ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 24

Cap 5 – REDUTIBILIDADE Cap 5.3 – Redutibilidade por mapeamento

Profa. Ariane Machado Lima ariane.machado@usp.br

Aula passada

Não pode ser mais fácil porque não faria sentido reduzir

Não pode ser mais difícil porque daí a solução de B não

um problema mais fácil para um mais difícil.

garantiria a solução de A.

Utilidade:

- Se A é redutível a B
 - A não pode ser mais fácil nem mais difícil do que B
 - Se B for decidível, A também será
 - Se B for reconhecível, A também será
 - Se A for indecidível, B também será
 - Se A for não-reconhecível, B também será

Se eu quero provar que um problema é decidível/reconhecível:

- o problema que eu quero provar será o problema A
- encontro um problema (B) que já sei que é decidível/reconhecível e mostro que A é redutível a B (ou seja, que a solução de B pode ser usada para solucionar A)

- Utilidade:
 - Se A é redutível a B

- Não pode ser mais fácil porque não faria sentido reduzir um problema mais fácil para um mais difícil. Não pode ser mais difícil porque daí a solução de B não garantiria a solução de A.
- A não pode ser mais fácil nem mais difícil do que B
- Se B for decidível, A também será
- Se B for reconhecível, A também será
- Se A for indecidível, B também será
- Se A for não-reconhecível, B também será

Se eu quero provar que um problema é indecidível/não-reconhecível:

- o problema que eu quero provar será o problema B
- encontro um problema (A) que já sei que é indecidível e mostro que A é redutível a B (ou seja, que a solução de B poderia ser usada para solucionar A, o que é uma CONTRADIÇÃO)

- Como mostrar que um problema A é redutível a um problema B?
- Forma 1: redução informal (aulas 22 e 23 até agora)
 - escrever uma MT S que decida A usando uma MT R que decida B (se tal máquina R existir)

- Forma 2: redução formalizada por uma função de mapeamento entre os problemas A e B (redução por mapeamento) – veremos hoje
 - Daí basta aplicar a MT R (que soluciona o problema B) sobre o mapeamento de A

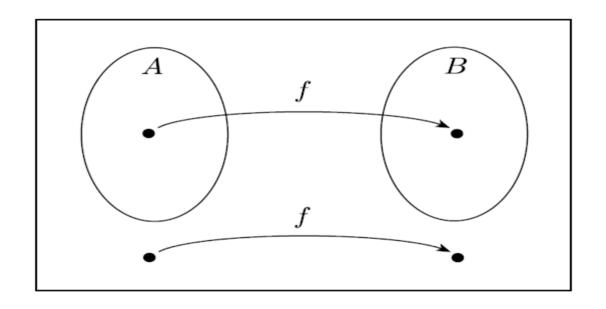
Redução informal (para provar indecidibilidade) - resumo

- Como provar que um problema B é indecidível usando a técnica de redutibilidade:
 - Assumo por contradição que B é decidível
 - Uso a MT decisora (R) de B para construir uma MT decisora (S) de um problema que sabemos que é indecidível (redução de A a B)
 - Contradição! Portanto R não pode existir!

- Como mostrar que um problema A é redutível a um problema B?
- Forma 1: redução informal (aula 22)
 - escrever uma MT S que decida A usando uma MT R que decida B (se tal máquina R existir)

- Forma 2: redução formalizada por uma função de mapeamento entre os problemas A e B (redução por mapeamento) – veremos hoje
 - Daí basta aplicar a MT R (que soluciona o problema B) sobre o mapeamento de A

Redutibilidade por mapeamento



w pertence a A \leq f(w) pertence a B.

