Planejamento, Programação e Controle da Produção I

Prof. MSc. Blaha Gregory C. S. Goussain blaha.goussain@unesp.br

Demanda no planejamento e controle

Incerteza no suprimento e na demanda

Incerteza torna tanto o planejamento quanto o controle mais difíceis.

Exemplo: Comemorações públicas em pequenas cidades.

Demanda dependente

É a demanda que é relativamente previsível porque depende de algum fator conhecido.

Exemplo: Gerente encarregado de garantir que haja pneus suficientes em uma fábrica.

Demanda independente


É a demanda sem ter qualquer visibilidade antecipada dos clientes.

Exemplo: Uma empresa que opera um serviço de venda e troca de pneus, vai precisar gerenciar seu estoque.

Demanda dependente e independente

Fonte: SLACK, N. et al. Princípios de administração da produção. São Paulo: Atlas, 2013.

Resposta à demanda

Em condições de demanda dependente, uma operação apenas iniciará o processo de produção de bens e serviços quando forem necessários.

Recursos a encomendar

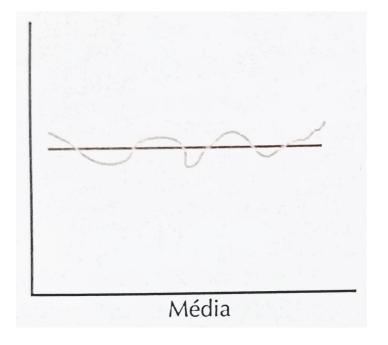
O material necessário para construir uma casa será comprado apenas quando os prazos e as características da casa estiverem definidos.

Fazer conforme o pedido

Um construtor de casas que tenha projetos padronizados pode optar por construir cada casa apenas após receber o pedido do cliente.

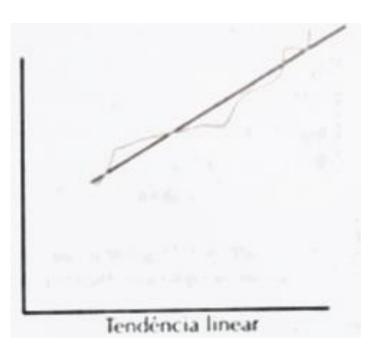
Fazer para estoque

Alguns construtores construirão casas ou apartamentos pré-projetados antes de qualquer demanda.


Tipos de demanda

Para que possa realizar uma previsão de vendas adequada, deve-se ter informações a respeito da demanda do produto.

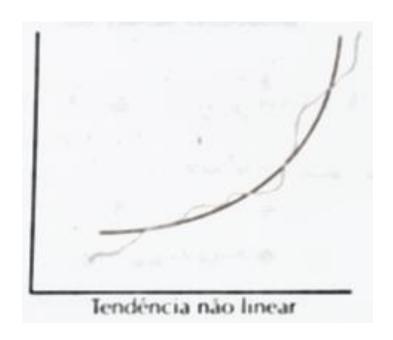
Os padrões de demanda mais comuns são:


Média

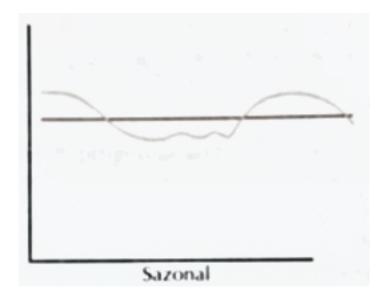
As flutuações da demanda estão em torno de um valor constante.

Tendência linear

Demanda cresce ou decresce linearmente.



Tipos de demanda


Tendência não linear

Demanda cresce ou decresce não linearmente, conforme uma equação do 2º grau, por exemplo.

Estacional (sazional)

Demanda cresce ou decresce, em certos períodos, por exemplo, um dia da semana, do mês, ou em meses específicos do ano.

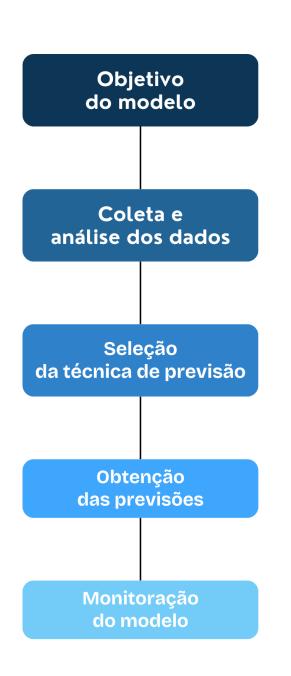
Previsão de demanda

A previsão da demanda é a base para o planejamento estratégico da produção, vendas e finanças de qualquer empresa.

Permite que os administradores destes sistemas antevejam o futuro e planejem adequadamente suas ações.

