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The first closed bilayer phospholipid systems, called liposomes, were described in 1965 and soon were pro-
posed as drug delivery systems. The pioneering work of countless liposome researchers over almost 5 decades
led to the development of important technical advances such as remote drug loading, extrusion for homoge-
neous size, long-circulating (PEGylated) liposomes, triggered release liposomes, liposomes containing nucleic
acid polymers, ligand-targeted liposomes and liposomes containing combinations of drugs. These advances
have led to numerous clinical trials in such diverse areas as the delivery of anti-cancer, anti-fungal and anti-
biotic drugs, the delivery of gene medicines, and the delivery of anesthetics and anti-inflammatory drugs. A
number of liposomes (lipidic nanoparticles) are on the market, and many more are in the pipeline. Lipidic
nanoparticles are the first nanomedicine delivery system tomake the transition from concept to clinical appli-
cation, and they are now an established technology platform with considerable clinical acceptance. We can
look forward to many more clinical products in the future.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction: the pioneers

Since the internet has made literature searches relatively straight-
forward, there has been a tendency to overlook the early scientific lit-
erature and to forget, or fail to cite, the important contributions of the
ws theme issue on “25th Anni-
Prospects”.

uver BC, Canada V6N 2E4.
eterc@mail.ubc.ca (P.R. Cullis).

l rights reserved.
early pioneers in the liposome field. We have made a special effort in
this paper to find those early references and give credit to the lipo-
some pioneers — and put their contributions into context.

It is our intent to focus on the early work in the liposome field,
especially work done with small molecule therapeutics, and we apol-
ogize to our many colleagues whose more recent work we have not
been able to cite due to space limitations. Some of their work is de-
scribed in detail in other papers in this 25th anniversary volume.
We have not covered several large areas of liposomal research,
including vaccines [1,2], imaging [3,4], and applications in cosmetics

http://dx.doi.org/10.1016/j.addr.2012.09.037
mailto:tallen@ualberta.ca
mailto:pieterc@mail.ubc.ca
http://dx.doi.org/10.1016/j.addr.2012.09.037
http://www.sciencedirect.com/science/journal/0169409X
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and cosmeceuticals [5,6]. The reader is directed to the cited excellent
recent reviews. Recent progress in intracellular delivery [7], including
mitochondrial targeting [8], and lysosomal targeting [9] is covered in
the chapter by Alvarez.

In their 1965 citation classic, the late Alec Bangham and colleagues
published the first description of swollen phospholipid systems [10]
that established the basis for model membrane systems [11,12].
Within a few years, a variety of enclosed phospholipid bilayer struc-
tures consisting of single bilayers, initially termed ‘bangosomes’ and
then ‘liposomes’ [13], were described [14], and the early pioneers
such as Gregory Gregoriadis, established the concept that liposomes
could entrap drugs and be used as drug delivery systems [15–18].
Other early pioneers were showing that liposomes could change the
in vivo distribution of entrapped drugs [19–22]. At the same time,
new methods were being developed to enable the preparation of
large unilamellar liposomes (LUV), with improvements in trapping
efficiency and homogeneity [23,24]. The production of LUV by extru-
sion of multilamellar vesicles through polycarbonate filters with pore
sizes of 100 nm or less was a particularly important advance. As orig-
inally proposed the liposomes were formed in a low pressure, low
throughput, fashion [24], and subsequently higher pressure systems
were developed to achieve larger scale production [25,26]. The pro-
duction of “limit size” LUV with diameters less than 50 nm was
until recently only possible using sonication or homogenization
[27], however microfluidic mixing techniques now allow scalable
production of LUV in the 20–50 nm size range [28].

Some of the first demonstrations of the improved in vivo activity
of liposome-entrapped drugs in animal models used the anti-cancer
drug cytosine arabinoside to demonstrate significant increases in
the survival times of mice bearing L1210 leukemia [29,30], and this
became a popular ‘model system’ for testing the effects of a wide va-
riety of liposome characteristics on therapeutic outcomes. Other lipo-
somal small molecule therapeutics were also being tested in vivo,
with improvements in disease outcomes in animal models of disease
[31–35]. These experiments were to be followed by extensive studies
employing liposomal amphotericin B [36] and liposomal doxorubicin
[37] that ultimately led to the first clinical trials of liposomal drugs.

2. Designing liposomes to achieve optimized properties

2.1. Drug loading and control of the drug release rate

It soon became clear that there were a number of problems asso-
ciated with the in vivo use of the 1st generation liposomes, some-
times termed ‘classical’ or conventional liposomes. A very early
observation was the difficulty in retaining some types of entrapped
molecules in the liposome interior [16,22,38]. Drug release was
shown to be affected by exposure to serum proteins [39–41]. Chang-
ing the content of the liposome bilayer, in particular by incorpora-
tion of cholesterol [40,42,43] was shown to ‘tighten’ fluid bilayers
and reduce the leakage of contents from liposomes. Switching from
a fluid phase phospholipid bilayer to a solid phase bilayer also
reduced leakage [44], as did incorporation of sphingomyelin into
liposomes [45,46].

