

MUTAÇÃO GÊNICA

RIB0102: Genética Molecular

Aparecida Maria Fontes

Ribeirão Preto – Agosto/ 2024

aparecidamfontes@usp.br

BIBLIOGRAFIA:

- ☐ Genética Médica. Thompson & Thompson. Nussbaum, McInnnes e Willard. (2016), 8ª Edição. Editora Elsevier.
- ☐ Genética Médica. Schaefer & Thompson Jr. (2015). 1ª Edição. Editora Artmed.
- ☐ Genetics: from gene to genomes. Hartwell, Goldberg, Fischer e Hood. (2018). 6ª Edição. Editora McGraw Hill.
- ☐ The Human Genome in Heatlh and Disease: A Story of four letters. Samuelson, T. (2019). 1ª Edição. Editora CRC.
- Managing Health in the Genomic Era. Henrich, V.C.; Orlando, L.A. And Shirts, B.H. (2020). 1ª Edição. Editora Elsevier e Academic Press.

Principais Tópicos

- 1. Definição de mutação, variante e polimorfismo
- 2. Tipos de polimorfismos e exemplos de associações com doenças genéticas
- 3. Classificação das mutações pelos seus efeitos no DNA
- 4. Classificação das mutações na região codificadora ou fora da região codificadora (unidade de transcrição)
- 5. Frequência das mutações ou variantes patogênicas no genoma humano
- 6. Exercícios

1. Definição de Mutação, Variante e Polimorfismo

Mutação:

Qualquer mudança na sequência de nucleotídeo no genoma de uma indivíduo.

A mutação pode compreender uma substituição de um par de bases, uma deleção ou inserção de 1 ou mais pares de base ou uma alteração na estrutura do cromossomo.

is como a depurinação, a desmetilação ou ; por reação com mutagênicos químicos o) no ambiente; e por exposição à radiação onizante. Algumas dessas lesões, mas nem adas. Mesmo que a lesão seja reconhecida aquinaria de reparo pode criar mutações dução de bases incorretas. Assim, em conerações do DNA relacionadas à replicação, ilmente corrigidas por meio de mecanismos terações de nucleotídeos introduzidos por

de reparo do DNA e, assim, est a rodada seguinte de replicação todas as substituições de nucleo e ocorrem em uma taxa 25 veze mutações de um único nucleot CpG representam um verdadeir de mutação no genoma human

Taxa Total de Mutações de Embora a taxa de mutações c

In Thompson & Thompson, 2016 - Genética Médica - Capítulo 4

1. Definição de Mutação, Variante e Polimorfismo

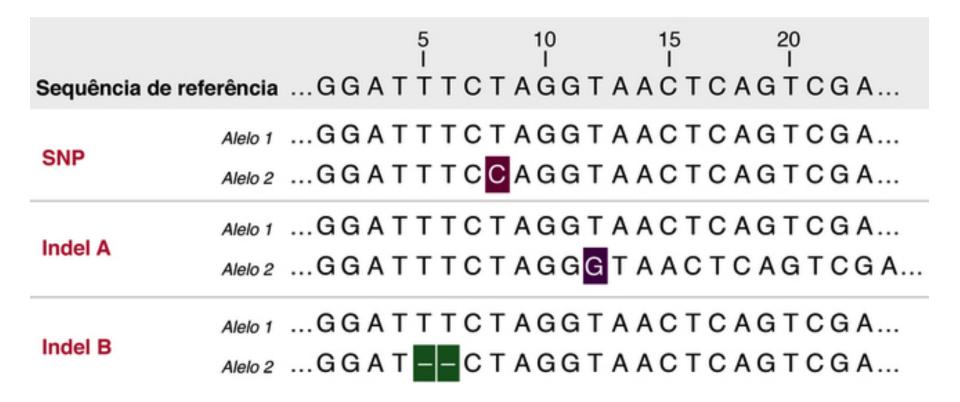
Variante:

Até 2015: uma mutação que não produz alteração fenotípica.

Em 2015, a ACMG (American College Medical Genetics and Genomics) recomendou o uso do termo **variante** ao invez de *mutação* ou *polimorfismo*.

