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 Maximum Likelihood Approaches to Variance

 Component Estimation and to Related Problems
 DAVID A. HARVILLE*

 Recent developments promise to increase greatly the popularity of
 maximum likelihood (ML) as a technique for estimating variance
 components. Patterson and Thompson (1971) proposed a restricted
 maximum likelihood (REML) approach which takes into account the
 loss in degrees of freedom resulting from estimating fixed effects.
 Miller (1973) developed a satisfactory asymptotic theory for ML
 estimators of variance components. There are many iterative algo-
 rithms that can be considered for computing the ML or REML esti-
 mates. The computa.tions on each iteration of these algorithms are
 those associated with computing estimates of fixed and random effects
 for given values of the variance components.

 KEY WORDS: Variance component estimation; Maximum likeli-
 hood; Restricted maximum likelihood; Mixed linear models; Maxi-
 mum likelihood computations.

 1. INTRODUCTION

 The testing and estimation procedures associated with
 the analysis of variance (ANOVA) and the underlying
 fixed, mixed, and random linear models have been widely
 used. A long-standing problem associated with the use of
 the mixed and random models has been the estimation of
 the variances of the random effects, i.e., the estimation

 of the variance components. For balanced data, it has
 been common practice to estimate these parameters by
 equating the mean squares in the ANOVA table to their

 expectations. Henderson (1953) developed analogous
 techniques for unbalanced data which, at least in terms

 of actual usage, have proved to be very popular. Recently,
 a bewildering variety of "new" approaches has been pro-
 posed. Simultaneously, there has been renewed interest

 in maximum likelihood techniques for estimating vari-
 ance components.

 A maximum likelihood approach to the estimation of
 variance components has some attractive features. The
 maximum likelihood estimators are functions of every
 sufficient statistic and are consistent and asymptotically
 normal and efficient (in the sense described by Miller
 (1973)). Certain deficiencies of various other methods are
 not shared by maximum likelihood. In particular, the
 maximum likelihood approach is "always" well-defined,
 even for the many useful generalizations of the ordinary
 ANOVA models, and, with maximum likelihood, nonnega-

 * David A. Harville is Professor, Department of Statistics, Iowa
 State University, Ames, IA 50011. This work was supported in part
 by the Air Force Office of Scientific Research, under Grant No.
 AFOSR-76-3037. During the early stages of the work, which took
 place while he was a visitor at the Biometrics Unit of Cornell Uni-
 versity, the author benefited substantially from informal conversa-
 tions with S.R. Searle and C.R. Henderson. Material supplementary
 to that in the present paper can be found in Harville (1975) and
 Searle (1976).

 tivity constraints on the variance components or other

 constraints on the parameter space cause no conceptual

 difficulties. Moreover, the maximum likelihood estimates

 and the information matrix for a given parameterization

 of the model can be obtained readily from those for any

 other parameterization. Interest in the maximum likeli-
 hood estimators should be enhanced by the recent dis-

 covery by Olsen, Seely, and Birkes (1976) that, for at
 least some unbalanced designs, there exist estiinators in

 the class of locally best translation-invariant quadratic

 unbiased estimators that have uniformly smaller variance
 than the Henderson estimators. These locally best estima-

 tors are related closely to maximum likelihood estimators

 (Hocking and Kutner 1975).
 In spite of these properties, maximum likelihood esti-

 mators of variance components have not been used much

 in practice. There are several reasons for this neglect;

 the most important of which is, except in relatively
 simple settings, the computation of the maximum likeli-
 hood estimates requires the numerical solution of a con-

 strained nonlinear optimization problem. Prior to the
 advent of the electronic computer, this requirement pre-

 sented a virtually insurmountable barrier to their wide-

 spread use. Even after computers became commonplace,
 maximum likelihood was not much used to estimate

 variance components because effective computational
 algorithms were not readily available to practitioners.

 Recently, a number of results have come to light that
 promise to make the computation of maximum likelihood

 estimates of variance components practical in many

 settings where it was unfeasible before. Even in cases
 where their computation is still unfeasible, it may be
 possible to implement an approach similar to the one
 outlined in Section 7 which mimics maximum likelihood
 but is simpler computationally.

 Two other problems that have kept maximum likeli-

 hood from becoming a more popular technique for

 estimating variance components are the following: (1)

 The maximum likelihood estimators of the variance com-

 ponents take no account of the loss in degrees of freedom

 resulting from the estimation of the model's fixed effects.