Choosing drugs with physical characteristics that make them ame-
nable to retention in liposomes is another approach to controlling
the release rate of entrapped substances. Similar to biological mem-
branes, model membranes such as liposomes have low permeability
to hydrophilic drugs and high permeability to hydrophobic drugs.
Indeed, to this day, retention of highly hydrophobic drugs such as
paclitaxel in liposomes is problematic [47,48]. A major advance in
this area was the development of drug loading in response to trans-
membrane pH gradients that were generated in response to internal
acidic buffers, or proton-generating dissociable salts such as ammo-
nium sulfate [49–51]. This drug-loading potential was originally
demonstrated for weak bases used to measure pH gradients across
membranes, and later was extended to drugs that are weak bases
[52,53]. The term remote loading is often used to describe this proce-
dure, because the drug is loaded after the vesicles are formed. The
advantage of this is that the loading of the drug can be performed in-
dependent of the time and site of liposome manufacture. Many drugs
in current use are weak bases possessing a primary, secondary or
tertiary amine that can be loaded in response to pH gradients [54].
The retention properties of drugs in liposomes are drug dependent;
drugs such as doxorubicin precipitate readily inside liposomes fol-
lowing accumulation and have excellent retention properties, where-
as other drugs such as ciprofloxacin, which do not readily precipitate,
are more difficult to retain [55]. Drug retention can be improved by
loading drugs to achieve high intra-liposomal drug concentrations
above their solubility limits, thus enhancing precipitation [56], or
by encapsulating polyanions such as dextran sulfate [51]. Drugs that
are not weak bases, such as paclitaxel, can be converted to weak
base prodrugs thus allowing encapsulation and liposomal retention
[57].

Drug release rates have important implications for the therapeutic
activities of all types of drug delivery systems, including liposomes. It
is important to keep in mind that drug entrapped in liposomes is not
bioavailable; it only becomes bioavailable when it is released. Hence
the ability of accumulated liposomes to increase the local bioavailable
drug concentrations, and increase the therapeutic outcome, only
occurs when the rate of release rate of entrapped drug from the lipo-
somes is optimized [58,59]. The drug must be delivered to the disease
site and become bioavailable at a level within its therapeutic window,
and at a sufficient rate, for a sufficient period, to have optimal thera-
peutic activity. The activity of cell cycle-specific drugs such as vincris-
tine can be acutely sensitive to rates of release [60,61], and it is now
possible to design liposomes with release rates that are tunable to
the requirements of the therapeutic application [59,62].
2.2. Overcoming the rapid clearance of liposomes

Another problem was the rapid clearance of the ‘classical’ lipo-
somes from circulation by uptake into the cells of the mononuclear
phagocyte system (MPS), predominantly in the liver and spleen
[20,63,64]. Except for the treatment of diseases where there was an
MPS involvement [31], the rapid uptake of liposomes into the MPS
substantially reduced their distribution to other tissues of the body,
and were also implicated in toxicities to the MPS organs [65–67].
Initially, attempts were made to increase the circulation half-life of
‘classical’ liposomes by MPS blockade using large pre-doses of lipo-
somes that contained no drug (‘empty’ liposomes) [68–70].

With the recognition that long circulation half-lives were needed
for uptake into non-MPS issues, came research on the surface proper-
ties of liposomes that led to their pre-mature clearance into the MPS.
Initially, modest improvements in circulation half-life were achieved
through reductions in vesicle size [64,71]. The opsonization of lipo-
somes by serum proteins was suggested as a likely mechanism for
the rapid clearance of liposomes into the liver and spleen [72–74],
and modifications of the membrane surface led to improvements in
their circulation half-lives. Early research focused on identifying dif-
ferences between plain or unmodified phospholipid membranes and
biological membranes with a surface layer rich in carbohydrates.
Addition of the monosialoglyprotein GM1 to liposomes composed of
egg phosphatidylcholine (egg PC), in combination with cholesterol
for membrane rigidity, resulted in the first long-circulating liposomes
that didn't require MPS blockade to achieve the effect [75]. Substitu-
tion of sphingomyelin for egg PC resulted in even longer circulation
half-lives, and lower uptake of liposomes into the liver [75]. The
mechanism was postulated to be due to increases in the surface hy-
drophilicity of the liposomes imparted by the gangliosides; these
long-circulating liposomes were termed ‘Stealth’ liposomes [76], a



38 T.M. Allen, P.R. Cullis / Advanced Drug Delivery Reviews 65 (2013) 36–48
term subsequently adopted to apply to liposomes sterically stabilized
with polymers such as polyethylene glycol (PEG) (see below).

Previous research by Abuchowski and McCoy on attaching PEG to
proteins to increase their circulation half-life [77] pointed the way
towards a simpler way of increasing the circulation half-life of lipo-
somes. Within a few months, several papers had appeared that
showed that grafting of PEG to the liposome surface resulted in sub-
stantial reductions in the rapid clearance of liposomes into the MPS
[78–83], and, unlike ‘classical’ liposomes, the PEG-liposomes (Stealth
liposomes) have dose-independent pharmacokinetics [83,84] except
at very low doses where accelerated clearance (the ABC phenome-
non) has been observed [85]. The demonstration of improvements
in the therapeutic outcomes of Stealth liposomes relative to ‘classical’
liposomes in animal models of disease soon followed for a variety
of therapeutics [86–91], and the first human studies demonstrating
long circulation of a Stealth formulation of doxorubicin were pub-
lished [92]. Shortly thereafter, the first clinical trial results using
PEG-liposomes as carriers of doxorubicin were published for the
treatment of Kaposi's sarcoma in HIV patients [93].