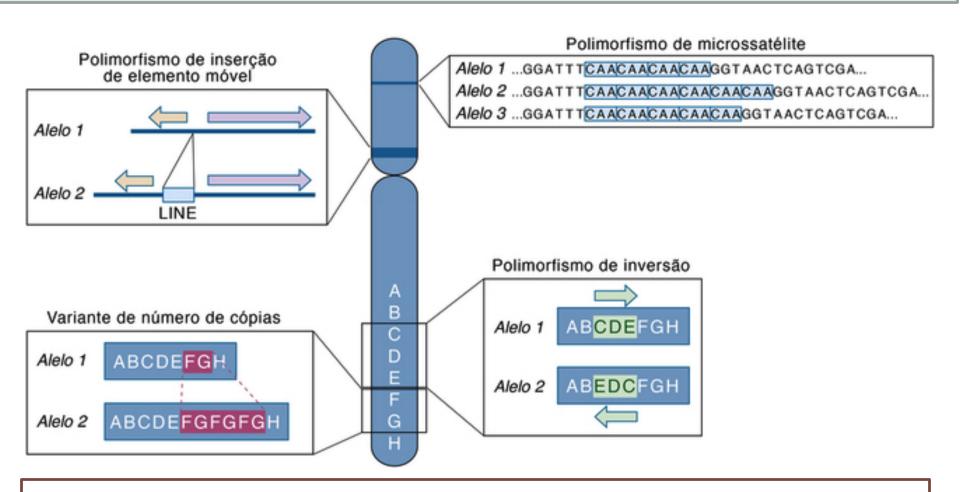
A terminologia **variante** não leva em consideração a frequência e normalmente é expressa como variante de nucleotídeo único (SNV).

Em geral, a maioria das variantes são raras e distribuídas ao acaso no genoma humano.

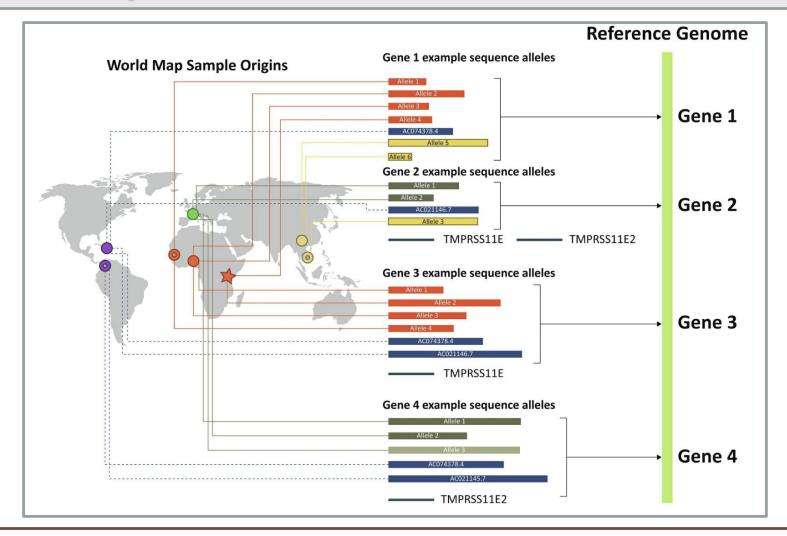

1. Definição de Mutação, Variante e Polimorfismo

Classificação das variantes:

- Patogênica
- Provavelmente patogênica (>90% de ser causal)
- Variante de Significado Incerto
- Provavelmente benigna (>90% de ser benigna)
- Benigna



2. Tipos de Polimorfismos / Variantes


Cerca de 10% dos SNPs são inserção ou deleção de um pequeno número de nucleotídeos (indels).

2. Tipos de Polimorfismos / Variantes

Outro tipo de variação genética individual são as variações estruturais e envolvem segmentos maiores que 50 nucleotídeos.

2. Tipos de Polimorfismos/ Variantes

Exemplos de alelos variantes de 4 genes, em relação ao genoma referência e a origem das respectivas SNPs.

