Your computer type.

version MATLAB version string.
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Flow Control

Statement Description

if if , together with else and elseif , executes a group of state-
ments based on a specified logical condition.

for Executes a group of statements a fixed (specified) number of times.

while Executes a group of statements an indefinite number of times,
based on a specified logical condition.

break Terminates execution of a for or while loop.

continue Passes control to the next iteration of a for or while loop, skipping
any remaining statements in the body of the loop.

switch switch , together with case and otherwise , executes different
groups of statements, depending on a specified value or string.

return Causes execution to return to the invoking function.

try...catch Changes flow control if an error is detected during execution.
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if, else, and elseif

if expression
statements

end

if expression1
statements1

elseif expression2
statements2

else
statements3

end
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if, else, and elseif

function av=average(A)

%AVERAGE Computes the average value of an array.

% AV=AVERAGE(A) computes the average value of

% input array, A, which must be a 1-D or 2-D

% array.

% Check the validity of the input. (Keep in mind

% that a 1-D array is a special case of a 2-D

% array.)

if ndims(A)>2

error(’The dimensions of the input cannot exceed 2.’)

end

%Compute the average

av=sum(A(:))/length(A(:));

%or av=sum(A(:))/numel(A);
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for

for index=start:increment:end
statements

end
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for

count=0;
for k=0:0.1:1

count=count+1;
end
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for

for q=0:5:100
filename=sprintf(’series_%3d.jpg’,q);
imwrite(f,filename,’quality’,q);

end
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for

function s=subim(f,m,n,rx,cy)

%SUBIM Extracts a subimage, s, from a given image, f.

% The subimage is of size m-by-n, and the coordinates

% of its top, left corner are (rx,cy).

s=zeros(m,n);

rowhigh=rx+m-1;

colhigh=cy+n-1;

xcount=0;

for r=rx:rowhigh

xcount=xcount+1;

ycount=0;

for c=cy:colhigh

ycount=ycount+1;

s(xcount,ycount)=f(r,c);

end

end
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while

while expression
statements

end
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while

a=10;
b=5;
while a

a=a-1;
while b

b=b-1;
end

end
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break

fid = fopen(’fft.m’,’r’);
s = ’’;
while ˜feof(fid)

line = fgetl(fid);
if isempty(line)

break
end
s = strvcat(s,line);

end
disp(s)

MATLAB – p. 85/333



continue

fid = fopen(’magic.m’,’r’);
count = 0;
while ˜feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line,’%’,1)

continue
end
count = count + 1;

end
disp(sprintf(’%d lines’,count));
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switch

switch switch_expression
case case_expression

statement(s)
case {case_expression1, case_expression2,. . . }

statement(s)
otherwise

statement(s)
end
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switch

switch newclass
case ’uint8’

g=im2uint8(f);
case ’uint16’

g=im2uint16(f);
case ’double’

g=im2double(f);
otherwise

error(’Unknown or improper image class.’)
end
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return

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)

d = 1;
return

else
...

end
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try...catch

function matrix_multiply(A, B)

try

A * B

catch

errmsg = lasterr;

if(strfind(errmsg, ’Inner matrix dimensions’))

disp(’ ** Wrong dimensions for matrix

multiplication’)

elseif(strfind(errmsg, ’not defined for variables

of class’))

disp(’ ** Both arguments must be double matrices’)

end

end
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Code Optimization

• Vectorizing Loops
• Preallocating Arrays
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Vectorizing Loops

Vectorizing simply means converting for and while loops
to equivalent vector or matrix operations.
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A Simple Example
Suppose that we want to generate a 1-D function of the
form

f(x) = A sin(x/2π)

for x = 0, 1, 2, . . . ,M − 1.

A for loop to implement this computation is
for x=1:M %Array indices in MATLAB cannot be 0.

f(x)=A * sin((x-1)/(2 * pi));
end

The vectorized code:
x=0:M-1;
f=A * sin(x/(2 * pi));
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2-D indexing

[C,R]=meshgrid(c,r)

>> c=[0 1];

>> r=[0 1 2];

>> [C,R]=meshgrid(c,r)

C =

0 1

0 1

0 1

R =

0 0

1 1

2 2

>> h=R.ˆ2+C.ˆ2

h =

0 1

1 2

4 5
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Comparison for loops vs. vectorization

function [rt,f,g]=twodsin(A,u0,v0,M,N)

%TWODSIN Compares for loops vs. vectorization.

% The comparison is based on implementing the function

% f(x,y)=Asin(u0x+v0y) for x=0,1,2,...,M-1 and

% y=0,1,2,...,N-1. The inputs to the function are

% M and N and the constants in the function.
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Comparison for loops vs. vectorization

% First implement using for loops.

tic %Start timing.

for r=1:M

u0x=u0 * (r-1);

for c=1:N

v0y=v0 * (c-1);

f(r,c)=A * sin(u0x+v0y);

end

end

t1=toc; %End timing.
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Comparison for loops vs. vectorization

%Now implement using vectorization. Call the image g.

tic %Start timing;

r=0:M-1;

c=0:N-1;

[C,R]=meshgrid(c,r);

g=A* sin(u0 * R+v0* C);

t2=toc; %End timing

% Compute the ratio of the two times.

rt=t1/(t2+eps); % Use eps in case t2 is close to 0.
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Comparison for loops vs. vectorization

>> [rt,f,g]=twodsin(1,1/(4 * pi),1/(4 * pi),512,512);

>> rt

rt =

19.5833

>> g=mat2gray(g);

>> imshow(g)
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Preallocating Arrays
tic

for i=1:1024

for j=1:1024

f(i,j)=i+2 * j;

end

end

toc

Elapsed time is 30.484000 seconds.

tic

g=zeros(1024); %Preallocation

for i=1:1024

for j=1:1024

g(i,j)=i+2 * j;

end

end

toc

Elapsed time is 0.221000 seconds.
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Interactive I/O

disp(argument)

>> A=[1 2;3 4];

>> disp(A)

1 2

3 4

>> sc=’Digital Image Processing.’;

>> disp(sc)

Digital Image Processing.

>> disp(’This is another way to display text.’)

This is another way to display text.
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Interactive I/O

t=input(’message’)

t=input(’messages’,’s’)

>> t=input(’Enter your data: ’,’s’)

Enter your data: 1, 2, 4

t =

1, 2, 4

>> class(t)

ans =

char

>> size(t)

ans =

1 7
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Interactive I/O
>> n=str2num(t)

n =

1 2 4

>> size(n)

ans =

1 3

>> class(n)

ans =

double
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Interactive I/O

[a,b,c,...]=strread(cstr,’format,...
’param’,’value’)

>> t=’12.6, x2y, z’;

>> [a,b,c]=strread(t,’%f%q%q’,’delimiter’,’,’)

a =

12.6000

b =

’x2y’

c =

’z’

>> d=char(b)

d =

x2y
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Save variables on disk

save(’filename’, ’var1’, ’var2’, ...)

saves the specified variables in filename.mat .

save(’filename’, ’-struct’, ’s’)

saves all fields of the scalar structure s as individual
variables within the file filename.mat .
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Load variables from disk

load(’filename’)

loads all the variables from filename.mat .

load(’filename’, ’X’, ’Y’, ’Z’)

loads just the specified variables from the MAT-file.

S=load(...)

returns the contents of a MAT-file in the variable S. S is a
struct containing fields that match the variables retrieved.
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Display directory listing

files=dir(’match’)

returns the list of files with name match in the current
directory to an m-by-1 structure with the fields
name: Filename
date : Modification date
bytes : Number of bytes allocated to the file
isdir : 1 if name is a directory; 0 if not
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Cell Arrays

Cell array is a multidimensional array whose elements are
copies of other arrays.

>> C={’gauss’,[1 0;1 0],3}

C =

’gauss’ [2x2 double] [3]

>> C{1}

ans =

gauss

>> C{2}

ans =

1 0

1 0

>> C{3}

ans =

3
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Pass or return variable numbers of arguments

function varargout = foo(n)

returns a variable number of arguments from function
foo.m .

function y = bar(varargin)

accepts a variable number of arguments into function
bar.m .

The varargin and varargout statements are used only
inside a function M-file to contain the optional arguments to
the function. Each must be declared as the last argument
to a function, collecting all the inputs or outputs from that
point onwards. In the declaration, varargin and
varargout must be lowercase.
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Structures

Structures allow grouping of a collection of dissimilar data
into a single variable. The elements of structures are
addressed by names called fields.

>> S.char_string=’gauss’;

>> S.matrix=[1 0;1 0];

>> S.scalar=3;

>> S

S =

char_string: ’gauss’

matrix: [2x2 double]

scalar: 3

>> S.matrix

ans =

1 0

1 0
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Chapter 2

MATLAB Graphics
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Plotting Your Data
>> x=0:0.2:12;

>> y1=bessel(1,x);

>> y2=bessel(2,x);

>> y3=bessel(3,x);

>> h=plot(x,y1,x,y2,x,y3);

>> set(h,’LineWidth’,2,{’LineStyle’},{’--’;’:’;’-.’} )

>> set(h,{’Color’},{’r’;’g’;’b’})

>> axis([0 12 -0.5 1])

>> grid on

>> xlabel(’Time’)

>> ylabel(’Amplitude’)

>> legend(h,’First’,’Second’,’Third’)

>> title(’Bessel Functions’)

>> [y,ix]=min(y1);

>> text(x(ix),y,’First Min \rightarrow’,...