2.3. Intracellular delivery of drugs

The third problem with liposomal drug delivery is how to deliver
molecules across cell membranes to intracellular sites of action.
Hydrophobic weak base drugs such as doxorubicin or vincristine
can enter cells as free drugs by passive diffusion down their concen-
tration gradient in the uncharged form, while small hydrophilic
drugs can use cell membrane transporters, (e.g., cytosine arabinoside
can enter cells via the nucleoside transporter). Hence, passive deliv-
ery via the circulation (or local application) of liposomal small mole-
cule therapeutics to diseased tissues, with release of the drug in the
free (bioavailable) form at or near its intended site of action, at levels
that exceed the minimal therapeutic concentration will result in
activity.

However, many drugs, including a substantial percentage of the
newer classes of therapeutics, cannot cross cell membranes to gain
access to their intracellular site of action without some modifications
to the basic liposomal delivery system. Certain types of endocytic
cells, e.g., macrophages, will naturally endocytose liposomes into
the cell interior [94]. Also, some types of membrane active liposomes,
e.g., those containing fusogenic lipids or membrane active peptides,
have been suggested to fuse with, or otherwise disrupt the cell mem-
brane to result in the cytoplasmic delivery of the drug cargo [95–99],
but this approach has not been widely adapted. Receptor-mediated
endocytosis of ligand-targeted liposomes and their contents into the
endosomal-lysosomal compartment is a popular way of introducing
molecules into the cell interior, so long as the therapeutic molecule
is capable of surviving the acidic and enzyme rich environment of
the endosomes and lysosomes (Section 3, below).

3. Receptor-mediated endocytosis of ligand-targeted liposomes

Early in the history of liposomes it was recognized that a means
of increasing the selectivity of the interaction of liposomes with
diseased cells was desirable. If this interaction triggered receptor-
mediated endocytosis of the liposome and its cargo into the desired
cellular target, then so much the better. Antibodies were used in
early experiments to mediate their specific attachment target cells
[100,101], and receptor-mediated endocytosis of liposomes was
demonstrated [102–104]. At the same time, new methodologies were
being developed for attaching antibodies to liposomes [105,106]. Soon
it was shown that antibody-targeted liposomes could improve the
selective toxicity of liposomal anticancer agents to cultured cells
[107]. However, antibody-targeted liposomes were rapidly cleared
from circulation [108], limiting their in vivo distribution to non-MPS
tissues. Nevertheless, some in vivo uptake of liposomes could be
demonstrated if the target cells were rapidly accessible from the circu-
lation [109].

After the development of long-circulating (PEGylated) liposomes,
it became apparent that, when antibodies were attached at the lipo-
some surface, their antigen binding was masked by the presence of
PEG in the same liposomes, particularly longer chain PEG molecules
[110–112], although some accumulation of these liposomes could
be demonstrated at target sites easily accessible from the circulation
[113]. Newer coupling methods were developed that involved the at-
tachment of antibodies, their fragments, and other ligands to the termi-
nus of PEGmolecules engrafted to the liposome surface [112,114–120].
In one early example, this resulted in improved in vivo survival in ani-
mal lung tumor model relative to non-targeted liposomal drugs [121].

Overall, the methods for producing ligand-targeted liposomes are
tedious, difficult to control, and lead to poorly defined systems that
are often rapidly cleared from the circulation. The ‘post-insertion’
technique was developed to address these concerns. In this tech-
nique, micelles formed from PEG-linked ligands are incubated with
pre-formed, drug-loaded, non-targeted liposomes (including com-
mercial preparations) to convert them into ligand-targeted liposomes
[122–124]. The technique is proving to have wide applicability for
introducing a variety of substances onto the liposome surface.

3.1. Passively targeted vs. ligand-targeted liposomes

Much experimentation has gone into trying to understandwhat ad-
vantages, if any, ligand-targeted liposomes have over passively targeted
(i.e., ‘non’-targeted) liposomes, andwhatmight be the appropriate clin-
ical applications. In some reports, improvements in survival were seen
for ligand-targeted liposomes compared to passively targeted lipo-
somes [125,126], while in other cases no improvements in survival
were seen [127,128]. Both targeted and passively targeted liposomes
are distributed to target cells via the same passive distribution mecha-
nism. Hence, when passively targeted and ligand-targeted liposomes
have similar circulation half-lives, ligand-mediated targeting did not in-
crease the distribution of liposomes to target tissues compared to pas-
sively targeted liposomes [128–130]. So any improvements in survival
are not due to increased uptake of targeted liposomes by the diseased
tissue, per se, but by increased receptor-mediated uptake of liposomes,
containing entrapped drug, by the target cells [129]. Premature loss of
liposome contents prior to binding and uptake results in no increased
anti-tumor effect [127], another example of the importance of drug re-
lease rate to therapeutic effects (see Section 2.1).