2. Tipos de Polimorfismos

SNPs associados com Doenças Genéticas:

Fenótipo	SNP marcador	Doença	Gene	Variação/ região
	rs334	Anemia falciforme	HBB	T>C / codificadora
Doença Monogênica	rs28941770	Tay-Sachs	HEXA	C>A, G,T/ codificadora
	rs121908745	Fibrose cística	CFTR	TATC>T/ codificadora

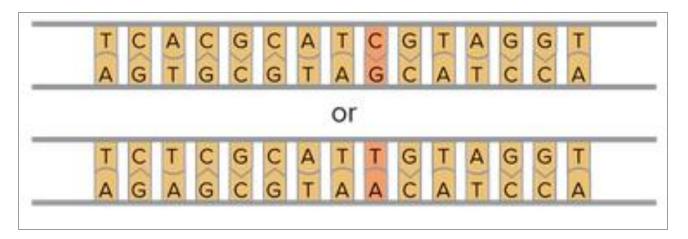
Com a era genômica é possível associar alguns marcadores de SNPs com doenças genéticas, ou risco para algumas doenças genéticas, ou características fenotípicas e sua nomenclatura inicia-se com as letras *rs* (reference SNP).

2. Tipos de Polimorfismos

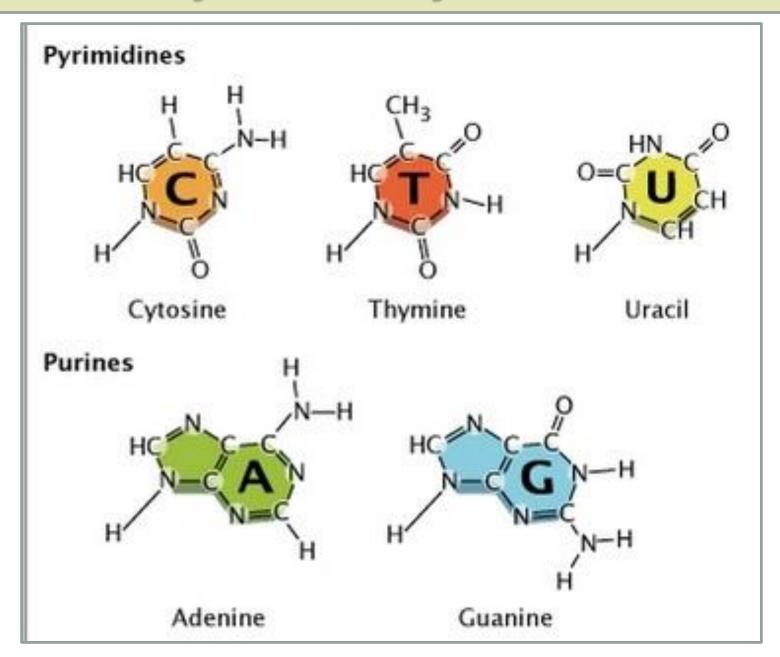
SNPs associados com risco para Doenças Genéticas:

Fenótipo	SNP marcador	Doença	Gene	Variação/ região
	rs7412	Alzheimer	APOE	C >T / codificadora
	rs35095275	Parkinson	GBA	A > C/G / codificadora
Risco para	rs112176450	Parkinson	EIF4G1	A > G/ codificadora
Doenças	rs4444903	Câncer de fígado	EGF	A > G/ 5'UTR
	rs80359675	Câncer de mama	BRCA2	- > TCAAA/ codificadora
	rs4988235	Intolerância a lactose	LCT	C > T/ elementos reguladores do gene

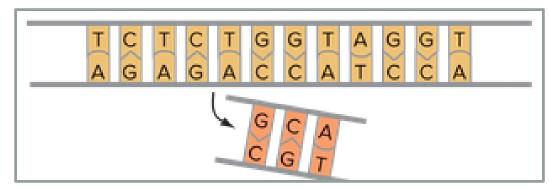
3. Classificação das mutações: efeitos no DNA

