SMA0300-Geometria Analítica - Aula 13 Cônicas

Roberta Wik Atique

Elipse

Definição: Sejam F_1 e F_2 dois pontos distintos, 2c a distância entre eles e a > c um número real. Elipse é o lugar geométrico dos pontos cuja soma das distâncias a F_1 e F_2 é 2a. F_1 e F_2 são chamados focos.

Equação Reduzida: Suponha $F_1 = (-c, 0)$ e $F_2 = (c, 0)$. Seja $b^2 = a^2 - c^2$. A equação reduzida da elipse é

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Seja
$$P = (x, y)$$
 um ponto da elipse: $d(P, F_1) + d(P, F_2) = 2a$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

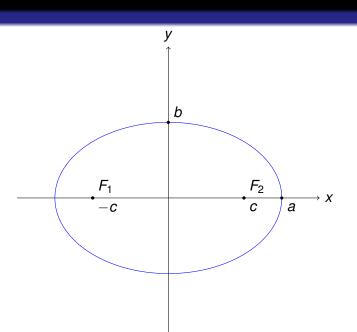
Elevando ao quadrado:

$$(x+c)^2+y^2+(x-c)^2+y^2+2\sqrt{(x+c)^2+y^2}\sqrt{(x-c)^2+y^2}=4a^2$$

$$2\sqrt{(x+c)^2+y^2}\sqrt{(x-c)^2+y^2}=4a^2-2x^2-2y^2-2c^2$$

Dividindo por 2 e elevando novamente ao quadrado temos

$$(x+c)^{2}(x-c)^{2}+y^{2}(x+c)^{2}+y^{2}(x-c)^{2}+y^{4}=(2a^{2}-x^{2}-y^{2}-c^{2})^{2}$$
$$(a^{2}-c^{2})x^{2}+a^{2}y^{2}=a^{2}(a^{2}-c^{2}) \Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$

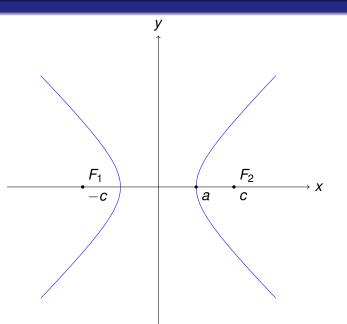


Hipérbole

Definição: Sejam F_1 e F_2 dois pontos distintos, 2c a distância entre eles e a < c um número real positivo. Hipérbole é o lugar geométrico dos pontos cujo módulo da diferença das distâncias a F_1 e F_2 é 2a. F_1 e F_2 são chamados focos.

Equação Reduzida: Suponha $F_1=(-c,0)$ e $F_2=(c,0)$. Seja $b^2=c^2-a^2$. A equação reduzida da hipérbole é

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$



Parábola

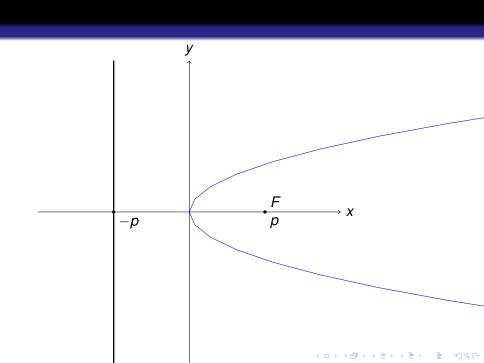
Definição: Sejam r uma reta e F um ponto não pertencente a r. Parábola é o lugar geométrico dos pontos equidistantes de r e F. F é chamado foco e r é chamada diretriz.

Equação Reduzida: Suponha r: x + p = 0 e F = (p, 0). A equação reduzida da parábola é

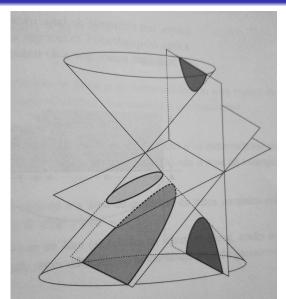
$$y^2 = 4px$$
.

Prova: Seja P = (x, y), d(P, r) = d(P, F):

$$|x+p| = \sqrt{(x-p)^2 + y^2} \quad \Rightarrow (x+p)^2 = (x-p)^2 + y^2.$$



Seções cônicas



Cônica

Definição: Uma cônica é o lugar geométrico dos pontos de E^2 que satisfazem uma equação do segundo grau em 2 variáveis:

$$ax^2 + bxy + cy^2 + dx + ey + f = 0.$$

Uma cônica é obtida da interseção de um cone (duplo) com um plano e pode ser:

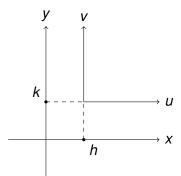
- Elipse,
- 2 Circunferência,
- Ponto,
- Vazio,
- 6 Hipérbole,
- Duas retas concorrentes,
- Parábola
- Ouas retas paralelas,
- Uma reta.