The field of ligand-targeted liposomes has expanded rapidly and
many experiments have shed light on some of the factors involved
in the successes and failures of ligand-targeted vs. passively targeted
liposomes. The basic principles that have evolved from the literature,
derived primarily from studies in animal tumor models, are outlined
below. Many of these principles apply to nanoparticles, in general, and
are not limited to liposomes. The reader is referred to a number of com-
prehensive reviews on the topic for additional references [131–135].

• All particles reach target site (e.g., tumor) via passive targeting, and
adding ligands to the particles does not increase the amount that
reaches the target [128,130]

• For liposomes to localize to and bind to cells in solid tumors, a num-
ber of anatomical and physiological barriers, which vary with tumor
type and location, need to be overcome before liposomes can be
taken up into the cells. Also, tumor penetrability is highly heteroge-
neous [133,136] and is also dependent on particle size [137–139].

• For ligand-targeted, as well as passively targeted, liposomes, con-
tent retention and appropriate release rate is critical to therapeutic
outcome [59,62]

• Intracellular delivery is a requirement for therapeutic activity for
macromolecules (large, charged molecules, e.g., siRNA, peptides)
that don't enter cells on their own [133]. Internalization can be
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mediated by including antibodies or other ligands against inter-
nalizing antigens at the liposome surface, or via incorporation of
fusogenic agents (lipid, peptides, etc.) into the particles.

• Ligand-mediated targeting increases the uptake of particles by the
target cells themselves, depending on factors such as: vasculature
permeability [136]; tumor penetrability [136]; antigen density
[126]; ligand affinity [140]; binding site barrier [141]

• Multi-valent display of ligands on nanoparticles (high avidity)
results in high binding avidity [142]

• Low affinity/avidity ligands bound to liposomes may have better
penetrability than high affinity ligands [140,143]

• Ligand-mediated targeting has best therapeutic effects for targets
that are readily accessible (no ‘binding site barrier’): tumor vascula-
ture [144]; micrometastases [145]; hematological malignancies
[125], and ligand-target interactions that result in liposome inter-
nalization [146].

• For many targets, ligand-mediated targeting of liposomes will result
in little or no therapeutic improvement over ‘passive’ targeting
[127,128] (due to non-internalization, premature contents leakage,
poor penetrability, low antigen density and/or ‘binding site barriers’)

• Targeting efficiency is related to receptor density at the cell surface
[126]. The apparent receptor density at the cell surface can be in-
creased by combining targeting agents that bind to combinations of
ligands [147]

• The development costs (manufacturing, source of good such as anti-
bodies, quality control, intellectual property) for targeted nano-
medicines are much higher than those traditionally seen for small
molecule therapeutics and for passively targeted liposomes [133].

Although a number of non-targeted liposomes have reached the
clinic or are in clinical trials (Section 7), few targeted formulations
have progressed into the clinic. A transferrin-targeted liposomal
oxaliplatin formulation [148] has progressed to Phase II clinical trials,
and a liposomal doxorubicin formulation targeted via anti-ErbB2-scFv
formulation (MM-302) [149] has progressed to Phase I clinical trials.
A transferrin-targeted lipid-based nanocomplex containing the p53
gene [150] has completed a phase I trial (E. Chang, personal commu-
nication). The slow progress to the clinic is related to the higher de-
velopment costs (manufacturing, source of good such as antibodies,
quality control, intellectual property) for targeted nanomedicines
compared to those traditionally seen for small molecule therapeutics
and for passively targeted liposomes [133], and the perception that
there is ‘not enough bang for the buck’ for the targeted formulations.
To offset the higher development costs, the therapeutic outcomes
need to be considerably higher than those currently observed relative
to non-targeted liposomes.

4. Triggered release

Stability of liposomes in the circulation with retention of their
contents has long been recognized as a desirable liposome character-
istic for successful drug delivery to diseased tissues. Over two decades
ago, it was also recognized that being able to trigger the release of
liposomal contents once they reached the target site would lead to
improvements in therapeutic outcomes. Two main types of triggers
have been explored, remote triggers such as heat, ultrasound and
light, and local triggers that are intrinsic to the disease site or cellular
organelles such as enzymes and pH changes. A thorough review of
triggered release liposomes has recently been published [151].

The first trigger for drug release was hyperthermia (remote trig-
ger); delivery of liposomal methotrexate was demonstrated to be
four-fold higher in heated tumors versus non-heated control tumors
[152]. Shortly after, pH-sensitive liposomes were formulated with
the lipid palmitoyl homocysteine and their utility in increasing drug
release in regions of mildly acid pH such as primary tumors or site
of inflammation was proposed (local trigger) [153]. In two separate
experiments, a microwave device, or an ultrasound apparatus was
used to apply hyperthermia to PEGylated liposomal doxorubicin in
two different murine solid tumor models, resulting increase tumor
drug concentrations and increased antitumor efficacies [154,155].

Ligand-targeted liposomes that promote internalization of the
drug package into the target cell interior can be designed to release
their contents in the enzyme rich, low pH environment of endosome
and lysosomes through the use of pH-triggered approaches [156–159].
Liposomes can also be designed to release their contents through the
use of lipids of peptides that facilitate fusion with the target cell mem-
brane [156,160].