As previsões são usadas pelo PPCP em 2 momentos distintos:

Longo prazo: Para planejar o sistema produtivo (produtos/serviços, instalação, equipamentos, etc.)

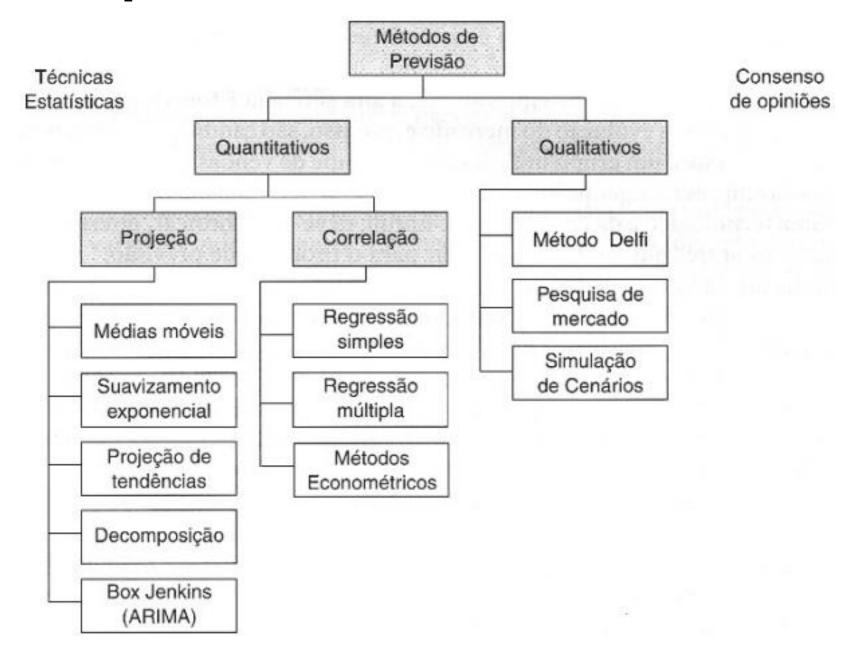

Curto prazo: Para planejar o uso deste sistema produtivo (planos de produção, armazenagem e compras).

 A previsão da demanda é a principal informação empregada pelo PPCP na elaboração de suas atividades, principalmente, em empresas de pequeno e médio porte.

Etapas de um modelo de previsão

Definir a razão pela qual necessitamos de previsões, ou seja, que produto será previsto.

Visa identificar e desenvolver a técnica de previsão que melhor se adapte.


Existem técnicas Qualitativas e Quantitativas, cada uma tendo a sua aplicabilidade.

Resultados das previsões do modelo.

Monitoramento dos resultados gerados pelo modelo.

Técnicas de previsão de demanda

Fonte: LUSTOSA, et al. Planejamento e Controle da Produção. Rio de Janeiro: Elsevier, 2008.

Técnicas Qualitativas e Quantitativas

Técnicas Qualitativas

Privilegiam dados subjetivos, os quais são difíceis de representar numericamente.

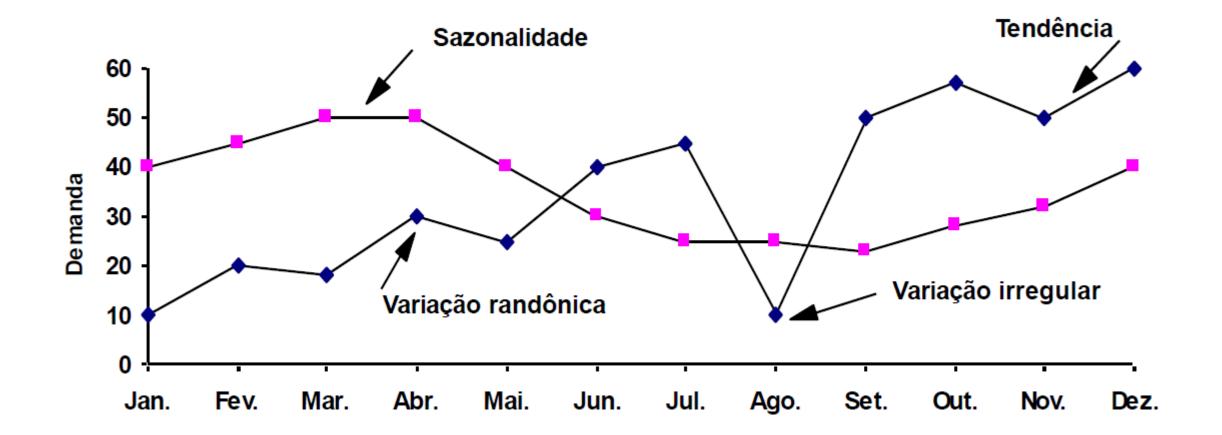
Estão baseadas na opinião e no julgamento de pessoas chaves, especialistas nos produtos ou nos mercados onde atuam estes produtos.