 (2) The maximum likelihood estimators are derived under

 the assumption of a particular parametric form, generally
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 Variance Component Estimation 321

 normal, for the distribution of the data vector. The first
 of these problems has in effect been eliminated by
 Patterson and Thompson (1971) through their "restricted
 maximum likelihood" approach. With regard to the
 second problem, it will be argued in Section 8.1 that the
 maximum likelihood estimators derived on the basis of
 normality may be suitable even when the form of the
 distribution is not specified.

 In the following, an attempt is made to present a
 unified review of the maximum likelihood approach to
 variance component estimation. Computational aspects
 are emphasized. The topics covered include: the current
 state of maximum likelihood theory as applied to the
 estimation of variance components, the relationship
 (shown to be intimate) between the maximum likelihood
 estimation of the variance components and the estimation
 of the model's fixed and random effects, the exploitation
 of that relationship for purposes of computation and
 approximation, the use of numerical algorithms for com-
 puting maximum likelihood estimates of variance com-
 ponents, the use of maximum likelihood as a vehicle for
 relating the various methods that have been proposed for
 estimating variance components, and a discussion of
 directions for future research.

 The problem of estimating varianee components can
 be regarded as a special case of a general linear model
 problem in which the elements of the covariance matrix
 are known functions of a parameter vector to be esti-
 mated. Throughout this article, an effort is made to
 promote this point of view. Many of the ideas that are
 discussed are applicable to the more general problem.

 2. THE MODEL AND ITS APPLICABILITY

 The models that underlie the analysis of variance can
 all be viewed as special cases of the general linear model

 y = Xa + Zb + e . (2.1)

 In this model, y is a n X 1 vector of random variables
 whose observed values comprise the data points; X and Z
 are matrices of "regressors" with dimensions n X p and
 n X q, respectively; a is a p X 1 vector of unobservable
 parameters, which are called fixed effects; b is a q X 1
 vector of unobservable random effects; and e is a n X 1
 vector of unobservable random errors. Moreover, E(b)
 = 0, E(e) = 0, and cov (b, e) = O. Put D = var (b),
 R = var (e), and V = R + ZDZ', so that var (y) = V.
 The matrix X is assumed to be known, but the elements
 of D, R, and possibly even Z may be functions of an un-
 observable parameter vector 0 = (01, ..., am)'. The
 parameter space of a, 0, is taken to be { (a, 0): 0 C &?},
 where Q is some given subset of Euclidean m space such
 that R (and thus V) is nonsingular for 0 CE U. Put

 p* = rank (X), and take X* to be a n X p* matrix whose
 columns are any p* linearly independent columns of X.

 In the ordinary mixed and random ANOVA models,
 there is some number c of random factors, with the ith
 factor having qi levels. The levels of each factor are
 generally taken to be uncorrelated with each other, the

 levels of the other factors, and the residual effects. As-

 sociated with the ith random factor is a parameter o-i2
 which represents the common variance of its levels. The
 residual effects are taken to have common variance

 O'C+12. The variances r12, . ., ?C+l are called variance com-
 ponents. In terms of (2.1), b' = (bl', ..., b,'), where bi
 is a qi X 1 vector whose elements are the levels of the

 ith random factor, m = c + 1,

 9, = (i= 1, ...,m) , (2.2)

 R = GmI , D = diag[11 ..., Gm-,I]
 m-1

 V = OrmI + E, ojZiZi'
 i=l

 where Zi is a n X qi matrix defined by the partitioning
 Z = (Z1, ..., Zmrn), and

 Q = to Om > O ,i > 0 (i = 1.. m1)}

 Generally, each row of Zi has a single element equal to
 one, and its remaining elements are equal to zero; so that
 its jth row serves to indicate which level of the ith ran-
 dom factor enters the equation for the jth data point. At
 least some columns of X will usually also have only 0-1
 entries. In particular, in the ordinary random ANOVA
 models, X = 1. (1 denotes a column vector each of whose
 elements is one.)

 The ANOVA models are sometimes parameterized in

 terms of Yc+l = rC+12 and -yj = or2/-C+12 (i = 1, . . ., c)
 rather than in terms of r12, ..., rO>C+2. If we had taken
 0. = ay (i = 1, ..., m), instead of taking 8 to be as
 specified by (2.2), we would have had

 D = am diag [01I, . . ., Gm-1I]
 and

 m-1

 V = Gm(I + E GtZiZiZ)
 i=1

 A useful variation on the ordinary ANOVA models is ob-
 tained by taking the error variance to be heteroscedastic.