Aula de hoje

Cap 5.3 – Redutilibidade por Mapeamento

Cap 5.3 – Redutilibidade por Mapeamento

- Mapeamento por uma função f computável
- Funções computáveis e funções não-computáveis

Funções computáveis

 Uma função f: Σ* → Σ* é uma função computável se alguma máquina de Turing M, sobre toda entrada w, pára com exatamente f(w) sobre sua fita

Funções computáveis

- Uma função f: Σ* → Σ* é uma função computável se alguma máquina de Turing M, sobre toda entrada w, pára com exatamente f(w) sobre sua fita
- Uma função é não-computável se não existe tal máquina (por mais que se possa calcular o valor de f para alguns pontos do domínio)

Termos equivalentes ou relacionados

- Problema solúvel, problema ou linguagem decidível, linguagem recursiva
 - Função computável
- Problema insolúvel, problema ou linguagem indecidível ou semidecidível (mas reconhecível), linguagem recursivamente enumerável não-recursiva
 - Função incomputável
- Problema completamente insolúvel, problema ou linguagem indecidível e irreconhecível, linguagem não recursivamente enumerável
 - Função incomputável

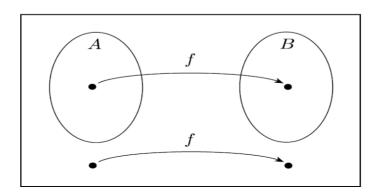
Exemplos de funções computáveis

- Operações aritméticas sobre inteiros
- Transformações de descrições de máquinas de Turing
 - Ex 1: f(<M>) = <M'>, sendo que M' reconhece a mesma linguagem que M, mas nunca tenta mover a cabeça de fita para além da extremidade esquerda (faz isso adicionando estados). Retorna ε se M não for uma descrição de uma MT legítima
 - Ex 2: f(<M>) = <M'>, sendo que M' diz o contrário de M

A linguagem A é redutível por mapeamento à linguagem B
 (A ≤_m B), se existe uma função computável f:Σ* → Σ* em que
 para toda cadeia w,

w pertence a A \leq f(w) pertence a B.

A função f é denominada a redução de A para B.



A linguagem A é redutível por mapeamento à linguagem B
 (A ≤_m B), se existe uma função computável f:Σ* → Σ* em que
 para toda cadeia w,

w pertence a A \leq f(w) pertence a B.

A função f é denominada a redução de A para B.

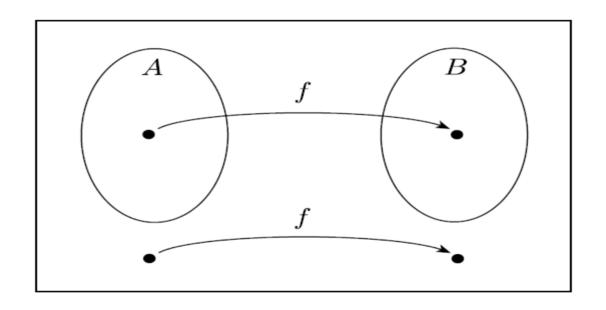
Quero solucionar $A = \{ w \mid w \text{ está em determinado formato e possui determinadas características} \}.$ Seja $B = \{ z \mid z \text{ está em (potencialmente outro) determinado formato e possui (potencialmente outras) características} \}$

Se:

- existe um solucionador para o problema B (ie, uma MT que decide B) e
- existe um **mapeamento** f que transforma uma cadeia w entrada do problema A em f(w) = z entrada do problema B

Então posso utilizar o solucionador de B sobre a entrada f(w), e assim estou solucionando A sobre w

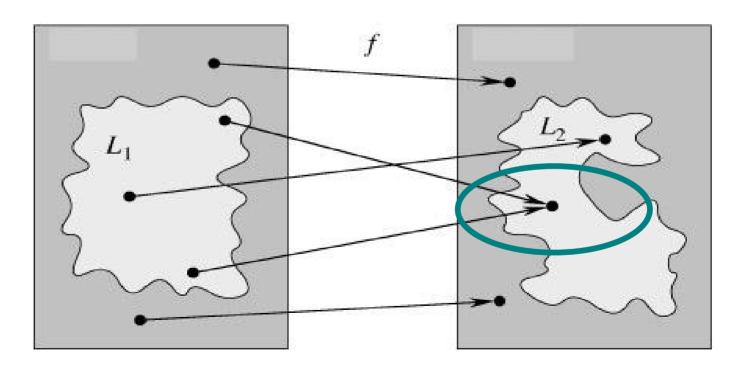
Redutibilidade por mapeamento



w pertence a A \leq f(w) pertence a B.