Técnicas Quantitativas

Envolvem a análise numérica de dados, isentando-se de opiniões pessoais ou palpites. Empregam modelos matemáticos para projetar demanda futura.

Podem ser subdivididas em 2 grupos:

- Técnicas baseadas em séries temporais (modelo matemático).
- Técnicas causais (regressão simples e múltipla).



Previsões baseadas em séries temporais

Partem do princípio de que a demanda futura será uma projeção dos seus valores passados, não sofrendo influência de outras variáveis.

Para se montar o modelo de previsão, é necessário plotar os dados passados e identificar os fatores que estão por trás das características da curva obtida (previsão final = composição dos fatores).

Classificação das Séries Temporais (ST)

ST de Modelo Fixo (Fixed Model Time Series)

Apresentam equações definidas baseadas em avaliações a priori da existência de determinadas componentes nos dados históricos (mais simples, séries históricas não muito grandes).

ST de Modelo Aberto (Open Model Time Series)

Analisam as ST de modo a identificar quais componentes realmente estão presentes, para então criar um modelo único que projete tais componentes, prevendo os valores futuros (mais elaboradas, maior quantidade de dados).

Métodos baseados em médias

Estes métodos são baseados em dados históricos, isto é, a hipótese implícita de que "o futuro é uma continuação do passado".

Média Móvel Simples (MMS)

No método da MMS, a previsão no período futuro t é calculada como sendo a média de n períodos anteriores. Deve-se escolher sobre quantos períodos a média será calculada.

Média Móvel Ponderada (MMP)

No método da MMS, atribui-se o mesmo peso a todos os meses. Já o método da MMP, atribui-se um peso a cada um dos dados, sendo que a soma dos pesos deve ser igual a 1, por exemplo, média móvel trimestral com fator de ajustamento 0,7 no último mês, 0,2 no penúltimo mês e 0,1 no antepenúltimo mês.

Exemplos MMS

Demanda (unidades)													
Ano 1 Ar													Ano 2
Mês	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Jan.
Consumo real	100	102	101	104	102	101	102	103	103	103	104	103	104

 $MMS_{12} = 102,3$

						Demanda	(unidades)	ı					
					And	1						And	2
Mês	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Jan.	Fev.
Consumo real	102	101	104	102	101	102	103	103	103	104	103	104	?

 $MMS_{12} = 102,7$

Exemplos MMP

Demanda (unidades)													
Ano 1 Ar													Ano 2
Mês	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Jan.
Consumo real	100	102	101	104	102	101	102	103	103	103	104	103	104

 $MMP_3 = 103,2$

						Demanda	(unidades)	ı					
					And	1						And	2
Mês	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Jan.	Fev.
Consumo real	102	101	104	102	101	102	103	103	103	104	103	104	?

 $MMP_3 = 103.8$

Métodos baseados em médias

Média Móvel com ajustamento exponencial (MAE)

No método da MAE, a previsão P é calculada a partir da última previsão realizada no período (t - 1) adicionada ou subtraída de um coeficiente (α) que multiplica o consumo real (C) e a previsão no período (P $_{t-1}$), de acordo com a expressão a seguir:

$$P_t = P_{t-1} + \alpha (C_{t-1} - P_{t-1})$$
, sendo $0 < \alpha < 1$ (geralmente entre 0,1 e 0,3)

Caso queira-se determinar o valor de α, este pode ser calculado em função do número de períodos n considerados para o modelo em questão, com a utilização da expressão:

$$\alpha = 2/(n+1)$$

Assim sendo, caso utilizássemos um horizonte com sete períodos de tempo, teríamos:

$$\alpha = 2/(7+1) = 0.25$$

Exemplos MAE

						Den	nanda (ı	unidades	;)						
						Ano 1								Ano 2	
Mês	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.
Consumo real	100	102	101	104	102	101	102	103	103	103	104	103	104	103	103

Adotemos $\alpha = 0.3$ como coeficiente de ajustamento.

Previsão para fevereiro do ano 2

Imaginando que estivéssemos no início de fevereiro do ano 2 e desejássemos realizar a previsão para fevereiro do ano 2, teríamos:

$$P_{Fev.} = P_{Jan.} + \alpha (C_{Jan.} - P_{Jan.})$$

Supondo que a previsão de janeiro do ano 2 já tivesse sido elaborada com base na média móvel de 12 meses e fosse igual a 102,3, teríamos:

$$P_{FeV} = 102,3 + 0,3 (104 - 102,3) = 102,8$$

Exemplos MAE

						Dema	anda (unid	ades)						
					And	1							Ano 2	
Mês	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.
Consumo real	102	101	104	102	101	102	103	103	103	104	103	104	103	103

Adotemos α = 0,3 como coeficiente de ajustamento.