 Descriptions of specific ANOVA models can be found in
 Searle (1971a). These models have been applied widely
 in the biological, agricultural, behavioral, and physical
 and engineering sciences. Still, it is a mistake to think of
 linear models only in terms of the ordinary regression
 and ANOVA models. To do so is to miss many potential
 applications. In particular, the observations may not all
 have been taken at the same time so that y or various sub-
 vectors of y are best regarded as time series, i.e., as having
 been generated by stochastic processes. Such data are
 common in many fields, e.g., in economics. Time-series
 data are often analyzed on the basis of linear models that
 can be viewed as special cases of (2.1) in which q = 0,
 and e or subvectors of e are generated by stochastic
 processes like autoregressive processes, moving average
 processes, or mixed autoregressive moving average proc-
 esses (see Box and Jenkins (1970)). Useful extensions of
 these special cases can be obtained by supposing that the
 elements of b or of various of its subvectors are also
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 ordered by time and may have been generated by com-
 parable stochastic processes. Models of this kind may
 be suitable for a wide variety of growth curve data.
 Also, many types of data ordinarily analyzed by the

 usual ANOVA models may be better fitted by these
 extended time-series models. The specification of Z, m,

 R, D, and Q and the interpretation of b and 6 for these
 special cases will depend, of course, on what is assumed
 about the underlying stochastic processes.

 Note that multivariate linear models as well as uni-

 variate linear models are included in (2.1). While the par-
 ticular models described above are essentially univariate

 models, i.e., models in which each component of y repre-
 sents the same type of measurement, there is nothing in.
 the general formulation (2.1) that excludes situations
 where different types of measurements are included
 among the components of y, e.g., its first component
 might represent a height measurement and its second
 component a weight measurement. In fact, for each of
 our univariate examples, there is a corresponding multi-
 variate example that is likewise a special case of (2.1).
 The ordinary ANOVA models generalize to the models that
 underlie the multivariate analysis of variance (MANOVA).
 The multivariate analogs of the extended time-series
 models form the basis for Kalman filtering techniques,
 which are much used in engineering applications (see,
 e.g., Duncan and Horn (1972)), and they could be applied
 to multivariate growth curve data.

 Those special cases of the general linear model (2.1)
 discussed above are ones in which Z is a known matrix.
 There are also useful special cases in which at least some
 elements of Z are nontrivial functions of unobservable
 parameters. In particular, such formulations can be ap-
 plied to factor analysis models with nonnull elements of
 Z representing the factor loadings.

 Specialized results are available in the literature for
 that class of linear models characterized by V being
 linear in the parameters, i.e., for those linear models
 where

 m

 V = E iGi (2.3)
 ti=

 for n X n symmetric matrices G1, . .., G.. whose elements
 are known. As Anderson (1970) indicated, this class in-
 cludes many useful special cases. In particular, V has the
 form (2.3) for the usual ANOVA models when we take
 Oi= oi2 (i = 1, ..., c + 1) though not when we take
 i= yi.

 3. ESTIMATION OF FIXED AND RANDOM EFFECTS

 Corresponding to an actual data vector, i.e., an ob-
 served value of y, is a realized or sample value of the
 vector b of random effects. This value will subsequently
 be denoted by I and can be thought of as a parameter
 vector just as a is a parameter vector. The only distinc-
 tion is that something is assumed to be known about the

 origin of I. Estimating estimable functions of ais a
 problemn of great practical importance and has been dealt

 with in many articles. In contrast, the problem of

 estimating g or linear combinations of the components of
 a and a has not received much consideration (at least not
 from statisticians). Nevertheless, the latter problem
 arises in many applications as described, e.g., by Searle
 (1974), Henderson (1973c), and Harville (1975). In par-
 ticular, the problem of estimating or predicting a future

 data point from data to which (2.1) applies can generally
 be formulated as a problem of estimating a linear com-

 bination of the components of a and 5.
 In the present section, we review some results on the

 estimation of linear combinations of the components of

 a and g. As will become evident in subsequent sections,
 these results are very relevant to the problem of estimat-
 ing 6 by maximum likelihood techniques.