Redutibilidade por mapeamento

f não precisa ser uma função bijetora Por isso também chamada de redutibilidade muitos-para-um



- Teorema: Se A ≤_m B e B é decidível, então A é decidível.
- **Prova**: Seja R o decisor de B e f a redução de A para B. Um decisor S para A é:
- S ="Sobre a entrada w:
 - 1. Compute f(w)
 - 2. Rode R sobre a entrada f(w) e dê como saída o que R der como saída."

Se w pertence a A, f(w) pertence a B.

Portanto R aceita f(w) sempre que w pertencer a A e rejeita caso contrário.

Logo, S decide A.

- Teorema: Se A ≤_m B e B é decidível, então A é decidível.
- **Prova**: Seja R o decisor de B e f a redução de A para B. Um decisor S para A é:
- S = "Sobre a entrada w:
 - 1. Compute f(w)
 - 2. Rode R sobre a entrada f(w) e dê como saída o que R der como saída."

Se w pertence a A, f(w) pertence a B.

Portanto R aceita f(w) sempre que w pertencer a A e rejeita caso contrário.

Logo, S decide A.

Corolário: Se A ≤_m B e A é indecidível, então B é indecidível.

Prova: Assuma por contradição que B seja decidível. Se $A \leq_m B$ e B é decidível (decisor R), então R(F(x)) decide A. CONTRADIÇÃO, pois A é indecidível!

- Redução de A_{MT} para PARA_{MT}
- Temos que mostrar uma função computável f em que:

$$x \in A_{MT} <=> f(x) \in PARA_{MT}$$

ou seja,

- Redução de A_{MT} para PARA_{MT}
- Temos que mostrar uma função computável f em que:

$$x \in A_{MT} <=> f(x) \in PARA_{MT}$$

ou seja,
 $\in A_{MT} <=> \in PARA_{MT}$,
 $sendo f() =$

- Redução de A_{MT} para PARA_{MT}
- Temos que mostrar uma função computável f em que:

$$x \in A_{MT} <=> f(x) \in PARA_{MT}$$

ou seja,

$$<$$
M, w> \in A_{MT} $<$ => $<$ M', w'> \in PARA_{MT} , sendo $f(<$ M,w>) = $<$ M', w'>

Temos que mostrar uma MT F que compute f

Temos que mostrar uma MT F que compute f: $A_{MT} \rightarrow PARA_{MT}$

$$W = \langle M, W \rangle \in A_{MT}$$
, $f(W) = \langle M', W' \rangle \in PARA_{MT}$

F ="Sobre a entrada < M, w >:

1. Construa a seguinte máquina M'

M' = "Sobre a entrada x:

- 1. Rode M sobre x
- 2. Se M aceita, ???
- 3. Se M rejeita, ???"
- 2. Dê como saída <M', w>"

•

Temos que mostrar uma MT F que compute f: $A_{MT} \rightarrow PARA_{MT}$

$$W = \langle M, W \rangle \in A_{MT}$$
, $f(W) = \langle M', W' \rangle \in PARA_{MT}$

F ="Sobre a entrada < M, w >:

1. Construa a seguinte máquina M'

M' = "Sobre a entrada x:

- 1. Rode M sobre x
- 2. Se M aceita, aceite
- 3. Se M rejeita, ???"
- 2. Dê como saída <M', w>"

•

Temos que mostrar uma MT F que compute f: $A_{MT} \rightarrow PARA_{MT}$

$$W = \langle M, W \rangle \in A_{MT}$$
, $f(W) = \langle M', W' \rangle \in PARA_{MT}$

F ="Sobre a entrada < M, w >:

1. Construa a seguinte máquina M'

M' = "Sobre a entrada x:

- 1. Rode M sobre x
- 2. Se M aceita, aceite
- 3. Se M rejeita, entre em *loop*"
- 2. Dê como saída <M', w>"

Poderia até ser "rejeite"! (desde que páre) Note que se M entrar em loop M' também entra

Temos que mostrar uma MT F que compute f: $A_{MT} \rightarrow PARA_{MT}$

$$W = \langle M, W \rangle \in A_{MT}$$
, $f(W) = \langle M', W' \rangle \in PARA_{MT}$

F ="Sobre a entrada < M, w >:

1. Construa a seguinte máquina M'

M' = "Sobre a entrada x:

- 1. Rode M sobre x
- 2. Se M aceita, *aceite*
- 3. Se M rejeita, entre em *loop*" Note que se M entrar em loop M' também entra