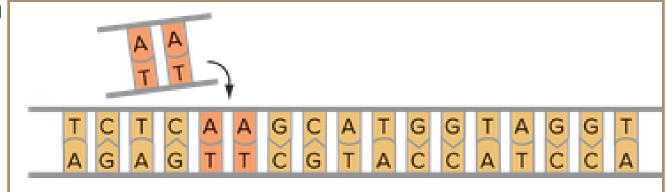


(a) Substitution


Transition: Purine for purine, pyrimidine for pyrimidine

Transversion: Purine for pyrimidine, pyrimidine for purine

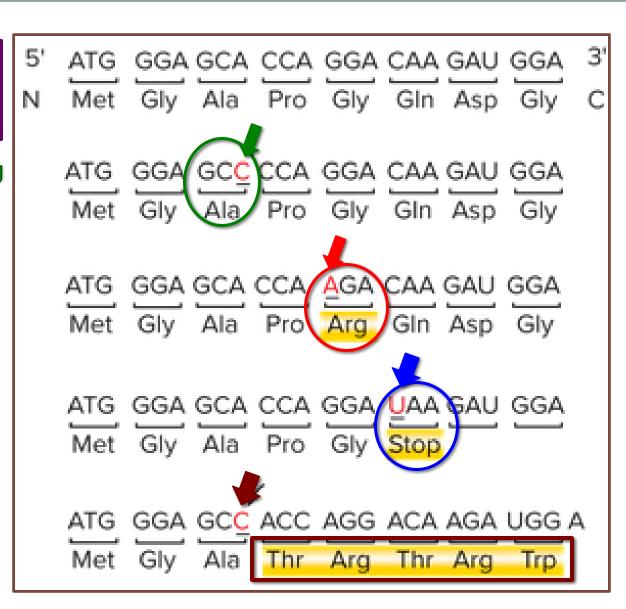

3. Classificação das mutações: efeitos no DNA


3. Classificação das mutações: efeitos no DNA

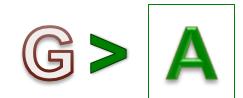
(b) Deletion

(c) Insertion

Mutações podem ser classificadas conforme seu efeito na mudança no DNA: substituição, deleção e inserção.


Wild-type mRNA Wild-type polypeptide

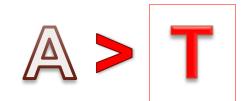
MUTAÇÃO SILENCIOSA OU MUTAÇÃO SINÔNIMA


MUTAÇÃO *MISSENSE* OU MUTAÇÃO NÃO SINÔNIMA

MUTAÇÃO *NONSENSE* OU GANHO DE STOP CODON

MUTAÇÃO *FRAMESHIFT*OU MUDANÇA DE
FASE DE LEITURA

Mutação do tipo transição, silenciosa ou sinônima e variante benigna


Sequen	Sequence for Wild-Type Hemoglobin											
ATG	GTG	CAC	CTG	ACT	CCT	GAG	GAG	AAG	TCT	GCC	GTT	ACT
Start	Val	His	Leu	Thr	Pro	Glu	Glu	Lys	Ser	Ala	Val	Thr

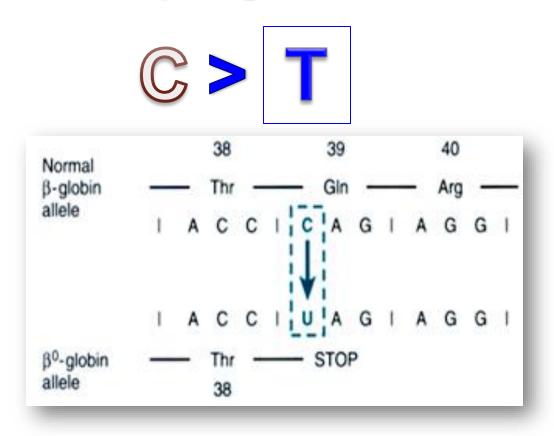
ATG	GTG	CAC	CTG	ACT	CCT	GAA	GAG	AAG	TCT	GCC	GTT	ACT
Start	Val	His	Leu	Thr	Pro	GLU	Glu	Lys	Ser	Ala	Val	Thr