’HorizontalAlignment’,’right’)

>> print -depsc -tiff -r200 myplot
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Plotting Your Data
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Creating Plots

>> t=0:pi/100:2 * pi;

>> y=sin(t);

>> plot(t,y)

>> grid on
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Creating Plots

>> y2=sin(t-0.25);

>> y3=sin(t-0.5);

>> plot(t,y,t,y2,t,y3)
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Specifying Line Style

>> plot(t,y,’-’,t,y2,’--’,t,y3,’:’)
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Specifying the Color and Size of Lines

>> x=-pi:pi/10:pi;

>> y=tan(sin(x))-sin(tan(x));

>> plot(x,y,’--rs’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10)
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Adding Plots to an Existing Graph

>> semilogx(1:100,’+’)

>> hold on

>> plot(1:3:300,1:100,’--’)

>> hold off
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Plotting Only the Data Points

>> x=0:pi/15:4 * pi;

>> y=exp(2 * cos(x));

>> plot(x,y,’r+’)
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Plotting Markers and Lines

>> x=0:pi/15:4 * pi;

>> y=exp(2 * cos(x));

>> plot(x,y,’-r’,x,y,’ok’)
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Line Plots of Matrix Data

>> Z=peaks;

>> plot(Z)
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Plotting with Two Y-Axes

>> t=0:pi/20:2 * pi;

>> y=exp(sin(t));

>> plotyy(t,y,t,y,’plot’,’stem’)
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Combining Linear and Logarithmic Axes

>> t=0:900;

>> A=1000;

>> a=0.005;

>> b=0.005;

>> z1=A* exp(-a * t);

>> z2=sin(b * t);

>> [haxes,hline1,hline2]=plotyy(t,z1,t,z2,’semilogy’ ,’plot’);

>> axes(haxes(1))

>> ylabel(’Semilog Plot’)

>> axes(haxes(2))

>> ylabel(’Linear Plot’)

>> set(hline2,’LineStyle’,’--’)
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Combining Linear and Logarithmic Axes
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Specifying Ticks and Tick Labels

>> x=-pi:.1:pi;

>> y=sin(x);

>> plot(x,y)

>> set(gca,’XTick’,-pi:pi/2:pi)

>> set(gca,’XTickLabel’,{’-pi’,’-pi/2’,’0’,’pi/2’,’p i’})

>> xlabel(’-\pi \leq \Theta \leq \pi’)

>> ylabel(’sin(\Theta)’)

>> title(’Plot of sin(\Theta)’)

>> text(-pi/4,sin(-pi/4),’\leftarrow sin(-\pi\div4)’, ...

’HorizontalAlignment’,’left’)
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Specifying Ticks and Tick Labels
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Plot of sin(Θ)

← sin(−π÷4)
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Setting Line Properties on an Existing Plot

>> set(findobj(gca,’Type’,’line’,’Color’,[0 0 1]),...

’Color’,[0.5 0 0.5],’LineWidth’,2)
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Chapter 3

Intensity Transformations
and Spatial Filtering
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Content

• Background
• Intensity Transformation Functions
• Histogram Processing and Function Plotting
• Spatial Filtering
• Image Processing Toolbox Standard Spatial Filters
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Background
The spatial domain processes are denoted by the
expression

g(x, y) = T [f(x, y)]

where f(x, y) is the input image, g(x, y) is the output
(processed) image, and T is an operator on f , defined over
a specified neighborhood about point (x, y).
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Intensity Transformation Functions

The simplest form of the transformation T is when the
neighborhood is of size 1 × 1 (a single pixel). In this case,
the value of g at (x, y) depends only on the intensity of f at
that point, and T becomes an intensity or gray-level
transformation function.
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Function imadjust

g=imadjust(f,[low_in high_in],...
[low_out high_out],gamma)
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Function imadjust

>> f=imread(’breast.tif’);
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Function imadjust

>> g1=imadjust(f,[0 1],[1 0]);
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Function imadjust

>> g2=imadjust(f,[0.5 0.75],[0 1]);
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Function imadjust

>> g3=imadjust(f,[],[],2);
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Histogram Processing and Function Plotting

• Generating and Plotting Image Histograms
• Histogram Equalization
• Histogram Matching (Specification)
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Generating and Plotting Image Histograms

The histogram of a digital image with L total possible
intensity levels in the range [0, G] is defined as the discrete
function

h(rk) = nk

where rk is the kth intensity level in the interval [0, G] and
nk is the number of pixels in the image whose intensity
level is rk. The value of G is 255 for images of class
uint8 , 65535 for images of class uint16 , and 1.0 for
images of class double . Keep in mind that indices in
MATLAB cannot be 0, so r1 corresponds to intensity level
0, r2 corresponds to intensity level 1, and so on, with rL

corresponding to level G. Note also that G = L − 1 for
images of class uint8 and uint16 .
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Generating and Plotting Image Histograms

Often, it is useful to work with normalized histograms,
obtained simply by dividing all elements of h(rk) by the
total number of pixels in the image, which we denote by n:

p(rk) =
h(rk)

n
=

nk

n

for k = 1, 2, . . . , L.
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Generating and Plotting Image Histograms

h=imhist(f,b)

where f is the input image, h is its histogram, h(rk), and b
is the number of bins used in forming the histogram (if b is
not included in the argument, b=256 is used by default). A
bin is simply a subdivision of the intensity scale. For
example, if we are working with uint8 images and we let
b=2 , then the intensity scale is subdivided into two ranges:
0 to 127 and 128 to 255. The resulting histogram will have
two values: h(1) equal to the number of pixels in the
image with values in the interval [0, 127], and h(2) equal to
the number of pixels with values in the interval [128, 255].
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Generating and Plotting Image Histograms

>> f=imread(’breast.tif’);
>> imshow(f), imhist(f)

MATLAB – p. 140/333



Generating and Plotting Image Histograms

>> h=imhist(f);

>> h1=h(1:10:256);

>> horz=1:10:256;

>> bar(horz,h1)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)
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Generating and Plotting Image Histograms

>> h=imhist(f);

>> h1=h(1:10:256);

>> horz=1:10:256;

>> stem(horz,h1,’fill’)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)
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Generating and Plotting Image Histograms

>> h=imhist(f);

>> plot(h)

>> axis([0 255 0 15000])

>> set(gca,’xtick’,0:50:255)

>> set(gca,’ytick’,0:2000:15000)
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Some Useful Plotting Function

• plot(horz,v,’color_linestyle_marker’)

• bar(horz,v,width)

• stem(horz,v,’color_linestyle_marker’,’fill’)

• axis([horzmin horzmax vertmin vertmax])

• xlabel(’text string’,’fontsize’,size)

• ylabel(’text string’,’fontsize’,size)

• text(xloc,yloc,’text string’,’fontsize’,size)

• title(’titlestring’)
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Some Useful Plotting Function

Symbol Color Symbol Line Style Symbol Marker

k Black - Solid + Plus sign

w White -- Dashed o Circle

r Red : Dotted * Asterisk

g Green -. Dash-dot . Point

b Blue none No line x Cross

c Cyan s Square

y Yellow d Diamond

m Magenta none No marker
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Histogram Equalization

sk =
k

∑

j=0

nj

n
k = 0, 1, 2, . . . , L − 1

where n is the total number of pixels in the image, nk is the
number of pixels that have gray level rk, and L is the total
number of possible gray levels in the image. A processed
image is obtained by mapping each pixel with level rk in
the input image into a corresponding pixel with level sk in
the output image.
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Histogram Equalization

g=histeq(f,nlev)

where f is the input image and nlev is the number of
intensity levels specified for the output image. If nlev is
equal to L (the total number of possible levels in the input
image), then histeq implements the transformation
function (described on the previous slide), directly. If nlev
is less than L, then histeq attempts to distribute the
levels so that they will approximate a flat histogram. Unlike
imhist , the default value in histeq is nlev=64 .
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Histogram Equalization

>> f=imread(’pollen.tif’);
>> imshow(f)
>> figure, imhist(f)
>> ylim(’auto’)
>> g=histeq(f,256);
>> figure, imshow(g)
>> figure, imhist(g)
>> ylim(’auto’)
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Histogram Equalization
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Histogram Equalization

>> hnorm=imhist(f)./numel(f);

>> %Cummulative distribution function:

>> cdf=cumsum(hnorm);

>> x=linspace(0,1,256);

>> plot(x,cdf)

>> axis([0 1 0 1])

>> set(gca,’xtick’,0:.2:1)

>> set(gca,’ytick’,0:.2:1)

>> xlabel(’Input intensity values’,’fontsize’,9)

>> ylabel(’Output intensity values’,’fontsize’,9)

>> %Specify text in the body of the graph:

>> text(0.18,0.5,’Transformation function’,...

>> ’fontsize’,9)
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Histogram Equalization
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Histogram Matching

It is useful in some applications to be able to specify the
shape of the histogram that we wish the processed image
to have. The method used to generate a processed image
that has a specified histogram is called histogram
matching.

g=histeq(f,hspec)

where f is the input image, hspec is the specified
histogram (a row vector of specified values), and g is the
input image, whose histogram approximates the specified
histogram, hspec .
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Histogram Matching
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Histogram Matching

function p=twomodegauss(m1,sig1,m2,sig2,A1,A2,k)

%TWOMODEGAUSS Generates a bimodal Gaussian function.

% P=TWOMODEGAUSS(M1,SIG1,M2,SIG2,A1,A2,K) generates a b imodal,

% Gaussian-like function in the interval [0,1]. P is a

% 256-element vector normalized so that SUM(P) equals 1. The

% mean and standard deviation of the modes are (M1,SIG1) and

% (M2,SIG2), respectively. A1 and A2 are the amplitude value s

% of the two modes. Since the output is normalized, only the

% relative values of A1 and A2 are important. K is an offset

% values that raises the "floor" of the function. A good set

% of values to try is M1=0.15, SIG1=0.05, M2=0.75, SIG2=0.05 ,

% A1=1, A2=0.07, and K=0.002.
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Histogram Matching

c1=A1* (1/((2 * pi)ˆ0.5) * sig1);

k1=2 * (sig1ˆ2);

c2=A2* (1/((2 * pi)ˆ0.5) * sig2);

k2=2 * (sig2ˆ2);

z=linspace(0,1,256);

p=k+c1 * exp(-((z-m1).ˆ2)./k1)+...

c2 * exp(-((z-m2).ˆ2)./k2);

p=p./sum(p(:));
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Histogram Matching

function p=manualhist

%MANUALHIST Generates a bimodal histogram interactively.