Enzyme-triggered release of liposome contents has also been stud-
ied for a variety of different enzymes including: phospholipase C
[161,162], phospholipase A2 [163], alkaline phosphatase [164], and
matrix metalloproteinases [165]. In some cases the enzyme-triggered
release has been used as a basis for immunoassays [162,164], and in
other cases to release liposomal contents in the local environment of
some cancers that are rich in secretory phospholipase A2 [163,166] or
matrix metalloproteinases [167]. Antibody-directed enzyme prodrug
therapy (ADEPT) uses a different approach, which relies on the activa-
tion prodrugs at the disease site by pre-targeted antibody-linked
enzymes [168].

Other recent advances in remote-triggered release systems in-
clude the use of ultrasound to trigger drug release from echogenic
(“bubble”) liposomes [169,170]; the use of light as a trigger in photo-
sensitive liposomes [171,172]; and magnetically responsive lipo-
somes [173], combined with hyperthermia-induced drug release
[174] and most recently combined with ligand-mediated targeting
[175]. Hyperthermia-triggered intracellular delivery has recently
been described for Her2 affibody-targeted liposomal doxorubicin
[176]. Synergy between thermal ablation and liposomal anticancer
drugs has recently been described [177,178].

In general, triggered release approaches, although promising in
concept, have been disappointing in practice. Two products have
progressed to clinical trials [179,180], but theADEPT approach, although
showing some promise in animal tumor models [181], has been ham-
pered by immune reactions to the enzymes in humans [182].

The most advanced application of the triggered release approaches
to date seem to be those based on hyperthermia and ThermoDox®, a
liposomal doxorubicin formulation that releases drug in response to a
mild hyperthermic trigger [183]. ThermoDox® is in pivotal Phase III
clinical trials for hepatocellular carcinoma in combination with
radiofrequency ablation (RFA), in Phase II trials for colorectal liver
metastases in combination with RFA, and in Phase I in women with
locally recurrent breast cancer [184].

A concern to keep in mind for triggered release systems in cancer,
in particular those that rely on remote triggers, is that patients rarely
die of their primary tumors; many primary tumors can be surgically
removed or ablated with radiation. Metastatic disease is a common
cause of death in advanced cancer, but small metastatic tumors are
not accessible via remote triggers. Hence, applications for remote
triggered formulations should be carefully chosen and would include
such applications as locally advanced disease and cancer where tissue
sparing is preferred for reasons of preserving quality of life.

5. Delivery of nucleic acids and DNA

Soon after the first animal experiments began to show improved
therapeutic outcomes for small molecule therapeutics, came the real-
ization that liposomes could also be effective delivery systems for
DNA [185,186], and for nucleic acid-based therapeutics such as anti-
sense oligonucleotides (asODN) and siRNA [187]. In vivo delivery of
polynucleic acids using lipid-based systems began with an early re-
port that a liposomally encapsulated plasmid for rat insulin could
result in gene expression following intravenous injection [188], and
an early Phase I clinical trial for liposomal c-raf-1 asODN [189]. This
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was followed by the demonstration by Felgner and others that
fusogenic cationic lipids could be complexed with plasmid, and facil-
itate efficient transfection of cells in vitro [190–193]. An explosion of
studies then followed, to exploit the potential of gene therapy both in
vitro and in vivo. Despite intensive effort, however, and the synthesis
of hundreds of different cationic lipids [193–195], gene expression
could only be observed following local, as opposed to systemic injec-
tion, and the toxic side effects of cationic lipids became increasingly
evident [196,197]. Other issues were the large size of the cationic
lipid-DNA complexes and the high surface charge of these systems,
which combine to result in rapid clearance from the circulation.

Drawing from experience with the delivery of small molecule an-
ticancer drugs, attempts were then made to encapsulate plasmids in
liposomal systems with small sizes and low surface charge [198],
using detergent dialysis procedures and low levels of cationic lipids.
Such systems could exhibit the long circulation lifetimes required
to access disease sites such as tumors [199], but exhibited low encap-
sulation efficiencies and low levels of transfection. This was followed
by attempts to generate long-circulating systems with reduced sur-
face charge by employing ionizable cationic lipids with pKa values
for the cationic moiety of 7 or lower [200,201]. This allowed encap-
sulation of the negatively charged nucleic acids at low pH values
(e.g., pH 4), where the lipid had a positive charge, but resulted in sub-
stantially longer circulation half-lives than non-ionizable cationic
lipids at physiological pH values, where the surface charge was low
[201]. This process was first applied to antisense oligonucleotides
[200,202] using a variation of the Batzri and Korn ethanol injection
method [14]. This procedure involved making preformed vesicles
at pH 4 in the presence of 40% ethanol and subsequently adding anti-
sense, again in 40% ethanol pH 4, to achieve association. It was found
that in order to achieve systems with small diameters, PEG-lipids
were required, and optimum encapsulation was observed when
DSPC and cholesterol was present [200]. Although long-circulating
systems were achieved, little evidence of gene silencing could be
observed and the main application was for immunostimulatory appli-
cations [1,203–206]. Using a similar lipid composition (ionizable
cationic lipids, PEG-lipids, cholesterol and DSPC) other workers
then used the Batzri and Korn method with improved mixing
achieved by a T-tube mixer to encapsulate siRNA [207] and observed
siRNA-induced gene silencing in liver (hepatocytes) following intra-
venous injection at dose levels of 1 mg siRNA/kg body weight [208].