Genótipo homozigoto dominante = E6/E6 ou E7/E7

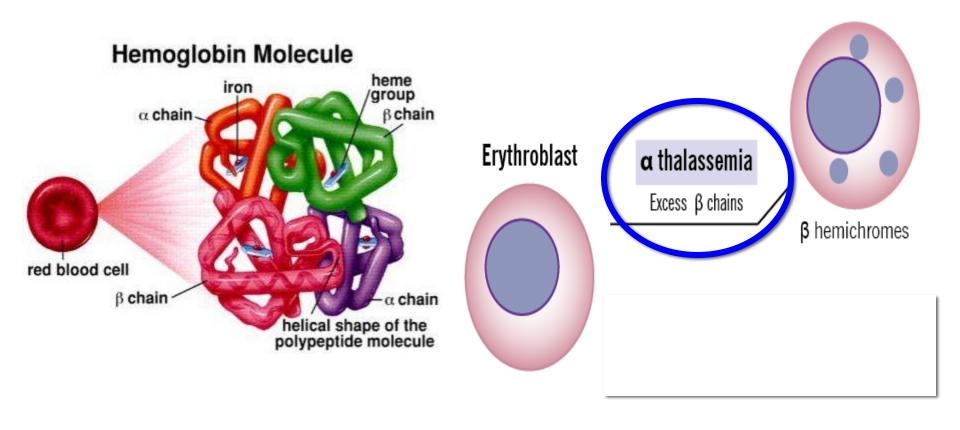
Mutação do tipo transversão, missense ou não sinônima e variante patogênica

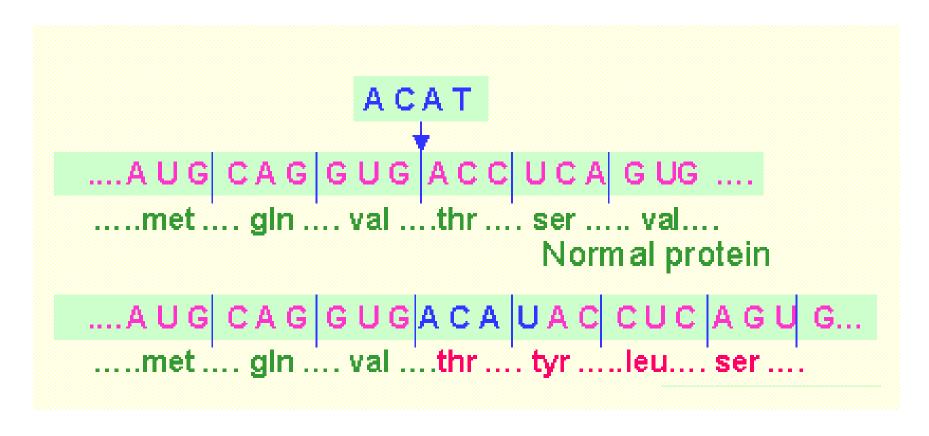
Seq	Sequence for Wild-Type Hemoglobin											
ATG	GTG	CAC	CTG	ACT	CCT	GAG	GAG	AAG	TCT	GCC	GTT	ACT
Star	t Val	His	Leu	Thr	Pro	Glu	Glu	Lys	Ser	Ala	Val	Thr

ATG	GTG	CAC	CTG	ACT	ССТ	GTG	GAG	AAG	TCT	GCC	GTT	ACT
Start	Val	His	Leu	Thr	Pro	VAL	Glu	Lys	Ser	Ala	Val	Thr