 Subsequently, we take a to be any solution to the
 normal equations

 (X'V-'X)a - X'V-1y (3.1)

 and put a = Di, where v = Z'V-1(y -X) = Z'Py,
 with P = V-1 -V-1X (X'V-'X)-X'V-X (for any matrix B,
 B- will denote an arbitrary generalized inverse of B, i.e.,
 any solution to BB-B = B).

 Since the elements of D, R, and possibly Z are functions
 of the parameter vector 6, so are the elements of V, a, 9,
 and v. When we wish to emphasize that the elements of a
 particular vector or matrix are functions of parameter
 vectors, we append the appropriate arguments. This nota-
 tion facilitates the identification of the value of the vector
 or matrix for particular values of the parameter vectors.
 Thus, e.g., a (6) is used interchangeably with &, and, if 6*
 is a particular value of 6, a (6*) is the value of a for 6 = 6*.
 Subsequently, we denote the true values of 6 and a by
 6+ and a+.

 By the expectation of a random variable, we shall
 mean its unconditional expectation with respect to the
 joint distribution of b and e, as opposed say to its condi-
 tional expectation given b - 1. We refer to an estimator
 t(y) of a linear combination 21/a + 12'9 of the elements
 of a and a as (unconditionally) unbiased if E [t (y)]- 1',
 and call E[t(y) - '- 2'b]2 its (unconditional) mean
 squared error.

 For the case where 6+ is known, an answer to the
 question of how to estimate 21'a + 22'9 is given below in
 Theorem 1. This estimator differs from that obtained by
 proceeding as though all the model's effects were fixed.
 The latter estimator is less efficient in a mean squared
 error sense.

 Theorem 1: For the case where the true value 6+ of 6 is
 known, the best (uniformly smallest mean squared error)
 linear unbiased estimator (BLUE) of a linear combination
 k1'a + 22'5 of the elements of a and 5, where i'a is
 estimable, is

 I if (o+) + 212' (6+) . (3.2)

 (See Henderson (1973c) and (1975); Harville (1976).)
 When p = 0 (so that the model contains no fixed

 effects) or equivalently when a+ is known, Theorem 1
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 Variance Component Estimation 323

 essentially reduces to the result described by Rao (1965,
 Sect. 4a.11). When 12 = 0, it reduces to the ordinary

 Gauss-Markov theorem and, when 1, = 0, to a result
 derived by Henderson (1963).

 The following theorem is relevant to the computation

 of a and v (and 0).

 Theorem 2: If a and v are the p X 1 and q X 1 com-

 ponents of any solution to the linear system

 EX'R-'X X'R-1ZD F FX'R-ly1
 II I I ~ 1 (3.3)

 -Z'R-'X I + Z'R-'ZD JJ- L Z'R-lyJ

 then & is a solution to (3.1) and v' = v. Conversely, for
 any -solution & to (3.1), the system (3.3) has a solution
 whose first component is a.

 We have, as a corollary to Theorem 2, that

 (I + Z'R-1ZD)->Z'R-' (y - X&) , (3.4)

 and that

 - (I + Z'SZD)-'Z'Sy, (3.5)
 with S _ R-1 -R-1X(X'R-TX)-X'R-T. These two repre-
 sentations can also be obtained directly from the matrix
 identities

 V-1-R-1 - R-1ZD(I + Z'R-'ZD)-1Z'R-1 (3.6)

 Z'V-1- (I + Z'R-'ZD)-'Z'R-1,

 P S - SZD (I + Z'SZD)-Z'S

 and

 Z'P (I + Z'SZD)-'Z'S, (3.7)

 which are derivable from results given and cited by
 Harville (1976).

 In our formulation of the ordinary ANOVA models as
 special cases of the general linear model (2.1), the matrices

 RI D, and possibly Z and X exhibit relatively simple
 structures. Some or all of these matrices also have simple
 structures in other useful special cases of (2.1). The
 significance of Theorem 2 is that it provides us with the
 means for exploiting these structures, so as to simplify
 the computation of v; (and thus 0) and a solution to (3.1).
 If we compute v; and a solution to (3.1) by directly solving
 the system (3.3), these structures can be used to obvious
 advantage in computing the entries in the coefficient
 matrix and right side of (3.3) and again in the actual
 solution of the system. Likewise, we could exploit these
 structures by first solving the normal equations (3.1),
 using (3.6) in their formation, and then computing iv on
 the basis of (3.4), which is equivalent to employing the
 system (3.3) after absorbing the v equations into the a
 equations. Alternatively, we could start by computing v
 from (3.5) and then compute a solution to (3.1) from
 the first p equations in the system (3.3), which corre-
 sponds to absorbing the & equations of (3.3) into the v
 equations. In carrying out the computations, advantage
 should be taken of the well-known fact (see, e.g., Westlake

 1968) that F'1C, where F and C are arbitrary except
 for obvious restrictions, is computed most efficiently by

 numerical techniques that solve the linear system
 FB = C without explicitly forming F-1.