The observation of hepatocyte gene silencing stimulated consider-
able efforts to determine the mechanism of action and to develop
more potent LNP siRNA systems. These efforts have proven remark-
ably successful. In particular it has been shown that improvements
in potency by more than two orders of magnitude can be achieved
by employing ionizable cationic lipids with maximized ability to
induce non-bilayer structure and with pKa values near 6.5 [209].
Further, it has been shown that the potency of these systems arises
in part due to the association of apolipoprotein E with the LNP
siRNA system in vivo, which stimulates uptake into hepatocytes via
the scavenging receptor and LDL receptors [210]. This is consistent
with earlier observations that receptor-mediated internalization of
the ligand-bearing liposomes along with their DNA [211] or nucleic
acid cargos [212] [212] led to substantial improvements in gene
expression or target knockdown compared to non-targeted systems.
The new LNP siRNA made with “next generation” ionizable cationic
lipids showed very good in vivo knockdown in rodent liver using
the Factor VII assay [209,213] at dose levels as low as 0.01 mg
siRNA/kg body weight.

In recent years, activity in the area of delivery of asODN, siRNA,
dsRNA and microRNA has intensified [214,215], and the first clinical
trials have begun (see Table 1, below). The new LNP siRNA systems
have been taken into the clinic to silence PCSK9, a gene expressed pri-
marily in hepatocytes that modulates low density lipoprotein (LDL)
levels in the circulation, resulting in rapid and dramatic lowering
of LDL levels with no indication of toxicity. Also in the clinic, are
LNP siRNA to silence transthyretin (TTR), for the treatment of TTR-
induced amyloidosis, again resulting in dramatic lowering of TTR
levels in the blood [216].

A recent advance for manufacture of LNP siRNA systems has been
the application of microfluidic mixing to formulate the particles. This
technique has been shown to allow highly efficient siRNA encapsula-
tion and remarkable control of LNP size over the 20–100 nm diameter
size range, with excellent in vivo gene silencing capabilities [217].

• The demonstration of nucleic acid activity in extra-hepatic tissues
has been a challenge. One of the first examples of extra-hepatic
targeting used a formulation of long-circulating cationic liposomes
(CCL) [218], entrapping c-myb asODNs and targeted against the
ganglioside GD2 [219], to significantly inhibit tumor growth and
metastases in murine models of melanoma [220] and neuroblastoma
[221]. Lung-targeted delivery of asODN and siRNAwith knockdownof
suvivin was also demonstrated [222]. Extra-hepatic knockdown of
ALK kinase in a neuroblastoma animalmodel, using anti-GD2 targeted
long-circulating cationic liposomes (CCL) encapsulating ALK-specific
siRNA, was recently reported, with substantial increases in life-span
for the targeted CCL compared to non-targeted CCL or free siRNA
[223,224]. Silencing of genes in immune cells such as macrophages
and dendritic cells has been observed following i.v. administration
of LNP siRNA systems [201]. LNP siRNA systems for silencing genes
in hepatocytes, following intravenous administration, have achieved
clinical validation exhibiting dramatic silencing of target genes in
association with therapeutic indices of 100 or higher.

A number of general principles have emerged from the large and
rapidly growing literature in the field of nucleic acid delivery:

• Positive charge, e.g., cationic lipid, is needed for efficient association
of nucleic acids with lipids [190]

• A positive charge on liposomes results in their rapid elimination by
the MPS and non-specific cell binding [225]

• To increase the circulation half-life of liposomal nucleic acids, they
should have a near-neutral surface charge: two approaches have
been used to achieve this, the formation of coated cationic liposomes
(CCLs) [226] and the use of ionizable lipids [200,202,209,227]

• Ligands are needed for specific binding and internalization [218]. The
ability of LNP siRNA systems to transfect hepatocytes efficiently
following intravenous administration relies on association with Apo
E in vivo, leading to uptake via the scavenging receptor on hepato-
cytes [210]

• Efficient endosomal release following internalization is needed for
therapeutic activity [201], and this can be provided by ionizable cat-
ionic lipids with optimized bilayer destabilizing capacities and pKa
[209,213].

6. Combination therapy

The principles of combination chemotherapy, i.e., the combination
of therapies with different mechanisms of action and non-overlapping
side effects, can be applied to the development of nanomedicines
[228–234]. A variety of different types of combinations have been use
in recent years, with at least additive increases in therapeutic outcomes
for the combinations compared to individual therapies. Several differ-
ent types of therapeutic combinations have been used including:

• Combinations of different small molecule therapeutics [230,232,234].
• Combinations involving one or two different liposomal drugs targeted
against two or more different antigens on the same cells, or on two
or more different types of cells [147,229,233,235,236]

• Combinations of free or liposomal asODNs or siRNAs that sensitize
cells to small molecule therapeutics [228,231,237,238]

• Combining ligand-targeted particles with a remote triggered method
to increase transfection [239]



Table 1
Marketed liposomal and lipid-based products, plus a selection of products in clinical development.