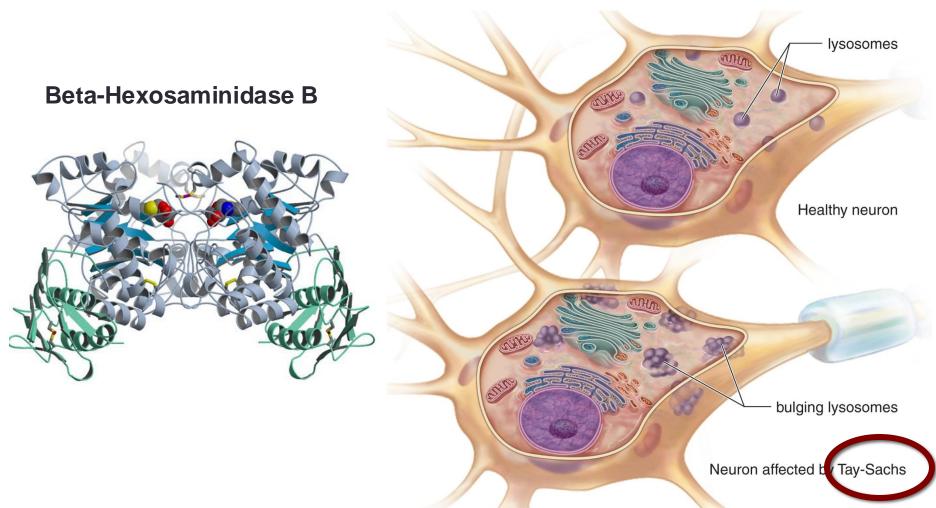

Genótipo homozigoto recessivo =

Qual é a doença responsável por essa mutação ou variante patogênica?


Mutação do tipo transição, nonsense e variante patogênica

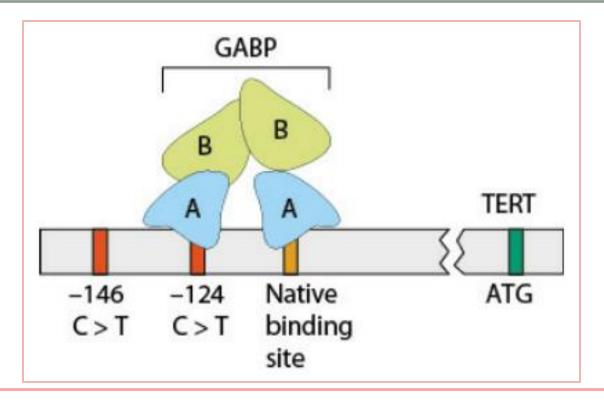

Genótipo homozigoto recessivo =

Q39X/Q39X

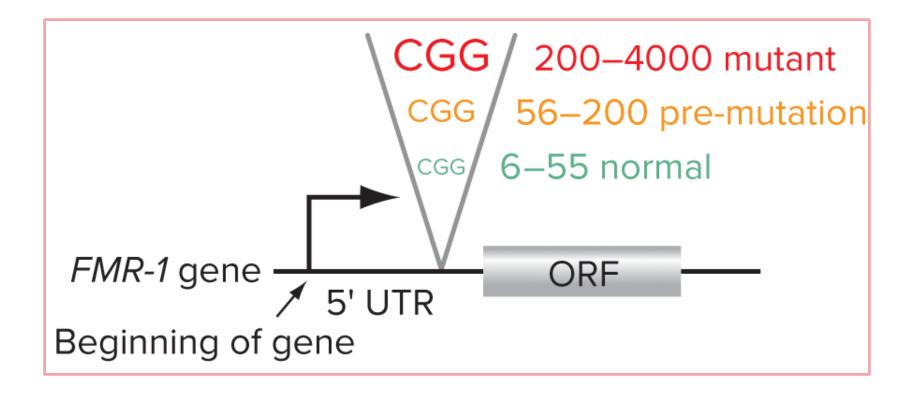

Qual é a doença responsável por essa mutação ou variante patogênica?

Mutação do tipo *indel* (por inserção), frameshift e variante patogênica

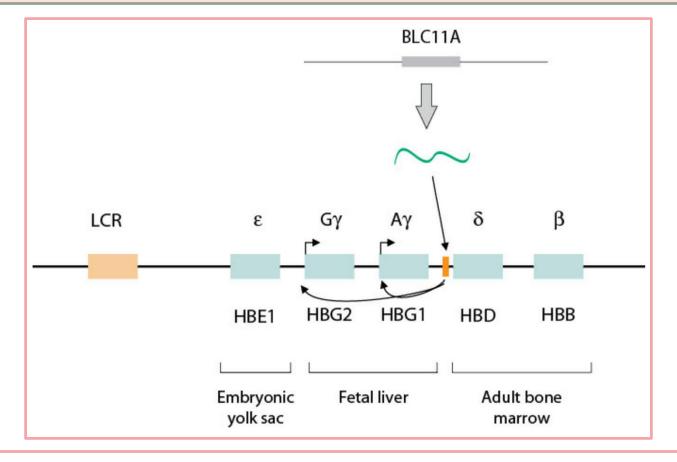
Qual é a doença responsável por essa mutação ou variante patogênica?