 Theorem 2 was presented by Harville (1976) as one in
 a class of modified versions of a result due to Henderson
 (1963). Henderson's result applied for 6 C Q such that D
 is nonsingular and states that, if & and a are the com-
 ponents of any solution to

 [X'R-'X X'R'Z 1X RlY1 3
 Fn = F R''y (3.8)

 LZ'R-1X D-1 + Z'R-'ZJ LJ ZLR-1Yz'

 then & is a solution to (3.1) and = 0. We choose to
 work with the system (3.3) rather than (3.8) because it
 is applicable for all 6 CE and it has v imbedded in its
 solution instead of 0. Both of these features are useful in
 relating the maximum likelihood estimation of 6 to the
 estimation of linear combinations of the elements of a
 and L. Another attractive feature of the system (3.3) is
 that its use does not require the inversion of D. However,
 the coefficient matrix of (3.8) is symmetric positive
 definite or semidefinite, which can be a useful property
 from a computational standpoint (see, e.g., Westlake
 1968).

 The elements of 8 belong to the class of estimators
 known as "shrinkers." For p = 0 and 6+ known, o is
 formally the same as the Bayes estimator of 1 provided
 the distributions of b and e are multivariate normal, and,
 even in the absence of normality, is linear Bayes in the
 sense described by Hartigan (1969). For p > 0 but 6+
 known, the above approach coincides with what might be
 characterized as a partially Bayes approach (Harville
 1976). If 6+ is unknown as is being assumed here and is
 usually the case in practice, then in general (3.2) can no
 longer be regarded as an estimator of 21'a t 22'L. One
 way to proceed when 6+ is unknown is to use (3.2) as an
 estimator of 1'a + 12'5 with 6+ replaced by some value
 of 6. Depending on h-ow this value is chosen, there is a
 formal resemblance to ridge regression or to the Stein-like
 or empirical Bayes estimators considered, e.g., by Efron
 and Morris (1973). In particular, a maximum likelihood
 estimate of 6 can be substituted for 6+.

 4. THE MAXIMUM LIKELIHOOD APPROACH TO
 THE ESTIMATION OF 6

 4.1 Definition

 In discussing the maximum likelihood estimation of 6,
 we take the distribution of y to be of the multivariate
 normal form, so that the logarithm of the likelihood func-
 tion differs by only an additive constant from the function

 L(6, a; y) = -(2) log [det (V)]

 - (12) (y - X')V-' (y - Xa)

 defined for 6 and a such that 6 C Q. By definition, maxi-
 mum likelihood (ML) estimates of 6 and a are values
 satisfying 6 C Q2 and L (6, a; y)-= up(y), where

 L8up (y) = supremum L (6, a; y)
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 i.e., values at which L assumes a maximum for those 6

 and a such that 6 E Q. It is well-known that, for fixed 6,
 L is maximized with respect to a by taking a = a (6).

 Thus, putting Li*(6; y) = L[6, &(O); y], 6 is a ML esti-
 mate of 6 if and only if 6 E Q and Ll*(6; y) = Lsup(y)
 (i.e., if and only if L1* assumes a maximum at 6 for
 6 E Q, in which case a ML estimate of a is & (6)). Similarly,
 for fixed values of some number a of components of 6,

 which without loss of generality we take to be the first a

 components, it may be possible to determine analytically

 values Oa+i(6 1, ... * a), .. ., Om(Oi) . . . Qa) that maximize
 L1* for Oa+i, ..., Om such that 6 E Q. Then, putting

 L2*(01, . . ., a; Y) = Li*[{1,) . . .,6 a, 6a+l(06i, ... * Oa)) .* *
 Om (06' ... * *a) } ; y], 61, ... 6 Oa are ML estimates of 01, . . ., Oa
 if and only if they maximize L2* for those 01, . . ., Oa that
 satisfy 6 E Q for some (6a+i, . . ., Om) value, in which case
 ML estimates of Oa+1, 6 t m are Oa+l (01, ... a), .
 Om (s1i ..., * a). In particular, in our alternate formulation
 of the ordinary ANOVA models as special cases of (2.1),
 i = i (i = 1, ..., m), and, for fixed values of 01,
 Om-1) Li* is maximized for Om > 0 by taking