- Tipo Elíptico: $b^2 4ac < 0$ (1-4).
- Tipo Hiperbólico: $b^2 4ac > 0$ (5,6).
- Tipo Parabólico: $b^2 4ac = 0$ (7-9).

Reconhecimento de cônicas

Definição: Uma translação é uma mudança de coordenadas em E^2 do tipo:

$$\begin{cases} x = u + h \\ y = v + k \end{cases}$$



Translação e eliminação dos termos lineares

Dada a cônica:

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

vamos fazer uma translação x = u + h, y = v + k:

$$a(u+h)^{2} + b(u+h)(v+k) + c(v+k)^{2} + d(u+h) + e(v+k) + f = 0$$

$$a(u^{2} + 2hu + h^{2}) + b(uv + ku + hv + hk) + c(v^{2} + 2kv + k^{2}) + d(u+h) + e(v+k) + f = au^{2} + buv + cv^{2} + (2ah + bk + d)u + (2ck + bh + e)v + ah^{2} + bhk + ck^{2} + dh + ek + f = 0$$

Queremos encontrar h e k tais que

$$\begin{cases} 2ah + bk + d = 0 \\ 2ck + bh + e = 0 \end{cases}$$

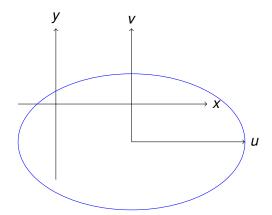
Exemplo: Reconheça a cônica: $2x^2 + 3y^2 - 8x + 6y - 7 = 0$.

$$\begin{cases} 2.2h + 0.k - 8 = 0 & \to & 4h - 8 = 0 \\ 2.3k + 0.h + 6 = 0 & \to & 6k + 6 = 0 \end{cases}$$

Logo h = 2 e k = -1. A nova equação é:

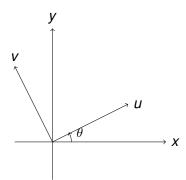
$$2u^2 + 3v^2 + 2.2^2 + 3.(-1)^2 - 8.2 + 6.(-1) - 7 = 2u^2 + 3v^2 - 18 = 0$$

$$\frac{u^2}{9} + \frac{v^2}{6} = 1$$

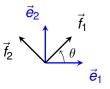


Definição: Uma rotação de um ângulo θ é uma mudança de coordenadas em E^2 do tipo:

$$\begin{cases} x = u \cos \theta - v \sin \theta \\ y = u \sin \theta + v \cos \theta \end{cases}$$



Seja $E = (\vec{e}_1, \vec{e}_2)$ uma base ortonormal de E^2 e $F = (\vec{f}_1, \vec{f}_2)$ uma base obtida da base E através de uma rotação no sentido anti-horário de um ângulo θ .



Temos
$$\vec{f}_1 = ||\vec{f}_1|| \cos \theta \ \vec{e}_1 + ||\vec{f}_1|| \sin \theta \ \vec{e}_2 = \cos \theta \ \vec{e}_1 + \sin \theta \ \vec{e}_2 \ e$$

 $\vec{f}_2 = -\sin \theta \ \vec{e}_1 + \cos \theta \ \vec{e}_2$. Se

$$\vec{w} = u\vec{f_1} + v\vec{f_2} = (u\cos\theta - v\sin\theta)\vec{e_1} + (u\sin\theta + v\cos\theta)\vec{e_2} = x\vec{e_1} + y\vec{e_2}$$

então

$$x = u \cos \theta - v \sin \theta$$
, $y = u \sin \theta + v \cos \theta$

rotação e eliminação do termo misto

$$a(u\cos\theta - v\sin\theta)^{2} + b(u\cos\theta - v\sin\theta)(u\sin\theta + v\cos\theta) +$$

$$+c(u\sin\theta + v\cos\theta)^{2} + d(u\cos\theta - v\sin\theta) + e(u\sin\theta + v\cos\theta) + f = 0$$

$$a'u^{2} + b'uv + c'v^{2} + d'u + e'v + f' = 0$$

$$\begin{cases} a' = a\cos^{2}\theta + b\sin\theta\cos\theta + c\sin^{2}\theta \\ b' = (c - a)\sin2\theta + b\cos2\theta \\ c' = a\sin^{2}\theta - b\sin\theta\cos\theta + c\cos^{2}\theta \\ d' = d\cos\theta + e\sin\theta \\ e' = -d\sin\theta + e\cos\theta \end{cases}$$

$$b'=0 \Rightarrow an 2 heta = rac{b}{a-c} ext{ ou } heta = \pi/4 ext{ } (a=c)$$

$$\begin{cases} a'+c'=a+c \\ a'-c'=rac{b}{\sin 2 heta} \end{cases}$$
 Usando $\sin^2 lpha + \cos^2 lpha = 1 ext{ obtemos}$
$$\sin 2 heta = rac{1}{\sqrt{1+\cot g^2 2 heta}}.$$

Exemplo: Reconheça a cônica: $4x^2 + 3\sqrt{3}xy + y^2 - 1 = 0$.