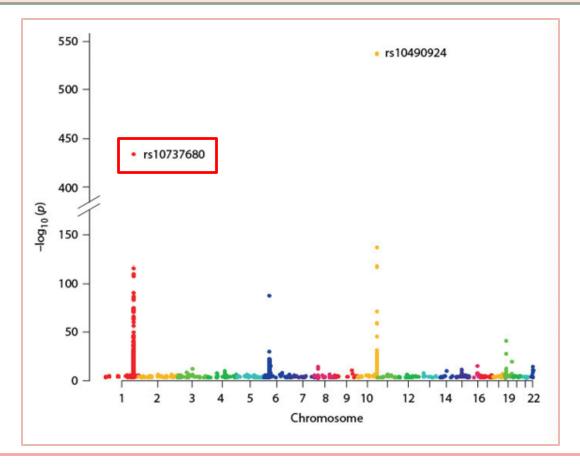
4. Mutações fora da região codificadora


Mutações na região promotora que prejudicam a RNA polimerase realizar a transcrição gênica ou nas regiões 5'UTR ou 3'UTR podem diminuir a quantidade de mRNA transcrito e resultar em uma variação fenotípica. Mutações em sítio de *splicing* e em íntrons também são fora da região codificadora e podem alteram o fenótipo.

4. Mutação fora da região codificadora: Promotora


Na maioria das células cancerígenas a expressão da enzima telomerase é ativada em consequência a duas mutações C>T na região promotora do *locus* TERT. Como mostra a figura, mutações nas posições -124 e -146 bp, em relação ao início da transcrição, afetam a ligação de GABP e como consequência a transcrição é ativada.

4. Mutação fora da região codificadora: 5'UTR


A síndrome do X-fragil é caracterizada pela expansão do trinucleotídeo CGG na região 5'UTR do gene FMR-1. O alelo normal tem de 6 – 56 repetições, enquanto no alelo mutante esse número é > 200 repetições e como consequência não há a síntese da proteína FMR-1

4. Mutação fora da região codificadora: região intergênica

Locus da β-globina e a regulação fetal das cadeias de globina. A proteína BLC11A liga-se a região enhancer entre os genes HBG1 e HBD e regula negativamente os genes fetais. Mutações nessa região aumenta o nível de hemoglobina fetal

4. Mutação fora da região codificadora: região íntron

Estudos de *GWAS* (estudos de associação em larga escala para a compreensão da relação entre variantes genéticas e determinado fenótipo) permitiu identificar o SNP *rs10737680*, localizado no íntron do gene CFH, e associado com a degeneração macular que leva a perda da visão após os 50 anos de idade.

5. Frequência das mutações

Análise em 70.000 variantes patogênicas

Mutação		Percentagem
	Missense	36,8
	Nonsense	20,0
	Frameshift (deleção)	18,9
	Frameshift (inserção)	8,4
	Sinônima	0,44
Região codificadora	Deleção sem frameshift	1,53
	Substituição com frameshift	1,34
	Substituição sem frameshift	0,59
	Inserção sem <i>frameshift</i>	0,32
	Perda do Stop codon	0,11
	Exônico desconhecido	0,24

5. Frequência das mutações

Análise em 70.000 variantes patogênicas

Mutação		Percentagem
UTR	5' UTR	0,16
UIK	3' UTR	0,06
Sítio de splicing		8,44
Intron		1.89
Exon em ncRNA		0,10
Íntron em ncRNA		0,04
Intergênica		0,41

EXERCÍCIOS DE APRENDIZAGEM