% P=MANUALHIST generates a bimodal histogram using

% TWOMODEGAUSS(m1,sig1,m2,sig2,A1,A2,k). m1 and m2 are th e

% means of the two modes and must be in the range [0,1]. sig1

% and sig2 are the standard deviations of the two modes. A1

% and A2 are amplitude values, and k is an offset value that

% raises the "floor" of histogram. The number of elements in

% the histogram vector P is 256 and sum(P) is normalized to 1.

% MANUALHIST repeatedly prompts for the parameters and plot s

% the resulting histogram until the user types an ’x’ to quit,

% and then it returns the last histogram computed.

%

% A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,

% 0.07, 0.002).
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Histogram Matching

%Initialize.

repeats=true;

quitnow=’x’;

%Compute a default histogram in case the user quits before

%estimating at least one histogram.

p=twomodegauss(0.15,0.05,0.75,0.05,1,0.07,0.002);

%Cycle until x is input.

while repeats

s=input(’Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:’,’s ’);

if s==quitnow

break

end
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Histogram Matching

%Convert the input string to a vector of numerical values and

%verify the number of inputs.

v=str2num(s);

if numel(v)˜=7

disp(’Incorrect number of inputs.’)

continue

end

p=twomodegauss(v(1),v(2),v(3),v(4),v(5),v(6),v(7));

%Start a new figure and scale the axes. Specifying only xlim

%leaves ylim on auto.

figure, plot(p)

xlim([0 255])

end
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Histogram Matching

>> f=imread(’moon_phobos.tif’);

>> p=manualhist;

Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:x

>> g=histeq(f,p);

>> imshow(g)

>> figure, imhist(g)
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Histogram Matching
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Spatial Filtering

Neighborhood processing consists of
• defining a center point, (x, y);
• performing an operation that involves only the pixels in

a predefined neighborhood about that center point;
• letting the result of that operation be the "response" of

the process at that point; and
• repeating the process for every point in the image.

If the computations performed on the pixels of the
neighborhoods are linear, the operation is called linear
spatial filtering; otherwise it is called nonlinear spatial
filtering.
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Linear Spatial Filtering
The mechanics of linear spatial filtering:
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Linear Spatial Filtering

The process consists simply of moving the center of the
filter mask w from point to point in an image f . At each
point (x, y), the response of the filter at that point is the
sum of products of the filter coefficients and the
corresponding neighborhood pixels in the area spanned by
the filter mask. For a mask of size m × n, we assume
typically that m = 2a + 1 and n = 2b + 1, where a and b are
nonnegative integers.
There are two closely related concepts that must be
understood clearly when performing linear spatial filtering.
Correlation is the process of passing the mask w by the
image array f in the manner described earlier.
Mechanically, convolution is the same process, except that
w is rotated by 180◦ prior to passing it by f .
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Linear Spatial Filtering

Figure shows a one-dimensional function, f , and a
mask w.

To perform the correlation of the two functions, we
move w so that its rightmost point coincides with the
origin of f .

There are points between the two functions that do
not overlap. The most common way to handle this
problem is to pad f with as many 0s as are nec-
essary to guarantee that there will always be corre-
sponding points for the full excursion of w past f .
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Linear Spatial Filtering

The first value of correlation is the sum of products of
the two functions in the position shown in the figure.

Next, we move w one location to the right and repeat
the process.

After four shifts, we encounter the first nonzero value
of the correlation, which is 2 · 1 = 2.

The ending geometry is shown in this figure.

If we proceed in this manner until w moves com-
pletely past f we would get this result.
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Linear Spatial Filtering

The label ’full’ is a flag used by the IPTa to
indicate correlation using a padded image and
computed in the manner just described.

The IPT provides another option, denoted by
’same’ that produces a correlation that is the
same size as f . This computation also uses
zero padding, but the starting position is with
the center point of the mask aligned with the ori-
gin of f . The last computation is with the center
point of the mask aligned with the last point in f .

aImage Processing Toolbox of MATLAB
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Linear Spatial Filtering

The preceding concepts extend easily to images, as
illustrated in the following figures.
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Linear Spatial Filtering

Correlation
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Linear Spatial Filtering

Convolution
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Linear Spatial Filtering

g=imfilter(f,w,filtering_mode,...
boundary_options,size_options)

where f is the input image, w is the filter mask, g is the
filtered result, and the other parameters are summarized in
the following table.
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Linear Spatial Filtering
Options Description

Filtering Mode

’corr’ Filtering is done using correlation. This is the default.

’conv’ Filtering is done using convolution.

Boundary Options

P The boundaries of the input image are extended by padding with a
value, P. This is the default, with value 0.

’replicate’ The size of the image is extended by replicating the values in its
outer border.

’symmetric’ The size of the image is extended by mirror-reflecting it across its
border.

’circular’ The size of the image is extended by treating the image as one
period a 2-D periodic function.

Size Options

’full’ The output is of the same size as the extended (padded) image.

’same’ The output is of the same size as the input. This is the default.
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Linear Spatial Filtering

>> f=imread(’original_test_pattern.tif’);
>> f=double(f);
>> w=ones(31);
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Linear Spatial Filtering

>> gd=imfilter(f,w);
>> imshow(gd,[])
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Linear Spatial Filtering

gr=imfilter(f,w,’replicate’);
imshow(gr,[])
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Linear Spatial Filtering

>> gs=imfilter(f,w,’symmetric’);
>> imshow(gs,[])
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Linear Spatial Filtering

>> gc=imfilter(f,w,’circular’);
>> imshow(gc,[])

MATLAB – p. 176/333



Linear Spatial Filtering

>> f8=im2uint8(f);
>> g8r=imfilter(f8,w,’replicate’);
>> imshow(g8r,[])
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Nonlinear Spatial Filtering
Nonlinear spatial filtering is based on neighborhood
operations also, and the mechanics of defining m × n
neighborhoods by sliding the center point through an
image are the same as discussed in linear spatial filtering.
Nonlinear spatial filtering is based on nonlinear operations
involving the pixels of a neighborhood. For example, letting
the response at each center point be equal to the
maximum pixel value in its neighborhood is a nonlinear
filtering operation. Another basic difference is that the
concept of a mask is not as prevalent in nonlinear
processing. The ides of filtering carries over, but the "filter"
should be visualized as a nonlinear function that operates
on the pixels of a neighborhood, and whose response
constitutes the response of the operation at the center
pixel of the neighborhood.
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Nonlinear Spatial Filtering

The IPT provides two functions for performing general
nonlinear filtering: nlfilter and colfilt . The former
performs operations directly in 2-D, while colfilt
organizes the data in the form of columns. Altough
colfilt requires more memory, it generally executes
significantly faster than nlfilter . In most image
processing applications speed is an overriding factor, so
colfilt is preferred over nlfilter for implementing
generalized nonlinear spatial filtering.
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Nonlinear Spatial Filtering

Given an input image, f , of size M × N , and a
neighborhood of size m× n, function colfilt generates a
matrix, call it A, of maximum size mn × MN , in which each
column corresponds to the pixels encompassed by the
neighborhood centered at a location in the image. For
example, the first column corresponds to the pixels
encompassed by the neighborhood when its center is
located at the top, leftmost point in f . All required padding
is handled transparently by colfilt .
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Nonlinear Spatial Filtering

g=colfilt(f,[m n],’sliding’,@fun,parameters)

where mand n are the dimensions of the filter region,
’sliding’ indicates that the process is one of sliding the
m × n region from pixel to pixel in the input image f , @fun
references a function, which we denote arbitrarily as fun ,
and parameters indicates parameters (separated by
commas) that may be required by function fun . The
symbol @is called a function handle, a MATLAB data type
that contains information used in referencing a function.
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Nonlinear Spatial Filtering

fp=padarray(f,[r c],method,direction)

where f is the input image, fp is the padded image,
[r c] gives the number of rows and columns, by which to
pad f , and method and direction are as explained in
the next table.
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Nonlinear Spatial Filtering

Options Description

Method

’symmetric’ The size of the image is extended by mirror-reflecting it across its
border.

’replicate’ The size of the image is extended by replicating the values in its
outer border.

’circular’ The size of the image is extended by treating the image as one
period of a 2-D periodic function.

Direction

’pre’ Pad before the first element of each dimension.

’post’ Pad after the last element of each dimension.

’both’ Pad before the first element and after the last element of each di-
mension. This is the default.
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Nonlinear Spatial Filtering

>> f=[1 2;3 4];
>> fp=padarray(f,[3 2],’replicate’,’post’)

fp =

1 2 2 2
3 4 4 4
3 4 4 4
3 4 4 4
3 4 4 4
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Nonlinear Spatial Filtering

function v=gmean(A)

%The length of the columns of A is always mn.
mn=size(A,1);
v=prod(A,1).ˆ(1/mn);

>> f=padarray(f,[5 5],’replicate’);
>> g=colfilt(f,[5 5],’sliding’,@gmean);

MATLAB – p. 185/333



Nonlinear Spatial Filtering
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IPT Standard Spatial Filters

• Linear Spatial Filters
• Nonlinear Spatial Filters
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Linear Spatial Filters

w=fspecial(’type’,parameters)

where ’type’ specifies the filter type, and parameters
further define the specified filter. The spatial filters
supported by fspecial are summarized in the following
table, including applicable parameters for each filter.
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Linear Spatial Filters
Type Syntax and Parameters

’average’ fspecial(’average’,[r c]) . A rectangular averaging filter of
size r ×c . The default is 3 × 3. A single number instead of [r c]

specifies a square filter.