Poderia até ser "rejeite"! (desde que páre)

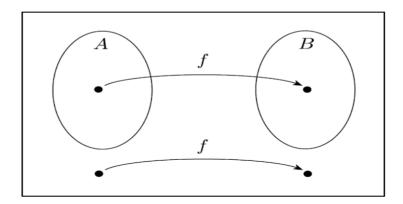
2. Dê como saída <M', w>"

Se PARA_{MT} fosse decidível por uma MT R, a MT S = R(F(M,w)) decidiria A_{MT} CONTRADIÇÃO!! 28

Observação

Se uma entrada w não está na forma correta (e portanto não pertence a A), f(w) deve dar como saída uma cadeia que não pertence a B

(isso ficará subentendido)



Redução **por mapeamento** (para provar indecidibilidade) - resumo

- Como provar que um problema é indecidível usando a técnica de redutibilidade:
 - Assumo por contradição que ele seja decidível (será o problema B)
 - Escolho um problema A sabidamente indecidível para fazer a redução ao problema B
 - Construo uma MT F que calcula a função de redução (mapeamento)
 f : A → B
 - Se R é a MT decisora (R) de B sobre uma entrada y, F é tal que y = F(x), a MT S decisora de A sobre uma entrada x, é S(x) = R(F(x))
 - Contradição! Portanto R não pode existir!

Diferença entre as duas reduções

- Prova de que PARA_{MT} é indecidível utilizando A_{MT}
- ullet Em ambos os casos, supomos que existe uma MT R que decide PARA $_{
 m MT}$
- Redução informal:

Parte que exige nossa "criatividade"

 Construimos a MT S (utilizando R) sobre a entrada <M,w> para decidir A_{MT} sobre o mesmo <M,w>

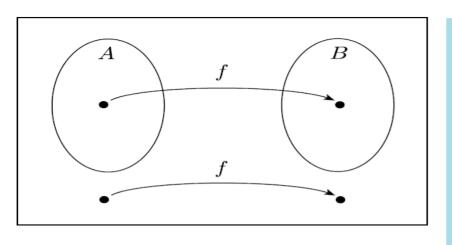
Assuma, por contradição, que uma MT R decida PARA_{MT}.

Então construímos S que usa R para decidir A_{MT} :

S = "Sobre a entrada <M, w>, uma codificação de uma MT M e uma cadeia w:

- 1. Rode a MT R sobre a entrada <M, w>.
- 2. Se R rejeita, rejeite. # isto quer dizer que M não pára
- 3. Se R aceita, simule M sobre w até que ela pare.
- 4. Se M aceitou, aceite; se M rejeitou, rejeite."

Logo $A_{\rm MT}$ pode ser reduzido a PARA $_{\rm MT}$ Como $A_{\rm MT}$ é indecidível, PARA $_{\rm MT}$ é indecidível



F = "Sobre a entrada < M, w>:

- Construa a seguinte máquina M'
 M' = "Sobre a entrada x:
 - 1. Rode M sobre x
 - 2. Se M aceita, aceite
 - 3. Se M rejeita, entre em *loop*"
- 2. Dê como saída <M', w>"
- Redução formal por mapeamento:
 - Criamos uma MT F que mapeia cada cadeia de A_{MT} em uma cadeia de $PARA_{MT}$ (de <M,w> no problema A_{MT} computamos <M',w>=F(<M,w>) para o problema $PARA_{MT}$)
 - A resposta de R sobre <M', w> é a resposta para <M,w> no problema A_{MT}
 - Ou seja, um decisor S para A_{MT} é R(F(<M,w>)

Diferença entre as duas reduções

Para um dado par de problemas, pode ser mais fácil usar um tipo ou outro de redução (as MTs implementadas são diferentes)

Exercício

• Prove que a linguagem EQ_{MT} (equivalência de duas MT's) é indecidível utilizando redução por mapeamento

Para ver se entenderam....