 Om = (1/n)[y -X&(0)]'
 m-1

 1[I + E iZiZi']-'[y - X&(o)], (4.1)
 i=l

 unless y lies in the column space of X (an event of prob-
 ability zero when n > p*). (The right side of (4.1) does
 not depend on Om because a (6) does not depend on Om in
 this setting.) Except in certain fairly simple situations,

 it will be the case a > 1; i.e., while analytical techniques
 can often be used to reduce the dimensions of the prob-
 lem, numerical techniques will ordinarily have to be
 employed at some point in order to effect a final solution.

 Under what conditions does a ML estimate of 6 exist;
 i.e., under what conditions is there a value of 6 satisfying

 6 E Q and Li*(6; y) = LSUP(y)? Hartley and Rao (1967,
 Sect. 2) gave conditions which were claimed to insure the
 existence of ML estimates for the variance components

 associated with the ordinary ANOVA models. Miller (1973,

 Appendix D) found a deficiency in the Hartley-Rao con-
 ditions and showed how to "fix them up." Their condi-
 tions are quite unrestrictive.

 4.2 Asymptotic Properties

 Anderson (1971) considered the special case of (2.1)
 where y is made up of s (= n/r) r-variate vectors that are
 independently and identically distributed. He showed

 that, for s -* o with r fixed, the usual asymptotic prop-
 erties of the maximum likelihood method can be extended.

 Asymptotic properties are of value in a particular ap-
 plication only if there is reason to believe that the data
 are extensive enough that the properties hold. Anderson's

 asymptotic results can be applied with confidence if s is
 sufficiently large. However, for many useful models of
 the form (2.1), y cannot be partitioned into independently

 and identically distributed subvectors (except trivially
 by taking s = 1) even though n may be very large; so

 that the above asymptotic formulation is inappropriate.

 In particular, it is inappropriate for the ordinary ANOVA
 models (except for relatively simple cases like the bal-

 anced random one-way classification).
 Hartley and Rao (1967) were the first to attempt an

 asymptotic theory that would be truly appropriate for

 the more complicated of the ordinary ANOVA models.
 They derived the limiting properties of the ML estimators

 of a, yi) ..., 2 c+i as n Ooc and qi -->o)(i = 1, ., c)
 simulataneously in such a way that the number of ob-

 servations falling into any particular level of any random

 factor stays below some universal constant. However,
 Miller (1973) pointed out that the latter restriction
 greatly limits the applicability of the Hartley-Rao results.
 For example, it rules out any sequence of increasingly
 larger balanced random two-way cross-classifications.
 Miller developed an asymptotic theory for the ordinary
 ANOVA models which, while it is similar to that presented
 by Hartley and Rao, does not exclude any cases of real
 interest. Miller (like Hartley and Rao) required that

 p* = p (which causes no real loss of generality) and that
 the matrix Zi consist only of zeroes and ones with exactly
 one 1 in each row and at least one 1 in each column

 (i = 1, ..., c). He introduced a quantity qj that can be
 regarded as the effective number of levels for the ith
 random factor (i = 1, ..., c), defined another quantity

 77C+1 by qc+l = n- rank (Z), and assumed the existence
 of a function q7o of n such that the matrix

 lim 770-lX/[V(O+) ]-lX (4.2)
 n -~oo

 exists and is positive definite. (Our notation differs from
 Miller's.) Miller showed, under fairly unrestrictive addi-
 tional assumptions, that, for sequences of designs for

 which n c> o and q-i oo (i = 0, . . ., c + 1) simultane-
 ously in an "orderly way," the likelihood equations for a
 and 6 = (oa12, ...., oaC+ 2) have a root with probability one
 (provided the true value (oai2)+ of o-,2 is greater than zero
 (i = 1, .. ., c)), and such a root is consistent and asymp-
 totically efficient. Furthermore, denoting the o-,2 com-
 ponent of this root by &i2 (i = 1, ..., c + 1) (implying
 that the a component is a(6) where 6' = (2, . *,C+
 the limiting distribution of V/io[& (6) -+],

 \/71[A 12- (ff12) * C+J[Ac+12- (ac+12)+]

 is normal with mean vector 0 and covariance matrix
 diag (J'-1, J2-1), where J' is the matrix given by (4.2)
 and J2 is the (c + 1) X (c + 1) matrix with ijth element