’disk’ fspecial(’disk’,r) . A circular averaging filter (within a square
of size 2r +1) with radius r . The default radius is 5.

’gaussian’ fspecial(’gaussian’,[r c],sig) . A Gaussian lowpass filter
of size r ×c and standard deviation sig (positive). The defaults are
3×3 and 0.5. A single number instead of [r c] specifies a square
filter.

’laplacian’ fspecial(’laplacian’,alpha) . A 3× 3 Laplacian filter whose
shape is specified by alpha , a number in the range [0, 1]. The
default value for alpha is 0.5.

’log’ fspecial(’log’,[r c],sig) . Laplacian of a Gaussian (LoG)
filter of size r timesc and standard deviation sig (positive). The de-
faults are 5×5 and 0.5. A single number instead of [r c] specifies
a square filter.
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Linear Spatial Filters

Type Syntax and Parameters

’motion’ fspecial(’motion’,len,theta) . Outputs a filter that, when con-
volved with an image, approximates linear motion (of a camera with
respect to the image) of len pixels. The direction of motion is theta ,
mesaured in degrees, counterclockwise from the horizontal. The de-
faults are 9 and 0, which represents a motion of 9 pixels in the hori-
zontal direction.

’prewitt’ fspecial(’prewitt’) . Outputs a 3 × 3 Prewitt mask, wv, that ap-
proximates a vertical gradient. A mask for the horizontal gradient is
obtained by transposing the result: wh=wv’ .

’sobel’ fspecial(’sobel’) . Outputs a 3 × 3 Sobel mask, sv , that ap-
proximates a vertical gradient. A mask for the horizontal gradient is
obtained by transposing the result: sh =sv’ .

’unsharp’ fspecial(’unsharp’,alpha) . Outputs a 3 × 3 unsharp filter. Pa-
rameter alpha controls the shape; it must be greater than or equal to
0 and less than or equal to 1.0; the default is 0.2.
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Linear Spatial Filters

>> w=fspecial(’laplacian’,0)

w =

0 1 0
1 -4 1
0 1 0

MATLAB – p. 191/333



Linear Spatial Filters

>> f=imread(’moon.tif’);
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Linear Spatial Filters

>> g1=imfilter(f,w,’replicate’);
>> imshow(g1,[])
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Linear Spatial Filters

>> f2=im2double(f);
>> g2=imfilter(f2,w,’replicate’);
>> imshow(g2,[])
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Linear Spatial Filters

>> g=f2-g2;
>> imshow(g)
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Linear Spatial Filters

>> f=imread(’moon.tif’);
>> w4=fspecial(’laplacian’,0);
>> w8=[1 1 1;1 -8 1;1 1 1];
>> f=im2double(f);
>> g4=f-imfilter(f,w4,’replicate’);
>> g8=f-imfilter(f,w8,’replicate’);
>> imshow(f)
>> figure, imshow(g4)
>> figure, imshow(g8)
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Linear Spatial Filters
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Nonlinear Spatial Filters

g=ordfilt2(f,order,domain

This function creates the output image g by replacing each
element of f by the order -th element in the sorted set of
neighbors specified by the nonzero elements in domain .
Here, domain is an m × n matrix of 1s and 0s that specify
the pixel locations in the neighborhood that are to be used
in the computation. In this sense, domain acts like a mask.
The pixels in the neighborhood that corresponds to 0 in the
domain matrix are not used in the computation.
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Nonlinear Spatial Filters

Min filter of size m × n:
g=ordfilt2(f,1,ones(m,n))

Max filter of size m × n:
g=ordfilt2(f,m * n,ones(m,n))

Median filter of size m × n:
g=ordfilt2(f,median(1:m * n),ones(m,n))
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Nonlinear Spatial Filters

g=medfilt2(f,[m n],padopt

where the tuple [m n] defines a neighborhood of size
m × n over which the median is computed, and padopt
specifies one of three possible border padding options:
’zeros (the default), ’symmetric’ in which f is
extended symmetrically by mirror-reflecting it across its
border, and ’indexed’ , in which f is padded with 1s if it
is of class double and with 0s otherwise. The default form
of this function is g=medfilt2(f) which uses a 3 × 3
neighborhood to compute the median, and pads the border
of the input with 0s.
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Nonlinear Spatial Filters

>> f=imread(’ckt-board.tif’);
>> fn=imnoise(f,’salt & pepper’,0.2);
>> gm=medfilt2(fn);
>> gms=medfilt2(fn,’symmetric’);
>> subplot(2,2,1), imshow(f)
>> subplot(2,2,2), imshow(fn)
>> subplot(2,2,3), imshow(gm)
>> subplot(2,2,4), imshow(gms)
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Nonlinear Spatial Filters
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Chapter 4

Frequency Domain
Processing
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Content

• The 2-D Discrete Fourier Transform
• Computing and Visualizing the 2-D DFT in MATLAB
• Filtering in the Frequency Domain
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The 2-D Discrete Fourier Transform

Let f(x, y), for x = 0, 1, 2, . . . ,M − 1 and
y = 0, 1, 2, . . . , N − 1, denote an M × N image. The 2-D,
discrete Fourier transform (DFT) of f , denoted by F (u, v),
is given by the equation

F (u, v) =
M−1
∑

x=0

N−1
∑

y=0

f(x, y)e−j2π(ux/M+vy/N)

for u = 0, 1, 2, . . . ,M − 1 and v = 0, 1, 2, . . . , N − 1.
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The 2-D Discrete Fourier Transform

The frequency domain is simply the coordinate system
spanned by F (u, v) with u and v as (frequency) variables.
This is analogous to the spatial domain studied in the
previous lecture, which is the coordinate systam spanned
by f(x, y), with x and y as (spatial) variables. The M × N
rectangular region defined by u = 0, 1, 2, . . . ,M − 1 and
v = 0, 1, 2, . . . , N − 1 is often referred to as the frequency
rectangle.
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The 2-D Discrete Fourier Transform

The inverse, discrete Fourier transform is given by

f(x, y) =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F (u, v)ej2π(ux/M+vy/N)

for x = 0, 1, 2, . . . ,M − 1 and y = 0, 1, 2, . . . , N − 1. Thus,
given F (u, v), we can obtain f(x, y) back by means of the
inverse DFT. The values of F (u, v) in this equation
sometimes are referred to as the Fourier coefficients of the
expansion.
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The 2-D Discrete Fourier Transform

Because array indices in MATLAB start at 1, rather than 0,
F(1,1) and f(1,1) in MATLAB corresponds to the
mathematical quantities F (0, 0) and f(0, 0) in the transform
and its inverse.
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The 2-D Discrete Fourier Transform

Even if f(x, y) is real, its transform in general is complex.
The principal method of visually analyzing a transform is to
compute its spectrum and display it as an image. Letting
R(u, v) and I(u, v) represent the real and imaginary
components of F (u, v), the Fourier spectrum is defined as

|F (u, v)| =
√

R2(u, v) + I2(u, v)

The phase angle of the transform is defined as

φ(u, v) = tan−1

[

I(u, v)

R(u, v)

]
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The 2-D Discrete Fourier Transform

The power spectrum is defined as the square of the
magnitude:

P (u, v) = |F (u, v)|2 = R2(u, v) + I2(u, v)

For purposes of visualization it typically is immaterial
whether we view |F (u, v)| or P (u, v).
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The 2-D Discrete Fourier Transform

If f(x, y) is real, its Fourier transform is conjugate
symmetric about the origin; that is,

F (u, v) = F ∗(−u,−v)

which implies that the Fourier spectrum also is symmetric
about the origin:

|F (u, v)| = |F (−u,−v)|
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The 2-D Discrete Fourier Transform

It can be shown by direct substitution into the equation for
F (u, v) that

F (u, v) = F (u + M, v) = F (u, v + N) = F (u + M, v + N)

In other words, the DFT is infinitely periodic in both the u
and v directions, with the periodicity determined by M and
N . Periodicity is also a property of the inverse DFT:

f(x, y) = f(x + M, y) = f(x, y + N) = f(x + M, y + N)
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The 2-D Discrete Fourier Transform

Fourier spectrum showing back-to-back half periods in the
interval [0,M − 1].
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The 2-D Discrete Fourier Transform

Centered spectrum in the interval [0,M − 1] obtained by
multiplying f(x) by (−1)x prior to computing the Fourier
transform.
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Computing and Visualizing the 2-D DFT in MATLAB

The DFT and its inverse are obtained in practice using a
fast Fourier transform (FFT) algorithm. The FFT of an
M × N image array f is obtained in the toolbox with
function fft2 , which has the simple syntax:

F=fft2(f)

This function returns a Fourier
transform that is also of size M×N ,
with the data arranged in the form
shown in figure; that is, with the ori-
gin of the data at the top left, and
with four quarter periods meeting at
the center of the frequency rectan-
gle.
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Computing and Visualizing the 2-D DFT in MATLAB

As explained later, it is necessary to pad the input image
with zeros when the Fourier transform is used for filtering.
In this case, the syntax becomes

F=fft2(f,P,Q)

With this syntax, fft2 pads the input with the required
number of zeros so that the resulting function is of size
P × Q.
The Fourier spectrum is obtained by using function abs :

S=abs(F)

which computes the magnitude (square root of the sum of
the squares of the real and imaginary parts) of each
element of the array.
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Computing and Visualizing the 2-D DFT in MATLAB

Visual analysis of the spec-
trum by displaying it as an im-
age is an important aspect of
working in the frequency do-
main. As an illustration, con-
sider the simple image, f , in
the figure.
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Computing and Visualizing the 2-D DFT in MATLAB