- Vamos ver uma prova da seção 5.1...
- Digam como deveria ser a redução por mapeamento

Equivalência entre MTs

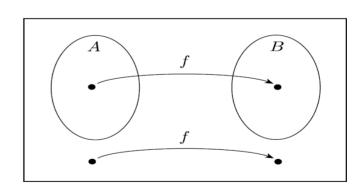
- $EQ_{MT} = \{ < M1, M2 > | M1 e M2 são MTs e L(M1) = L(M2) \}$
- Poderíamos usar EQ_{MT} para resolver V_{MT} !
 - Ou seja, quem é redutível a quem?
- Ideia: se uma MT M for equivalente a outra que rejeita qualquer cadeia, então L(M) = Ø
- Assuma que R é uma MT que decide EQ_{MT}

Equivalência entre MTs

- $EQ_{MT} = \{ < M1, M2 > | M1 e M2 são MTs e L(M1) = L(M2) \}$
- Poderíamos usar EQ_{MT} para resolver V_{MT} !
 - Ou seja, V_{MT} é redutível a EQ_{MT}
- Ideia: se uma MT M for equivalente a outra que rejeita qualquer cadeia, então L(M) = Ø
- Assuma que R é uma MT que decide EQ_{MT}

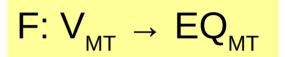
Equivalência entre MTs

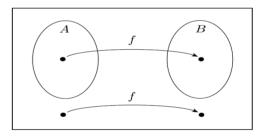
- Assuma que R é uma MT que decide o problema EQ_{MT}
- Preciso escrever uma MT F que faça o mapeamento de V_{MT} em EQ_{MT}, de forma que um decisor de V_{MT} para uma dada entrada <M> seja R(F(<M>))
- F: $V_{MT} \rightarrow EQ_{MT}$



- $w \in V_{MT} = \{ \langle M \rangle \mid M \text{ \'e uma MT e L(M)} = \emptyset \}$
- $F(w) \in EQ_{MT} = \{ < M1, M2 > | M1 e M2 são MTs e L(M1) = L(M2) \}$

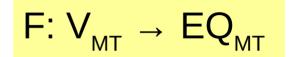
• F = '

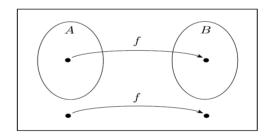




- $w \in V_{MT} = \{ \langle M \rangle \mid M \in U(M) = \emptyset \}$
- $F(w) \in EQ_{MT} = \{ < M1, M2 > | M1 e M2 são MTs e L(M1) = L(M2) \}$

• F = "Sobre a entrada <M>, sendo M uma MT:

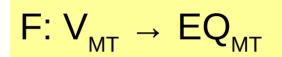


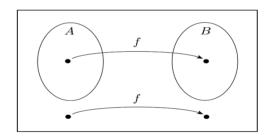


- $w \in V_{MT} = \{ \langle M \rangle \mid M \text{ \'e uma MT e L}(M) = \emptyset \}$
- $F(w) \in EQ_{MT} = \{ < M1, M2 > | M1 e M2 são MTs e L(M1) = L(M2) \}$

- F = "Sobre a entrada <M>, sendo M uma MT:
 - 1. Construa a seguinte máquina M1

2. Dê como saída <M, M1>"



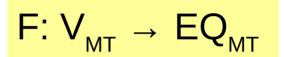


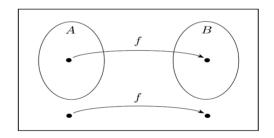
- $w \in V_{MT} = \{ \langle M \rangle \mid M \in U(M) = \emptyset \}$
- F(w) E EQ_{MT} = {<M1, M2> | M1 e M2 são MTs e L(M1) = L(M2)}

- Vamos assumir que EQ_{MT} seja decidível
- F = "Sobre a entrada <M>, onde M é uma MT:
 - 1. Construa a seguinte máquina M1

```
M1 = "Sobre a entrada x: rejeite."
```

2. Dê como saída <M, M1>"





• Se a MT R decide EQ_{MT} , então a MT S = R(F(<M>)) decide V_{MT} Mas V_{MT} é indecidível! CONTRADIÇÃO! Logo EQ_{MT} é indecidível!

Vacuidade de uma linguagem de uma MT

- Prove que $V_{MT} = \{ \langle M \rangle : M \text{ é uma MT e L}(M) = \emptyset \} \text{ é indecidível}$
- Dica: utilizar A_{MT}:
 - Reduzir quem a quem?