Temos tan $2\theta = 3\sqrt{3}/3 = \sqrt{3}$. Logo $2\theta = \pi/3$ e sin $2\theta = \sqrt{3}/2$.

$$\begin{cases} a' + c' = 5 \\ a' - c' = \frac{3\sqrt{3}}{\sqrt{3}/2} = 6 \end{cases}$$
$$a' = 11/2, \quad c' = -1/2$$
$$\frac{11}{2}u^2 - \frac{1}{2}v^2 = 1$$

que é uma hipérbole.

Exemplo: Reconheça a cônica:

$$7x^2 + 6xy - y^2 + 28x + 12y + 28 = 0.$$

$$\begin{cases} 2ah + bk + d = 0 = 14h + 6k + 28 \\ 2ck + bh + e = 0 = -2k + 6h + 12 \end{cases}$$

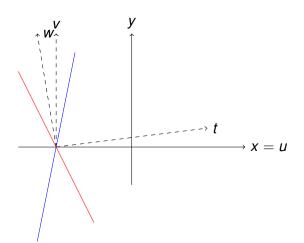
$$\Rightarrow$$
 $h=-2$, $k=0$. Nova equação depois da translação: $7u^2+6uv-v^2+f'=0$ onde $f'=7(-2)^2+6(-2).0-0+28(-2)+12.0+28=28-56+28=0$ \Rightarrow $7u^2+6uv-v^2=0$.

Rotação:
$$\tan 2\theta = \frac{b}{a-c} = \frac{6}{8} = \frac{3}{4} \Rightarrow$$

 $\sin 2\theta = \frac{1}{\sqrt{1 + \cot g^2 2\theta}} \Rightarrow \sin 2\theta = \frac{1}{\sqrt{1 + 16/9}} = \frac{3}{5}$

$$\begin{cases} a' + c' = a + c = 6\\ a' - c' = \frac{b}{\sin 2\theta} = 6/(3/5) = 10 \end{cases}$$

 \Rightarrow a'=8 e c'=-2. Nova equação depois da rotação: $8t^2-2w^2=0 \Rightarrow 2(2t+w)(2t-w)=0$. Temos duas retas concorrentes: w=2t e w=-2t.



Exemplo: Reconheça a cônica:

$$16x^2 - 24xy + 9y^2 - 38x - 34y + 71 = 0$$

Translação:

$$\begin{cases} 2ah + bk + d = 0 = 32h - 24k - 38 \Rightarrow 4h - 3k - 19/4 = 0 \\ 2ck + bh + e = 0 = 18k - 24h - 34 \Rightarrow -4h + 3k - 17/3 = 0 \end{cases}$$

Logo o sistema é impossível. Não há translação que elimine os termos lineares.

Rotação:
$$\tan 2\theta = \frac{b}{a-c} = \frac{-24}{7} \Rightarrow$$

 $\sin 2\theta = \frac{1}{\sqrt{1 + \cot^2 2\theta}} \Rightarrow \sin 2\theta = \frac{1}{\sqrt{1 + 49/576}} = \frac{24}{25}$

$$\begin{cases} a' + c' = a + c = 25\\ a' - c' = \frac{b}{\sin 2\theta} = -24/(24/25) = -25 \end{cases}$$

$$\Rightarrow a'=0 \text{ e } c'=25. \text{ Temos } \cos 2\theta=-7/25 \Rightarrow \cos^2\theta=\frac{1+\cos 2\theta}{2}=9/25, \sin^2\theta=\frac{1-\cos 2\theta}{2}=16/25.$$

$$\begin{cases} d' = d\cos\theta + e\sin\theta = -38.3/5 - 34.4/5 = -250/5 = -50 \\ e' = -d\sin\theta + e\cos\theta = 38.4/5 - 34.3/5 = 50/5 = 10 = \end{cases}$$

Nova equação depois da rotação: $25v^2 - 50u + 10v + 71 = 0$.

Completando o quadrado em v temos

$$25v^{2} - 50u + 10v + 71 = 25(v^{2} + \frac{10}{25}v) - 50u + 71 =$$

$$25(v^{2} + \frac{2}{5}v) - 50u + 71 = 25[(v + \frac{1}{5})^{2} - \frac{1}{25}] - 50u + 71$$

$$25(v + \frac{1}{5})^{2} - 50u + 70 = 25(v + \frac{1}{5})^{2} - 50(u - \frac{7}{5}) = 0$$

Escrevendo $t = u - \frac{7}{5}$ e $w = v + \frac{1}{5}$ obtemos: $25w^2 - 50t = 0$ ou $2t = w^2$