>> F=fft2(f);
>> S=abs(F);
>> imshow(S,[])
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Computing and Visualizing the 2-D DFT in MATLAB

IPT function fftshift can be used to move the origin of
the transform to the center of the frequency rectangle. The
syntax is

Fc=fftshift(F)

where F is the transform computed using fft2 and Fc is
the centered transform. Function fftshift operates by
swapping quadrants of F. For example if a=[1 2;3 4] ,
fftshift(a)=[4 3;2 1] .
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Computing and Visualizing the 2-D DFT in MATLAB

>> Fc=fftshift(F);
>> imshow(abs(Fc),[])
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Computing and Visualizing the 2-D DFT in MATLAB

>> S2=log(1+abs(Fc));
>> imshow(S2,[])
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Computing and Visualizing the 2-D DFT in MATLAB

Function ifftshift reverses the centering. Its syntax is
F=ifftshift(Fc)

This function can be used to convert a function that is
initially centered on a rectangle to a function whose center
is at the top, left corner of the rectangle.
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Computing and Visualizing the 2-D DFT in MATLAB

While on the subject of centering, keep in mind that the
center of the frequency rectangle is at (M/2, N/2) if the
variables u and v run from 0 to M − 1 and N − 1,
respectively. For example, the center of an 8 × 8 frequency
square is at point (4, 4), which is the 5th point along each
axis, counting up from (0, 0). If, as in MATLAB, the
variables run from 1 to M and 1 to N , respectively, then the
center of the square is at (M/2 + 1, N/2 + 1). In the case
of our 8 × 8 example, the center would be at point (5, 5),
counting up from (1, 1). Obviously, the two centers are the
same point, but this can be a source of confusion when
deciding how to specify the location of DFT centers in
MATLAB computations.
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Computing and Visualizing the 2-D DFT in MATLAB

If M and N are odd, the center for MATLAB computations
is obtained by rounding M/2 and N/2 down to the closest
integer. The rest of the analysis is as in the previous slide.
For example, the center of a 7 × 7 region is at (3, 3) if we
count up from (0, 0) and at (4, 4) if we count up from (1, 1).
Using MATLAB’s function floor , and keeping in mind that
the origin is at (1, 1), the center of the frequency rectangle
for MATLAB computations is at

[floor(M/2)+1,floor(N/2)+1]

The center given by this expression is valid both for odd
and even values of M and N .
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Computing and Visualizing the 2-D DFT in MATLAB

We point out that the inverse Fourier transform is computed
using function ifft2 , which has the basic syntax

f=ifft2(F)

where F is the Fourier transform and f is the resulting
image.
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Computing and Visualizing the 2-D DFT in MATLAB

If the input used to compute F is real, the inverse in theory
should be real. In practice, however output of ifft2 often
has very small imaginary components resulting from
round-off errors that are characteristic of floating point
computations. Thus, it is good practice to extract the real
part of the result after computing the inverse to obtain an
image consisting only of real values. The tow operations
can be combined:
>> f=real(ifft2(F));

As in the forward case, this function has the alternate
format ifft2(F,P,Q) , which pads F with zeros so that its
size is P × Q before computing the inverse.
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Filtering in the Frequency Domain

• Fundamental Concepts
• Basic Steps in DFT Filtering
• An M-function for Filtering in the Frequency Domain
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Fundamental Concepts

Formally, the discrete convolution of two function f(x, y)
and h(x, y) of size M × N is denoted by f(x, y) ∗ h(x, y)
and is defined by the expression

f(x, y) ∗ h(x, y) =
M−1
∑

m=0

N−1
∑

n=0

f(m,n)h(x − m, y − n).

The minus sign simply means that function h is mirrored
about the origin.
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Fundamental Concepts

f(x, y) = F−1 [F (u, v)] (x, y) =

=
1

MN

M−1
∑

u=0

N−1
∑

v=0

F (u, v)ej2π(ux/M+vy/N)

g(x, y) = F−1 [G(u, v)] (x, y) =

=
1

MN

M−1
∑

u=0

N−1
∑

v=0

G(u, v)ej2π(ux/M+vy/N)
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Fundamental Concepts

f ∗ g =

M−1X

m=0

N−1X

n=0

f(m, n)g(x − m, y − n) =

=

M−1X

m=0

N−1X

n=0

f(m, n)

 

1

MN

M−1X
u=0

N−1X
v=0

G(u, v)ej2π(u(x−m)/M+v(y−n)/N)

!

=

=
1

MN

M−1X

u=0

N−1X

v=0

G(u, v)ej2π(ux/M+vy/N)
·

·

 

M−1X

m=0

N−1X
n=0

f(m, n)e−j2π(um/M+vn/N)

!
=

=
1

MN

M−1X
u=0

N−1X
v=0

G(u, v)ej2π(ux/M+vy/N)
· F (u, v) =

= (F )−1 [F (u, v)G(u, v)]
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Fundamental Concepts

The foundation for linear filtering in both spatial and
frequency domains is the convolution theorem, which may
be written as

f(x, y) ∗ h(x, y) ⇔ H(u, v)F (u, v)

and, conversely,

f(x, y)h(x, y) ⇔ H(u, v) ∗ H(u, v)

Here, the symbol "∗" indicates convolution of the two
functions, and the expressions on the sides of the double
arrow constitute a Fourier transform pair.
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Fundamental Concepts

The previous equation is really nothing more than an
implementation for

1. flipping one function about the origin;

2. shifting that function with respect to the other by
changing the values of (x, y); and

3. computing a sum of products over all values of m and
n, for each displacement (x, y).
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Fundamental Concepts

Filtering in the spatial domain consists of convolving an
image f(x, y) with a filter mask, h(x, y). According to the
convolution theorem, we can obtain the same result in the
frequency domain by multiplying F (u, v) by H(u, v), the
Fourier transform of the spatial filter. It is customary to
refer to H(u, v) as the filter transfer function.

MATLAB – p. 233/333



Fundamental Concepts

Basically, the idea in frequency
domain filtering is to select a fil-
ter transfer function that modifies
F (u, v) in a specified manner. For
example, the filter in the figure has
a transfer function that, when mul-
tiplied by a centered F (u, v), at-
tenuates the high-frequency com-
ponents of F (u, v), while leaving
the low frequencies relatively un-
changed. Filters with this charac-
teristic are called lowpass filters.
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Fundamental Concepts

Based on the convolution theorem, we know that to obtain
the corresponding filtered image in the spatial domain we
simply compute the inverse Fourier transform of the
product H(u, v)F (u, v). It is important to keep in mind that
the process just described is identical to what we would
obtain by using convolution in the spatial domain, as long
as the filter mask, h(x, y), is the inverse Fourier transform
of H(u, v). In practice, spatial convolution generally is
simplified by using small masks that attempt to capture the
salient features of their frequency domain counterparts.
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Fundamental Concepts

As noted earlier images and their transforms are
automatically considered periodic if we elect to work with
DFTs to implement filtering. It is not difficult to visualize
that convolving periodic functions can cause interference
between adjacent periodics if the periods are close with
respect to the duration of the nonzero parts of the
functions. This interference, called wraparound error, can
be avoided by padding the functions with zeros, in the
followin manner.
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Fundamental Concepts

Assume that functions f(x, y) and h(x, y) are of size A × B
and C × D, respectively. We form two expanded (padded)
functions, both of size P × Q by appending zeros to f and
g. It can be shown that wraparound error is avoided by
choosing

P ≥ A + C − 1

and
Y ≥ B + D − 1

Most of the work in this chapter deals with functions of the
same size, M × N , in which case we use the following
padding values: P ≥ 2M − 1 and Q ≥ 2N − 1.
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Fundamental Concepts

function PQ=paddedsize(AB,CD,PARAM)

%PADDEDSIZE Computes padded sizes useful for FFT-based fil tering.

% PQ=PADDEDSIZE(AB), where AB is a two-element size vector,

% computes the two-element size vector PQ=2 * AB.

%

% PQ=PADDEDSIZE(AB,’PWR2’) computes the vector PQ such tha t

% PQ(1)=PQ(2)=2ˆnextpow2(2 * m), where m is MAX(AB).

%

% PQ=PADDEDSIZE(AB,CD), where AB and CD are two-element siz e

% vectors, computes the two-element size vector PQ. The elem ents

% of PQ are the smallest even integers greater than or equal to

% AB+CD-1.

%

% PQ=PADDEDSIZE(AB,CD,’PWR2’) computes the vector PQ such that

% PQ(1)=PQ(2)=2ˆnextpow2(2 * m), where m is MAX([AB CD]).
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Fundamental Concepts
if nargin==1

PQ=2* AB;

elseif nargin==2 & ˜ischar(CD)

PQ=AB+CD-1;

PQ=2* ceil(PQ/2);

elseif nargin==2

m=max(AB); %Maximum dimension.

% Find power-of-2 at least twice m.

P=2ˆnextpow2(2 * m);

PQ=[P,P];

elseif nargin==3

m=max([AB CD]); %Maximum dimension.