Vacuidade de uma linguagem de uma MT

- Prove que $V_{MT} = \{ \langle M \rangle : M \text{ é uma MT e L(M)} = \emptyset \} \text{ é indecidível}$
- Dica: utilizar A_{MT} :
 - Reduzir quem a quem?
 - Reduzir A_{MT} a V_{MT} isto é, utilizar um decisor R de V_{MT} para decidir A_{MT}
- Ideia: construir uma versão de M que apenas teste w

Vacuidade de uma linguagem de uma MT – redução informal

- Assuma que V_{MT} é decidível e R é sua MT decisora
- A MT S que decide A_{MT} é:

S = "Sobre a entrada <M,w>, uma codificação de uma MT M e uma cadeia w:

1. Use a descrição de M e w para construir M1:

M1 ="Sobre a entrada x:

- 1. Se x ≠ w rejeite
- 2. Se x = w,

rode M sobre a entrada w e

aceite se M aceita, e rejeite se M rejeita"

- 2. Rode R sobre M1
- 3. Se R aceita, *rejeite*; se R rejeita, *aceite*."

Mas como A_{MT} é indecidível, V_{MT} é indecidível

Vacuidade de uma linguagem de uma MT – redução por mapeamento

 $A_{MT} = \{ \langle M, w \rangle : M \text{ é uma MT, } w \text{ é uma cadeia } \in \Sigma^* \text{ e } M$ aceita $w \}$

$$V_{MT} = \{ \langle M \rangle : M \text{ \'e uma MT e L(M)} = \emptyset \}$$

$$A_{MT} \leq_m V_{MT}$$

Qual a F :
$$A_{MT} \rightarrow V_{MT}$$
 ?

("Cola" da prova por redutibilidade informal):

M1 = "Sobre a entrada x:

- 1. Se x ≠ w rejeite
- 2. Se x = w, rode M sobre a entrada w e *aceite* se M aceita, e *rejeite* se M rejeita"

Vacuidade de uma linguagem de uma MT – redução por mapeamento

- Uma MT F que receba <M,w> e dê como saída M1 faz um mapeamento entre A_{MT} e o complemento de V_{MT} !
- Logo, formalmente, provou-se que o complemento de V_{MT} é indecidível
- Na verdade, não existe uma redução por mapeamento de A_{MT} para V_{MT}
- Mas o uso dessa F na prova de que V_{MT} é indecidível ainda funciona porque a decidibilidade não é afetada por complementação (ou seja, se o complemento de V_{MT} é indecidível, então V_{MT} também é!)

47

Complemento da vacuidade de uma linguagem de uma MT – redução por mapeamento

- Assuma que V_{MT} é decidível e R é sua MT decisora
- A MT F que calcula o mapeamento de A_{MT} para V_{MT} é

F = "Sobre a entrada <M,w>, uma codificação de uma MT M e uma cadeia w:

1. Use a descrição de M e w para construir M1:

M1 ="Sobre a entrada x:

- 1. Se x ≠ w rejeite
- 2. Se x = w.

rode M sobre a entrada w e

aceite se M aceita, e rejeite se M rejeita"

- 2. Dê M1 como saída
- A MT S que decide A_{MT} é:

S = "Sobre a entrada <M,w>, uma codificação de uma MT M e uma cadeia w:

- 1. Rode R sobre F(<M,w>) e dê como saída o que R der"
- Absurdo! Pois A_{MT} é indecidível! Portanto V_{MT} não pode ser decidível, logo V_{MT} também não

Resumindo...

- Sei que o problema A é indecidível. Quero provar que o problema B é indecidível. Como?
- Prova por contradição: assumo que B é decidível por uma MT R. Se esse R puder ser usado para decidir o problema o A, CONTRADIÇÃO! Logo B é indecidível.
- O que falta na prova é mostrar como R pode ser usado para decidir A.
- Usando informalmente "redução", essa solução era criada caso a caso.
- Em redução por mapeamento, a solução é sempre a mesma:

Resumindo...