Previsão para março do ano 2

$$P_{Mar.} = 102.8 + 0.3 (103 - 102.8) = 102.9$$

Previsão para abril do ano 2

$$P_{Abr.} = 102,9 + 0,3 (103 - 102,9) = 102,9$$

Métodos baseados em médias

Ajustamento sazonal (para fenômenos sem tendências)

O método do coeficiente sazonal é um dos métodos mais utilizados para a realização de previsões quando o consumo é sazonal.

Para desenvolver o método, deve-se determinar a média de consumo em cada ano e os coeficientes de sazonalidade para cada período de sazonalidade ao longo dos anos.

Com esses valores, determina-se o coeficiente médio de sazonalidade de cada período de cada ano.

Após esse cálculo, projeta-se a demanda global para o ano previsto e a média de consumo para cada período de sazonalidade, por meio de um método de previsão.

A média prevista de consumo em cada período da sazonalidade multiplicada pelo coeficiente médio de sazonalidade de cada período do ano resulta na previsão da demanda de consumo.

Exemplos de ajustamento sazonal

Dados de consumo de um produto nos últimos quatro anos e deseja-se determinar a previsão de vendas trimestral no ano 5.

		Consumo em unidades		
Trimestre	Ano 1	Ano 2	Ano 3	Ano 4
1	45	70	100	100
2	335	370	585	725
3	520	590	830	1.160
4	100	170	285	215
Total	1.000	1.200	1.800	2.200
Média	250	300	450	550

Calcule os coeficientes de sazonalidade:

Exemplos de ajustamento sazonal

Trimestre	Ano 1	Ano 2	Ano 3	Ano 4	Média
1	45/250 = 0,18	70/300 = 0,23	100/450 = 0,22	100/550 = 0,18	0,20
2	335/250 = 1,34	370/300 = 1,23	585/450 = 1,30	725/550 = 1,32	1,30
3	520/250 = 2,08	590/300 = 1,97	830/450 = 1,84	1.160/550 = 2,11	2,00
4	100/250 = 0,40	170/300 = 0,57	285/450 = 0,63	215/550 = 0,39	0,50

Vamos supor que a previsão para o ano 5 fosse de 2.500 baseada em que em quatro anos o consumo passou de 1.000 para 2.200 unidades com um incremento médio de 300 unidades ao ano.

Qual a média trimestral?

2.500/4 = 625 unidades.

Exemplos de ajustamento sazonal

Qual a previsão de cada trimestre?

Trimestre	Previsão
1	625 x (0,20) = 125 unidades
2	625 x (1,30) = 813 unidades
3	625 x (2,00) = 1.250 unidades
4	625 x (0,50) = 313 unidades

Atividades

1. As vendas dos últimos 10 meses de bicicletas ergométricas da Allfitness têm os valores da tabela abaixo. Determine a previsão de vendas para o mês 11 utilizando o modelo da média móvel dos 10 últimos meses.

	Vendas de bicicletas ergométricas - Unidades										
Mês	1	2	3	4	5	6	7	8	9	10	
Bicicletas	285	288	310	290	305	299	315	320	303	300	

2. Vamos imaginar que, mensalmente, tenhamos os dados das vendas reais do exercício 1. Utilizando o mesmo modelo de média móvel dos 10 últimos meses, determinar as previsões de venda para os meses 12 a 16.

	Vend	as reais d	e bicicleta	s ergomé	tricas	
Mês	11	12	13	14	15	16
Bicicletas	302	304	303	305	300	308

Atividades

3. Utilizando os dados das tabelas abaixo, calcular a previsão de vendas para os meses 11 a 16 utilizando o modelo da média móvel dos últimos 3 meses, ponderando o último mês com o coeficiente de 0,6, o penúltimo mês com o coeficiente 0,3 e o antepenúltimo mês com o coeficiente 0,1.

			Vendas	de bicicle	tas ergom	étricas - L	Jnidades			
Mês	1	2	3	4	5	6	7	8	9	10
Bicicletas	285	288	310	290	305	299	315	320	303	300

Vendas reais de bicicletas ergométricas											
Mês	11	12	13	14	15	16					
Bicicletas	302	304	303	305	300	308					

Atividades

4. Um modelo de veículo especial apresenta as vendas dadas pela tabela abaixo. A previsão para o mês 11 foi obtida com o modelo da média móvel dos 10 meses anteriores e é de 73,10. Calcular as previsões para os meses seguintes com o modelo da média exponencial com coeficiente α = 0,3.

Venda de veículos - unidades																
Mês	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Veículos	50	55	63	65	68	73	78	90	91	98	102	107	110	120	130	132