P=2ˆnextpow2(2 * m);

PQ=[P,P];

else

error(’Wrong number of inputs.’)

end
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Fundamental Concepts

With PQthus computed using function paddedsize, we use
the following syntax for fft2 to compute the FFT using
zero padding:

F=fft2(f,PQ(1),PQ(2))

This syntax simply appends enough zeros to f such that
the resulting image is of size PQ(1) ×PQ(2) , and then
computes the FFT as previously described. Note that
when using padding the filter function in the frequency
domain must be of size PQ(1) ×PQ(2) also.
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Fundamental Concepts

The image, f , in the figure is used to illustrate the
difference between filtering with and without padding. In
the following discussion we use function lpfilter to
generate a Gaussian lowpass filter with a specified value of
sigma (sig ).
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Fundamental Concepts
>> f=imread(’square_original.tif’);
>> [M,N]=size(f);
>> F=fft2(f);
>> sig=10;
>> H=lpfilter(’gaussian’,M,N,sig);
>> G=H.* F;
>> g=real(ifft2(G));
>> imshow(g,[])
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Fundamental Concepts
>> PQ=paddedsize(size(f));

%Compute the FFT with padding.
>> Fp=fft2(f,PQ(1),PQ(2));
>> Hp=lpfilter(’gaussian’,PQ(1),PQ(2),2 * sig);
>> Gp=Hp. * Fp;
>> gp=real(ifft2(Gp));
>> gpc=gp(1:size(f,1),1:size(f,2));
>> imshow(gp,[])
>> imshow(gpc,[])
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Basic Steps in DFT Filtering

1. Obtain the padding parameters using function
paddedsize :
PQ=paddedsize(size(f));

2. Obtain the Fourier transform with padding:
F=fft2(f,PQ(1),PQ(2));

3. Generate a filter function, H, of size PQ(1) ×PQ(2)
using any of the methods discussed later. The filter
must be in the format shown in the left side figure on
the next slide. If it is centered instead, as in the right
side figure on the next slide, let H=fftshift(H)
before using the filter.
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Basic Steps in DFT Filtering

MATLAB – p. 245/333



Basic Steps in DFT Filtering

4. Multiply the transform by the filter:
G=H.* F

5. Obtain the real part of the inverse FFT of G:
g=real(ifft2(G));

6. Crop the top, left rectangle to the original size:
g=g(1:size(f,1),1:size(f,2));

MATLAB – p. 246/333



Basic Steps in DFT Filtering
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Basic Steps in DFT Filtering

It is well known from linear system theory that, under
certain mild conditions, inputting an impulse into a linear
system completely characterizes the system. When
working with finite, discrete data, as we do, the response of
a linear system, including the response to an impulse, also
is finite. If the linear system is just a spatial filter, then we
can completely determine the filter simply by observing its
response to an impulse. A filter determined in this manner
is called a finite-impulse-response (FIR) filter.
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An M-function for Filtering in the Frequency Domain

function g=dftfilt(f,H)

%DFTFILT Performs frequency domain filtering.

% G=DFTFILT(F,H) filters F in the frequency domain using the

% filter transfer function H. The output, G, is the filtered

% image, which has the same size as F. DFTFILT automatically p ads

% F to be the same size as H. Function PADDEDSIZE can be used

% to determine an appropriate size for H.

%

% DFTFILT assumes that F is real and that H is a real, uncentere d,

% circularly-symmetric filter function.

%Obtain the FFT of the padded input.

F=fft2(f,size(H,1),size(H,2));

%Perform filtering.

g=real(ifft2(H. * F));

%Crop to original size.

g=g(1:size(f,1),1:size(f,2));
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Obtaining Frequency Domain Filters from Spatial Filters

Function freqz2 computes the frequency response of FIR
filters. The result is the desired filter in the frequency
domain. Th syntax of interest in the present discussion is

H=freqz2(h,R,C)

where h is a 2-D spatial filter and H is the corresponding
2-D frequency domain filter. Here, R is the number of rows,
and C the number of columns that we wish filter H to have.
Generally, we let R=PQ(1) and C=PQ(2) . If freqz2 is
written without an output argument, the absolute value of H
is displayed on the MATLAB desktop as a 3-D perspective
plot.
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Obtaining Frequency Domain Filters from Spatial Filters

>> f=imread(’bld.tif’);
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Obtaining Frequency Domain Filters from Spatial Filters

>> F=fft2(f);
>> S=fftshift(log(1+abs(F)));
>> S=gscale(S);
>> imshow(S)
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Obtaining Frequency Domain Filters from Spatial Filters

>> h=fspecial(’sobel’)’

h =

1 0 -1
2 0 -2
1 0 -1

>> freqz2(h)
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Obtaining Frequency Domain Filters from Spatial Filters

>> PQ=paddedsize(size(f));
>> H=freqz2(h,PQ(1),PQ(2));
>> H1=ifftshift(H);
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Obtaining Frequency Domain Filters from Spatial Filters

>> imshow(abs(H),[])
>> figure, imshow(abs(H1),[])
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Obtaining Frequency Domain Filters from Spatial Filters

>> gs=imfilter(double(f),h);
>> gf=dftfilt(f,H1);
>> imshow(gs,[])
>> figure,imshow(gf,[])
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Obtaining Frequency Domain Filters from Spatial Filters

>> figure, imshow(abs(gs),[])
>> figure, imshow(abs(gf),[])
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Obtaining Frequency Domain Filters from Spatial Filters

>> figure, imshow(abs(gs)>0.2 * abs(max(gs(:))))
>> figure, imshow(abs(gf)>0.2 * abs(max(gf(:))))
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Obtaining Frequency Domain Filters from Spatial Filters

>> d=abs(gs-gf);
>> max(d(:))

ans =

5.5156e-013

>> min(d(:))

ans =

0
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Chapter 5

Edge Detection
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Edge detection

• Edges can be found in an image, where sudden
intesity changing is sensed.

• The changing can be determined from the derivatives
of the intensity function.

• In an image we should use gradient instead of
derivates.

• Gradient vector:

[

∂f
∂x
∂f
∂y

]

• Length of the gradient vector:

√

(

∂f

∂x

)2

+

(

∂f

∂y

)2
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edge function

MATLAB function:
[g,t]=edge(f,’method’,parameters)

Possible method values:
• ’prewitt’

• ’sobel’

• ’roberts’

• ’log’

• ’zerocross’

• ’canny’
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Prewitt detector

Masks:







−1 −1 −1

0 0 0

1 1 1













−1 0 1

−1 0 1

−1 0 1







MATLAB function:
[g,t]=edge(f,’prewitt’,T,dir)
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Sobel detector

Masks:







−1 −2 −1

0 0 0

1 2 1













−1 0 1

−2 0 2

−1 0 1







MATLAB function:
[g,t]=edge(f,’sobel’,T,dir)
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Roberts detector

Masks:

[

−1 0

0 1

] [

0 −1

1 0

]

MATLAB function:
[g,t]=edge(f,’roberts’,T,dir)
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Laplacion of Gaussian detector

Mask equation: −
[

r2 − σ2

σ4

]

e−
r2

2σ2

This mask smoothes the image, then makes the second
derivative. In this filtered image the edge detector
searches 0-crossings.

MATLAB function:
[g,t]=edge(f,’log’,T,sigma)
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Zero-crossing detector

It is very similar with the previous one, but the filter mask
(H) can be determined by the user.

MATLAB function:
[g,t]=edge(f,’zerocross’,T,H)
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Canny detector

1. The image is smoothed using a Gaussian filter with a
specified standard deviation, σ, to reduce noise.

2. The local gradient and edge direction are computed at
each point.

3. The computed edges are thined by nonmaximal
suppression.

4. The ridge pixels are then thresholded using two
thresholds, T1 and T2, with T1 < T2. Ridge pixels with
values greater than T2 are said to be "strong" edge
pixels. Ridge pixels with values between T1 and T2
are said to be "weak" edge pixels.
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Canny detector

5. Finally, the algorithm performs edge linking by
incorporation the weak pixels that are 8-connected to
the strong pixels.

MATLAB function:
[g,t]=edge(f,’canny’,T,sigma)
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Chapter 6

Morphological Image
Processing
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Dilation

IPT function imdilate performs dilation. Its basic calling
syntax is

A2=imdilate(A,B)

where A and A2 are binary images, and B is a matrix of 0s
and 1s that specifies the structuring element.
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Dilation

>> A=imread(’broken-text.tif’);
>> B=[0 1 0;1 1 1;0 1 0];
>> A2=imdilate(A,B);
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Structuring Element

IPT function strel constructs structuring elements with a
variety of shapes and sizes. Its basic syntax is

se=strel(shape,parameters)

where shape is a string specifying the desired shape, and
parameters is a list of parameters that specify
information about the shape, such as its size.
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Structuring Element

Syntax Forms Description

strel(’diamond’,R) Creates a flat, diamond-shaped structuring element,
where R specifies the distance from the structuring el-
ement origin to the extreme points of the diamond.

strel(’disk’,R) Creates a flat, disk-shaped structuring element with
radius R.

strel(’line’,LEN,DEG) Creates a flat, linear structuring element, where LEN

specifies the length, and DEGspecifies the angle (in
degrees) of the line, as measured in a counterclock-
wise direction from the horizontal axes.

strel(’octagon’,R) Creates a flat, octagonal structuring element, where
R specifies the distance from the structuring element
origin to the sides of the octagon, as measured along
the horizontal and vertical axes. R must be a nonneg-
ative multiple of 3.
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Structuring Element

Syntax Forms Description

strel(’pair’,OFFSET) Creates a flat structuring element containing two
members. One member is located at the origin.
The second member’s location is specified by
the vector OFFSET, which must be a two-element
vector of integers.

strel(’periodicline’,P,V) Creates a flat structuring element containing
2* P+1 members. V is a two-element vector con-
taining integer-valued row and column offsets.
One structuring element member is located at
the origin. The other members are located at
1* V, -1 * V, 2* V, -2 * V, ... , P* V, and -P * V.
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Structuring Element

Syntax Forms Description

strel(’rectangle’,MN) Creates a flat, rectangle-shaped structuring element,
where MN specifies the size. MN must be a two-
element vector of nonnegative integers. The first ele-
ment of MNis the number of rows in the structuring el-
ement; the second element is the number of columns.

strel(’square’,W) Creates a square structuring element whose width is
Wpixels. Wmust be a nonnegative integer scalar.

strel(NHOOD) Creates a structuring element of arbitrary shape.
NHOODis a matrix of 0s and 1s that specifies the
shape.