Um decisor S de A seria:

S ="Sobre uma entrada x,

- 1. Dê a resposta dada pela MT R sobre a entrada F(x)."
- sendo F a função de mapeamento de A para B que funciona de tal forma que:

x pertence a A \leq f(x) pertence a B

MAS ESTA F SIM É QUE PRECISA SER DEFINIDA CASO A CASO

Resumindo

A tarefa fica então em construir a F para um dado A e um dado B

Redutibilidade por mapeamento e reconhecibilidade

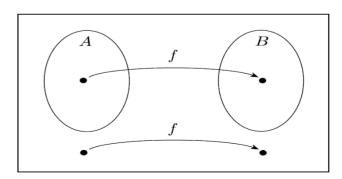
- Teorema: Se $A \leq_m B$ e B é Turing-reconhecível, então A é Turing-reconhecível.
- Prova: Seja R o reconhecedor de B e f a redução de A para B. Um reconhecedor S para A é:

S = "Sobre a entrada w:

- 1. Compute f(w)
- 2. Rode M sobre a entrada f(w) e dê como saída o que R der como saída."

Se w pertence a A, f(w) pertence a B.

Portanto R aceita f(w) sempre que w pertencer a A Logo, S reconhece A.



Redutibilidade por mapeamento e reconhecibilidade

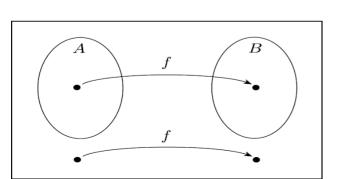
Corolário: Se A ≤_m B e A não é Turing-reconhecível, então B não é Turing-reconhecível.

Aplicações do corolário

- Já sabemos que o complemento de A_{MT} não é Turing-reconhecível (ponto de partida para mostrar que outras linguagens também não são)
- A ≤_m B implica que

complemento(A) \leq_m complemento(B)

Assim, para provar que B não é Turing-reconhecível podemos usar



complemento(A_{MT}) $\leq_m B$

ou

 $A_{MT} \leq_m complemento(B)$

Exercício exemplo

- Teorema: EQ_{MT} não é Turing-reconhecível nem co-Turing-reconhecível
- Prova:

Provamos que EQ_{MT} não é Turing-reconhecível e depois que complemento(EQ_{MT}) também não é

Exercício exemplo - EQ_{MT} não é Turing-reconhecível

Exercício exemplo - EQ_{MT} não é Turingreconhecível

- complemento(A_{MT}) $\leq_m EQ_{MT}$
- => $A_{MT} \leq_{m} complemento(EQ_{MT})$

$$F() =$$

- F = ``Sobre a entrada < M, w > , onde M 'e uma MT e w 'e uma cadeia:
 - 1. Construa as seguintes MTs M1 e M2:

```
M1 = "Sobre qualquer cadeia de entrada:
```

1. ? ."

M2 = "Sobre qualquer cadeia de entrada:

- 1. Rode M sobre w. Se M aceita, aceite; se M rejeita, rejeite."
- 2. Dê como saída <M1, M2>."

Exercício exemplo - EQ_{MT} não é Turingreconhecível

- complemento(A_{MT}) $\leq_m EQ_{MT}$
- => $A_{MT} \leq_{m} complemento(EQ_{MT})$

$$F() =$$

- F = ``Sobre a entrada < M, w > , onde M 'e uma MT e w 'e uma cadeia:
 - 1. Construa as seguintes MTs M1 e M2:

M1 = "Sobre qualquer cadeia de entrada:

1. rejeite."

M2 = "Sobre qualquer cadeia de entrada:

- 1. Rode M sobre w. Se M aceita, aceite; se M rejeita, rejeite."
- 2. Dê como saída <M1, M2>."

Exemplo - complemento(EQ_{MT}) não é Turingreconhecível

- complemento(A_{MT}) \leq_m complemento(EQ_{MT}), ou seja
- $A_{MT} \leq_m EQ_{MT}$

$$F() =$$

- F = "Sobre a entrada <M,w>, onde M é uma MT e w é uma cadeia:
 - 1. Construa as seguintes MTs M1 e M2:

M1 = "Sobre qualquer cadeia de entrada:

1. aceite."

M2 = "Sobre qualquer cadeia de entrada:

- 1. Rode M sobre w. Se M aceita, aceite; se M rejeita, rejeite."
- 2. Dê como saída <M1, M2>."

ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Cap 5.3 – Redutibilidade por mapeamento

Profa. Ariane Machado Lima ariane.machado@usp.br