Product Drug Indications Year approved Reference

Approved products
AmBisome (Gilead) Amphotericin B Fungal infections Leishmaniasis, 1990 (Europe), 1997

(USA), 2000
[255,256]

Doxil/Caelyx (Johnson
& Johnson)

Doxorubicin Kaposi's sarcoma 1995 [93,257–259]
Ovarian cancer 1999
Breast Cancer 2003
Multiple myeloma+Velcade (Europe, Canada) 2007

DaunoXome (Galen) Daunorubicin Kaposi's sarcoma 1996 (Europe), 1996 (USA) [260]
Myocet (Cephalon) Doxorubicin Breast cancer+cyclophosphamide 2000 (Europe) [261]
Amphotec (Intermune) Amphotericin B Invasive aspergillosis 1996 [262]
Abelcet (Enzon) Amphotericin B Aspergillosis 1995 [263]
Visudyne (QLT) Verteporphin Wet macular degeneration 2000 (USA), 2003 (Japan) [250]
DepoDur (Pacira) Morphine sulfate Pain following surgery 2004 [264]
DepoCyt (Pacira) Cytosine Lymphomatous 1999 [265,266]

Arabinoside meningitis
Neoplastic
meningitis

Diprivan (AstraZeneca) Propofol Anesthesia 1986 [267]
Estrasorb (King) Estrogen Menopausal therapy 2003 [268]
Lipo-Dox (Taiwan
Liposome)

Doxorubicin Kaposi's sarcoma, breast and
ovarian cancer

2001 (Taiwan) [269]

Marqibo (Talon) Vincristine Acute lymphoblastic leukemia 2012 (USA) [270,271]

Products in clinical trials
SPI-077 (Alza) Cis-platin Solid tumors Phase II

(development terminated)
[272,273]

CPX-351 (Celator) Cytarabine:daunorubicin Acute myeloid leukemia Phase II [274]
CPX-1 (Celator) Irinotecan HCI:floxuridine Colorectal cancer Phase II [232,275]
MM-398 (Merrimack) CPT-11 Gastric and pancreatic cancer Phase II

Glioma and colon cancer Phase I [51]
MM-302 (Merrimack) ErbB2/ErbB3-targeted doxorubicin ErbB2-positive breast cancer Phase I [276]
MBP-436 (Mebiopharm) Transferrin-targeted oxaliplatin Gastric cancer and gastro-esophageal junction Phase II [148]
Brakiva (Talon) Topotecan Relapsed solid tumors Phase I [277]
Alocrest (Talon) Vinorelbine Newly diagnosed or relapsed solid tumors Phase I [278]
Lipoplatin (Regulon) cisplatin Non-small cell lung cancer Phase III [279,280]
L-annamycin (Callisto) Annamycin Adult relapsed ALL Phase I [281,282]

Pediatric relapsed ALL and acute
myelogenous leukemia

Phase I

Doxorubicin-resistant breast cancer Phase II (development
terminated)

ThermoDox (Celsion) Thermosensitive doxorubicin Primary hepatocellular carcinoma Phase III [283,284]
Refractory chest wall breast cancer Phase II
Colorectal liver metastases Phase II

Endo-Tag-1 (Medigene) Cationic liposomal paclitaxel Pancreatic cancer Phase II [285]
Triple negative breast cancer Phase II

ALN-TTR ALN-PCS
ALN-VSP (Alnylam)

siRNA targeting transthyretin (TTR)
siRNA targeting PCSK9 RNAi targeting
liver cancer

TTR amyloidosis Phase I [209,213]
Hypercholesterolemia Phase I
Liver cancer and liver metastases Phase I

TKM-PLK1 TKM-ApoB
(Tekmira)

RNAi targeting polo-like kinase 1
(POLO) RNAi targeting apoB

Liver tumors Phase I [286]
High levels of LDL cholesterol Phase I

Stimuvax
(Oncothyreon/Merck)

Anti-MUC1 cancer vaccine Non-small cell lung cancer Phase III [287]

Exparel (Pacira) Bupivacaine Nerve block Phase II [288]
Epidural Phase I
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Two sets of liposomal drug combinations have entered clinical tri-
als (Table 1). Two small molecules combinations are in Phase II clini-
cal trials, CPX-351 (cytarabine:daunorubicin) in patients with newly
diagnosed acute myeloid leukemia (AML) and first relapse AML
[240], and CPX-1 (irinotecan HCI:floxuridine) in patients with colo-
rectal cancer [241].

7. Multi-functional, multi-component formulations

Increasingly, the formulation and use of multi-functional, multi-
component liposomal nanoparticles, sometimes referred to as
theragnostics, is being explored — formulations that carry within
an individual lipidic nanoparticle functions such as site-specific
targeting, biomarker and imaging capabilities, delivery of combina-
tions of therapeutics, and response to external or internal triggers to
control drug release [242]. As the complexity of lipidic nanoparticles
increases, so do the expenses and difficulties associated with their
manufacture, quality control, and control over the intellectual proper-
ty. To recompense for the additional expense, the gains in therapeutic
benefits must be substantial. Multi-functional formulations that show
only marginal clinical benefits are unlikely to be successful.