MATLAB – p. 276/333



Dilation

>> originalI=imread(’cameraman.tif’);
>> se=strel(’disk’,2);
>> dilatedI=imdilate(originalI,se);
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Erosion

>> A=imread(’wirebond-mask.tif’);
>> se=strel(’disk’,10);
>> A2=imerode(A,se);
>> se=strel(’disk’,5);
>> A3=imerode(A,se);
>> A4=imerode(A,strel(’disk’,20));
>> subplot(2,2,1), imshow(A),...
subplot(2,2,2), imshow(A2),...
subplot(2,2,3), imshow(A3),...
subplot(2,2,4), imshow(A4)
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Erosion
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Labeling Connected Components

IPT function bwlabel computes all the connected
components in a binary image. The calling syntax is

[L,num]=bwlabel(f,conn)

where f is an input binary image and conn specifies the
desired connectivity (either 4 or 8). Output L is called a
label matrix, and num (optional) gives the total number of
connected components found. If parameter conn is
omitted, its value defaults to 8.
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Labeling Connected Components

>> f=imread(’ten-objects.tif’);

>> [L,n]=bwlabel(f);

>> [r,c]=find(L==3);

>> rbar=mean(r);

>> cbar=mean(c);

>> imshow(f)

>> hold on

>> for k=1:n

[r,c]=find(L==k);

rbar=mean(r);

cbar=mean(c);

plot(cbar,rbar,’Marker’,’o’, ’MarkerEdgeColor’,’k’,. ..

’MarkerFaceColor’,’k’, ’MarkerSize’,10)

plot(cbar,rbar,’Marker’,’ * ’, ’MarkerEdgeColor’,’w’)

end
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Labeling Connected Components
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Chapter 7

Color Image Processing
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Content

• Color Image Representation in MATLAB
• Converting to Other Color Spaces
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Color Image Representation in MATLAB

• RGB Images
• Indexed Images
• IPT Functions for Manipulating RGB and Indexed

Images
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RGB Images

An RGB color image is an M × N × 3 array of color pixels,
where each color pixel is a triplet corresponding to the red,
green, and blue components of an RGB image at a specific
spatial location.
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RGB Images

The data class of the component images determines their
range of values. If an RGB images is of class double , the
range of values is [0, 1]. Similarly, the range of values is
[0, 255] of [0, 65535] for RGB images of class uint8 or
uint16 , respectively. The number of bits used to
represent the pixel values of the component images
determines the bit depth of an RGB image.
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RGB Images

Let fR , fG , and fB represent three RGB component
images. An RGB image is formed from these images by
using the cat (concatenate) operator to stack the images:

rgb_image=cat(3,fR,fG,fB)

The order in which images are placed in the operand
matters. In general, cat(dim,A1,A2,...) concatenates
the arrays along the dimension specified by dim . For
example, if dim=1 , the arrays are arranged vertically, if
dim=2 , they are arranged horizontally, and, if dim=3 , they
are stacked in the third dimension.
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RGB Images

If all component images are identical, the result is a
gray-scale image. Let rgb_image denote an RGB image.
The following commands extract the three component
images:
>> fR=rgb_image(:,:,1);
>> fG=rgb_image(:,:,2);
>> fB=rgb_image(:,:,3);
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RGB Images

The RGB color space usually is shown graphically as an
RGB color cube, as depicted in the figure. The vertices of
the cube are the primary (red, green, and blue) and
secondary (cyan, magenta, and yellow) colors of light.
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RGB Images
function rgbcube(vx,vy,vz)

%RGBCUBE Displays an RGB cube on the MATLAB desktop.

% RGBCUBE(VX,VY,VZ) displays an RGB color cube, viewed from point

% (VX,VY,VZ). With no input arguments, RGBCUBE uses (10,10, 4)

% as the default viewing coordinates. To view individual col or

% planes, use the following viewing coordinates, where the f irst

% color in the sequence is the closest to the viewing axis, and the

% other colors are as seen from that axis, proceeding to the ri ght

% (ob above), and then moving clockwise.

%

% --------------------------------------------

% COLOR PLANE ( VX, VY, VZ)

% --------------------------------------------

% Blue-Magenta-White-Cyan ( 0, 0, 10)

% Red-Yellow-White-Magenta ( 10, 0, 0)

% Green-Cyan-White-Yellow ( 0, 10, 0)

% Black-Red-Magenta-Blue ( 0,-10, 0)

% Black-Blue-Cyan-Green (-10, 0, 0)

% Black-Red-Yellow-Green ( 0, 0,-10)
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RGB Images

%Set up paramteres for function patch.

vertices_matrix=[0 0 0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0;1 1 1];

faces_matrix=[1 5 6 2;1 3 7 5;1 2 4 3;2 4 8 6;3 7 8 4;5 6 8 7];

colors=vertices_matrix;

%The order of the cube vertices was selected to be the same as

%the order of the (R,G,B) colors (e.g., (0,0,0) corresponds to

%black, (1,1,1) corresponds to white, and so on.)

%Generate RGB cube using function patch.

patch(’Vertices’,vertices_matrix,’Faces’,faces_matr ix,...

’FaceVertexCData’,colors,’FaceColor’,’interp’,...

’EdgeAlpha’,0)
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RGB Images

%Set up viewing point.

if nargin==0

vx=10; vy=10; vz=4;

elseif nargin ˜=3

error(’Wrong number of inputs.’)

end

axis off

view([vx, vy, vz])

axis square
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Indexed Images
An indexed image has two components: a data matrix of integers, X,
and a colormap matrix , map. Matrix map is an m × 3 array of class
double containing floating-point values in the range [0, 1]. The length,
m, of the map is equal to the number of colors it defines. Each row of
mapspecifies the red, green, and blue components of a single color.
An indexed images uses "direct mapping" of pixel intensity values to
colormap values. The color of each pixel is determined by using the
corresponding value of integer matrix X as a pointer into map. If X is of
class double , then all of its components with value 2 point to the
second row, and so on. If X is of class uint8 or uint16 , then all
components with value 0 point to the first row in map, all components
with value 1 point to the second row, and so on.
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Indexed Images
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Indexed Images

To display an indexed image we write
>> imshow(X,map)

or, alternatively,
>> image(X)
>> colormap(map)

A colormap is stored with an indexed image and is
automatically loaded with the image when function imread
is used to load the image.
>>[X,map]=imread(...)
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Indexed Image

Sometimes it is necessary to approximate an indexed
image by one with fewer colors. For this we use function
imapprox , whose syntax is

[Y,newmap]=imapprox(X,map,n)

This function returns an array Y with colormap newmap,
which has at most n colors. The input array X can be of
class uint8 , uint16 , or double . The output Y is of class
uint8 if n is less than or equal to 256. If n is greater than
256, Y is of class double .
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Indexed Images

MATLAB provides several predefined color maps,
accessed using the command
>> colormap(map_name)

which sets the colormap to the matrix map_name; an
example is
>> colormap(copper)

where copper is one of the predefined MATLAB
colormaps. If the last image displayed was an indexed
image, this command changes its colormap to copper .
Alternatively, the image can be displayed directly with the
desired colormap:
>> imshow(X,copper)
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Indexed Images
Name Description

autumn Varies smoothly from red, through orange, to yellow.

bone A gray-scale colormap with a higher value for the blue component.
This colormap is useful for adding an "electronic" look to gray-scale
images.

colorcube Contains as many regularly spaced colors in RGB color space as pos-
sible, while attempting to provide more steps of gray, pure red, pure
green, and pure blue.

cool Consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

copper Varies smoothly from black to bright copper.

flag Consists of the colors red, white, blue, and black. This colormap com-
pletely changes color with each index increment.

gray Returns a linear gray-scale colormap.

hot Varies smoothly from black, through shades of red, orange, and yellow,
to white.
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Indexed Images
Name Description

hsv Varies the hue component of the hue-saturation-value color model. The
colors begin with red, pass through yellow, green, cyan, blue, magenta,
and return to red. The colormap is particularly appropriate for displaying
periodic functions.

jet Ranges from blue to red, and passes through the colors cyan, yellow, and
orange.

lines Produces a colormap of colors specified by the ColorOrder property and
a shade of gray. Consult online help regarding function ColorOrder .

pink Contains pastel shades of pink. The pink colormap provides sepia tone
colorization of grayscale photographs.

prism Repeats the six colors red, orange, yellow, green, blue, and violet.

spring Consists of colors that are shades of magenta and yellow.

summer Consists of colors that are shades of green and yellow.

white This is an all white monochrome colormap.

winter Consists of colors that are shades of blue and green.
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Manipulating RGB and Indexed Images

Function Purpose

dither Creates an indexed image from an RGB image by
dithering.

grayslice Creates an indexed image from a gray-scale intensity
image by multilevel thresholding.

gray2ind Creates an indexed image from a gray-scale intensity
image.

ind2gray Creates a gray-scale intensity image from an indexed
image.

rgb2ind Creates an indexed image from an RGB image.

ind2rgb Creates an RGB image from an indexed image.

rgb2gray Creates a gray-scale image from an RGB image.
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Manipulating RGB and Indexed Images

>> f=imread(’iris.tif’);
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Manipulating RGB and Indexed Images

>> [X1,map1]=rgb2ind(f,8,’nodither’);
>> imshow(X1,map1)
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Manipulating RGB and Indexed Images

>> [X2,map2]=rgb2ind(f,8,’dither’);
>> imshow(X2,map2)
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Manipulating RGB and Indexed Images

>> g=rgb2gray(f);
>> g1=dither(g);
>> figure, imshow(g); figure, imshow(g1)
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Converting to Other Color Spaces

• NTSC Color Space
• The YCbCr Color Space
• The HSV Color Space
• The CMY and CMYK Color Spaces
• The HSI Color Space
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NTSC Color Space

The NTSC Color System is used in television in the United
States. One of the main advantages of this format is that
gray-scale information is separate from color data. In the
NTSC format, image data consists of three components:

• luminance (Y)
• hue (I)
• saturation (Q)

The luminance component represents gray-scale
information, and the other two components carry the color
information of a TV signal.

MATLAB – p. 307/333



NTSC Color Space
The YIQ components are obtained from the RGB
components of an image using the transfromation







Y

I

Q






=







0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312













R

G

B







Note that the elements of the first row sum to 1 and the
elements of the next two rows sum to 0. This is as
expected because for a gray-scale image all the RGB
components are equal, so the I and Q components should
be 0 for such an image.
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NTSC Color Space

Function rgb2ntsc performs the transformation:

yiq_image=rgb2ntsc(rgb_image)

where the input RGB image can be of class uint8 ,
uint16 , or double . The output image is an M × N × 3
array of class double . Component image
yiq_image(:,:,1) is the luminance,
yiq_image(:,:,2) is the hue, and yiq_image(:,:,3)
is the saturation image.
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NTSC Color Space

Similarly, the RGB components are obtained from the YIQ
components using the transformation:
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Q
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
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IPT function ntsc2rgb implements this equation:

rgb_image=ntsc2rgb(yiq_image)

Both the input and output images are of class double .
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The YCbCr Color Space

The YCbCr color space is used widely in digital video. In
this format, luminance information is represented by a
single component, Y, and color information is stored as two
color-difference components, Cb and Cr. Component Cb is
the difference between the blue component and a
reference value, and component Cr is the difference
between the red component and a reference value.
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The YCbCr Color Space

The transformation used by IPT to convert from RGB to
YCbCr is






Y
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The YCbCr Color Space

The conversion function is

ycbcr_image=rgb2ycbcr(rgb_image)

The input RGB image can be of class uint8 , uint16 , or
double . The output image is of the same class as the
input. A similar transformation converts from YCbCr back
to RGB:

rgb_image=ycbcr2rgb(ycbcr_image)

The input YCbCr image can be of class uint8 , uint16 , or
double . The output image is of the same class as the
input.

MATLAB – p. 313/333



The HSV Color Space

HSV (hue, saturation, value) is one of several color
systems used by people to select colors from a color wheel
or palette. This color system is considerably closer than
the RGB system to the way in which humans experience
and describe color sensations. In artist’s terminology, hue,
saturation, and value refer approximately to tint, shade,
and tone.
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The HSV Color Space
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The HSV Color Space

The MATLAB function for converting from RGB to HSV is
rgb2hsv , whose syntax is

hsv_image=rgb2hsv(rgb_image)

The input RGB image can be of class uint8 , uint16 , or
double ; the output image is of class double . The function
for converting from HSV back to RGB is hsv2rgb :

rgb_image=hsv2rgb(hsv_image)

The input image must be of class double . The output also
is of class double .
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The CMY Color Space

The conversion is performed using the simple equation

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where the assumption is that all color values have been
normaized to the range [0, 1].
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The CMY Color Space

Function imcomplement can be used to convert from
RGB to CMY:

cmy_image=imcomplement(rgb_image)

We use this function also to convert a CMY image to RGB:

rgb_image=imcomplement(cmy_image)
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The HSI Color Space

When humans view a color object, we tend to describe it
by its hue, saturation, and brightness. Hue is an attribute
that describes a pure color, whereas saturation gives a
mesaure of the degree to which a pure color is diluted by
white light. Brightness is a subjective descriptor that is
practically impossible to measure. It embodies the
achromatic description of intensity and is a key factor in
describing color sensation. We do know that intensity (gray
level) is a most useful descriptor of monochromatic
images. This quantity definitely is measurable and easily
interpretable.
The color space we are about to present, called the HSI
(hue, saturation, intensity) color space.
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Converting Colors from RGB to HSI

Given an image in RGB color format, the H component of
each RGB pixel is obtained usint the equation

H =

{

θ ifB ≤ G

360◦ − θ ifB > G

with

θ = cos−1







1
2
[(R − G) + (R − B)]

√

(R − G)2 + (R − B) (G − B)






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Converting Colors from RGB to HSI

The saturation component is given by

S = 1 −
3

(R + G + B)
[min(R,G,B)]

Finally, the intensity component is given by

I =
1

3
(R + G + B)
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Converting Colors from RGB to HSI

It is assumed that the RGB values have been normalized
to the range [0, 1], and that angle θ is measured with
respect to the red axis of the HSI space. Hue can be
normalized to the range [0, 1] by dividing by 360◦ all values
resulting from the equation for H. The other two HSI
components already are in this range if the given RGB
values are in the interval [0, 1].
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Converting Colors from RGB to HSI

function hsi=rgb2hsi(rgb)

%RGB2HSI Converts an RGB image to HSI.

% HSI=RGB2HSI(RGB) converts an RGB image to HSI. The input im age

% is assumed to be of size M-by-N-by-3, where the third dimens ion

% accounts for three image planes: red, green, and blue, in th at

% order. If all RGB component images are equal, the HSI conver sion

% is undefined. The input image can be of class double (with va lues

% in the range [0,1]), uint8, or uint16.

%

% The output image, HSI, is of class double, where:

% hsi(:,:,1)=hue image normalized to the range [0,1] by

% dividing all angle values by 2 * pi.

% hsi(:,:,2)=saturation image, in the range [0,1].

% hsi(:,:,3)=intensity image, in the range [0,1].
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Converting Colors from RGB to HSI

% Extract the individual component images.

rgb=im2double(rgb);

r=rgb(:,:,1);

g=rgb(:,:,2);

b=rgb(:,:,3);

% Implement the conversion equations.

num=0.5 * ((r-g)+(r-b));

den=sqrt((r-g).ˆ2+(r-b). * (g-b));

theta=acos(num./(den+eps));

H=theta;

H(b>g)=2 * pi-H(b>g);

H=H/(2 * pi);
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Converting Colors from RGB to HSI

num=min(min(r,g),b);
den=r+g+b;
den(den==0)=eps;
S=1-3. * num./den;

H(S==0)=0;

I=(r+g+b)/3;

% Combine all three results into an hsi image.
hsi=cat(3,H,S,I);
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Converting Color from HSI to RGB

Given values of HSI in the interval [0, 1], we now find the
corresponding RGB values in the same range. The
applicable equations depend on the values of H. There are
three sectors of interest, corresponding to the 120◦

intervals in the separation of primaries. We begin by
multiplying H by 360◦, which returns the hue to its original
range of [0◦, 360◦].
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Converting Color from HSI to RGB

RG sector (0◦ ≤ H < 120◦): When H is in this sector, the
RGB components are given by the equations

B = I (1 − S)

R = I

[

1 +
S cos H

cos(60◦ − H)

]

and
G = 3I − (R + B)
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Converting Color from HSI to RGB

GB sector (120◦ ≤ H < 240◦): If the given value of H is in
this sector, we first subtract 120◦ from it:

H = H − 120◦

Then the RGB components are

G = I (1 − S)

B = I

[

1 +
S cos H

cos(60◦ − H)

]

R = 3I − (G + B)
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Converting Color from HSI to RGB

BR sector (240◦ ≤ H ≤ 360◦): Finally, if H is in this range,
we subtract 240◦ from it:

H = H − 240◦

Then the RGB components are

R = I (1 − S)

G = I

[

1 +
S cos H

cos(60◦ − H)

]

B = 3I − (R + G)
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Converting Color from HSI to RGB

function rgb=hsi2rgb(hsi)

%HSI2RGB Converts an HSI image to RGB.

% RGB=HSI2RGB(HSI) converts an HSI image to RGB, where HSI

% is assumed to be of class double with:

% hsi(:,:,1)=hue image, assumed to be in the range

% [0,1] by having been divided by 2 * pi.

% hsi(:,:,2)=saturation image, in the range [0,1].

% hsi(:,:,3)=intensity image, in the range [0,1].

%

% The components of the output image are:

% rgb(:,:,1)=red.

% rgb(:,:,2)=green.

% rgb(:,:,3)=blue.
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Converting Color from HSI to RGB

% Extract the individual HSI component images.

H=hsi(:,:,1) * 2* pi;

S=hsi(:,:,2);

I=hsi(:,:,3);

% Implement the conversion equations.

R=zeros(size(hsi,1),size(hsi,2));

G=zeros(size(hsi,1),size(hsi,2));

B=zeros(size(hsi,1),size(hsi,2));

% RG sector (0<=H<2 * pi/3).

idx=find((0<=H)&(H<2 * pi/3));

B(idx)=I(idx). * (1-S(idx));

R(idx)=I(idx). * (1+S(idx). * cos(H(idx))./...

cos(pi/3-H(idx)));

G(idx)=3 * I(idx)-(R(idx)+B(idx));
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Converting Color from HSI to RGB
% BG sector (2 * pi/3<=H<4 * pi/3).

idx=find((2 * pi/3<=H)&(H<4 * pi/3));

R(idx)=I(idx). * (1-S(idx));

G(idx)=I(idx). * (1+S(idx). * cos(H(idx)-2 * pi/3)./...

cos(pi-H(idx)));

B(idx)=3 * I(idx)-(R(idx)+G(idx));

% BR sector.

idx=find((4 * pi/3<=H)&(h<=2 * pi));

G(idx)=I(idx). * (1-S(idx));

B(idx)=I(idx). * (1+S(idx). * cos(H(idx)-4 * pi/3)./...

cos(5 * pi/3-H(idx)));

R(idx)=3 * I(idx)-(G(idx)+B(idx));

% Combine all three results into an RGB image. Clip to [0,1] to

% compensate for floating-point arithmetic rounding effec ts.

rgb=cat(3,R,G,B);

rgb=max(min(rgb,1),0);
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