8. Clinical development

Both ‘classical’ and ‘Stealth’ liposomes have entered the main-
stream as sustained release drug delivery systems [243] for the in
vivo delivery of everything from small molecule therapeutics to
nucleic acids. Early papers that were important in the clinical devel-
opment of liposomes include a 1985 paper by Morgan et al. that dem-
onstrated accumulation of liposomes labeled with technetium 111 in
sites of infection and inflammation in humans [244], and a subse-
quent paper that showed accumulation of indium 111-labeled
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liposomes in solid tumors [245], including Kaposi's sarcoma and
malignant lymphoma [246]. These studies are the first demonstrations
that liposomes can accumulate in regions of enhanced vascular
permeability in humans. This effect was termed the enhanced
permeability and retention (EPR) effect by the Maeda laboratory
during the clinical development of the products SMANCS, a polymer
conjugate [247]. Long circulating (PEGylated) liposomes were shown
to have extensive accumulation in Kaposi's sarcoma and head and
neck cancers, with intermediate accumulation in lung cancer and
lower accumulation in breast cancer in an initial study using small
numbers of patients [248]. However, to draw specific conclusions
about the relationship between tumor types, stage of tumor develop-
ment and liposome accumulation these studies need to be repeated
with larger cohorts. The extent of liposomal accumulationmay be relat-
ed, at least in part, to the degree of angiogenesis of the tissues.

A number of products are on the market, with many more in clin-
ical development (Table 1). AmBisome® and Doxil®, in particular,
have both achieved considerable clinical success, with sales in the
hundreds of millions of dollars per year. Although many routes of
administration have been used for liposomal and lipid-based prod-
ucts, parenteral administration is the predominant one for clinically
approved products, in particular intravenous administration. Other
routes that have achieved clinical success are the ocular route [249],
and the clinical product Visudyne® [250], and the transdermal routes
[251,252]. Oral delivery is not generally used for liposomal products
as GI degradation of the carrier results in poor bioavailability of asso-
ciated drugs. Delivery to the brain after parenteral administration
is generally low, although the recent use of convection and retro-
convection enhanced delivery is showing some potential [253,254].
The most recent liposomal drug to receive FDA approval is Marqibo®,
a liposomal formulation of vincristine that was approved in August
2012to treat acute lymphoblastic leukemia at second or greater
relapse.

9. Conclusions

In the 40 plus years from the concept of the clinical utility of lipo-
somes to their recognized position in the mainstream of drug delivery
systems, the path has been long and winding. They have been
explored in the clinic for applications as diverse as imaging tumors
and sites of infection, for vaccine and gene medicine delivery, for
treatment of infections and for cancer treatment, for lung disease
and for skin conditions. In clinical applications, liposomal drugs
have been proven to be most useful for their ability to “passively”
accumulate at sites of increased vasculature permeability, when
their average diameter is in the ultrafilterable range (b200 nm in di-
ameter), and for their ability to reduce the side effects of the encapsu-
lated drugs relative to free drugs. This has resulted in an overall
increase in therapeutic index, which measures efficacy over toxicity.
However, the gains in therapeutic index have been more on the side
of reduced toxicity than on the side of increased efficacy. Liposomes
have poor extravasation into tissues with tight endothelial junctions,
and this can result in a significant reduction in the side effects of
the liposomal drug compared to the free (i.e., unentrapped) drug.
An excellent example is the significant reduction in the irreversible
cardiotoxicity of free doxorubicin when the drug is entrapped in lipo-
somes [261,289,290]. Most drug toxicities are reduced when they are
entrapped in liposomes and the only instances in which an increase in
toxicity has been noted clinically are the appearance of mucositis and
the increase in a reversible form of skin toxicity called palmar plantar
erthrodysesthesia (PPE) (which has been also been described for
some prolonged free drug infusions [291]), when long-circulating
liposomal anthracyclines are given [292]. Liposomal drug delivery
has become an established technology platform and has gained con-
siderable clinical acceptance. We can look forward to many more
clinical products based on small molecule drugs in the future.
The recent remarkable success of LNP formulations of siRNA in the
clinic for silencing genes in hepatocytes also indicates that the suc-
cesses achieved with small molecule drugs is likely to be matched
for delivery of genetic drugs such as antisense, siRNA and plasmids
for gene therapy applications. This success can be attributed in part
to the remarkable flexibility of lipid-based delivery systems, which
can efficiently encapsulate both small molecules and macromole-
cules, can be readily biodegradable and are biocompatible, can be
manufactured in sizes down to 20 μm in diameter, can payout active
agents at therapeutically optimized rates, and can interact with mem-
brane components in a predictable manner. These properties allow a
rational design approach to achieve therapeutic objectives. The fact
that all issues associated with scale-up, stability, and satisfying regu-
latory demands have also been successfully addressed points to a
plethora of new and increasingly sophisticated lipid-based therapeu-
tics in the future.
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