 (2 )lim (,qjq1j)-I tr Ezi' { V Wo) I -lZjZj't { VW) I 'lZi]

 4.3 Restricted Maximum Likelihood

 One criticism of the ML approach to the estimation of
 6 is that the ML estimator of that vector takes no account
 of the loss in degrees of freedom that results from estimat-
 ing a. For the ordinary ANOVA models, the variance-com-
 ponent estimators obtained by solving the likelihood

 equations do not in general coincide with those obtained
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 Variance Component Estimation 325

 by ANOVA methods (not even in the case of balanced
 data), and, unlike the latter estimators, they are gen-
 erally biased (in a downward direction (Patterson and
 Thompson 1974)), sometimes severely so (Corbeil and
 Searle 1976b; Patterson and Thompson 1974). In par-
 ticular, for the ordinary fixed ANOVA or regression models,
 which collectively comprise the special case of (2.1) where

 q = 0 , m = 1 , V = 01I , Q = {GO: 01 > O} , (4.3)

 the ML estimator (4.1) of the single "variance component"

 01 has expectation 01(n - p*)/n, so that it is biased
 downward by an amount 91p*/n, which can be significant
 if the number of degrees of freedom n - p* is sufficiently
 small.

 These "deficiencies" are eliminated in the restricted
 maximum likelihood (REML) approach which was de-
 veloped for specific balanced ANOVA models by several
 scholars including Russell and Bradley (1958). and
 Anderson and Bancroft (1952). It was extended to "all"
 balanced ANOVA models by W.A. Thompson (1962), and
 was set forth in general form by Patterson and R.
 Thompson (1971 and 1974). For balanced ANOVA models,
 the equations that are the likelihood equations in the
 REML approach have as their solution the standard
 ANOVA estimates.

 By an error contrast, we shall mean a linear combina-
 tion u'y of the observations such that E(u'y) =_ 0, i.e.,
 such that u'X = 0 (where u does not depend on 6 or a).
 The maximum possible number of linearly independent
 error contrasts in any set of error contrasts is n - p*. A
 particular set of n - p* linearly independent error con-
 trasts is given by Aly where A1 is a (n - p*) X n matrix
 whose rows are any n - p* linearly independent rows of
 the matrix I - X(X'X)-X'. In the REML approach, infer-
 ences for 6 are based on the likelihood function associated
 with n - p* linearly independent error contrasts rather
 than on that associated with the full data vector y. It
 makes no difference which n - p* linearly independent
 contrasts are used because the likelihood function for any
 such set differs by no more than an additive constant
 (which varies with which error constrasts are included
 but does not depend on 6 or a) from the function

 L1 (0; y) - (2) log [det (V)]

 - (2) log [det (X*'V-1X*)]
 (2) (y- X&'YV-fl(y - X&)

 defined for 6 E Q (Harville 1974). (Here, X* is as defined
 in Section 2.) A REML estimator is a value of 6 that maxi-
 mizes L1 for 6 E U. As in full ML, numerical techniques
 must ordinarily be employed to determine the estimate,
 though sometimes analytical techniques can be used to
 reduce the numerical problem to that of maximizing a
 function L2 (defined analogously to L2*) involving only
 a components of 6.

 It might seem that some information is lost by basing
 inferences for 6 on L1 instead of L. Patterson and
 Thompson (1971) argued to the contrary. Suppose that
 A1y is any vector of n -p*' linearly independent error

 contrasts, and that A2 is any p* X n matrix of constants
 such that A' = (A1', A2') is nonsingular. The likelihood
 function for the transformed data vector Ay is propor-
 tional to that for y so that we can just as well base our
 inferences on Ay as on y. Since E (A2y) consists of linearly
 independent estimable functions of a, Patterson and
 Thompson maintained that, in the absence of outside
 knowledge of ar, A2y contains no information about 6 and
 therefore inferences for 6 should be based only on A1y.
 More precisely, A1y would seem to be marginally sufficient
 for 6 in the sense described by Sprott (1975). A similar
 argument, pertaining specifically to estimation, is that
 the full ML estimator of 6 necessarily depends on y only
 through a set of n - p* linearly independent error con-
 trasts, i.e., as a function of Ay it depends on A1y but not
 on A2y, so that the REML estimator does not ignore any
 information that is actually used by the full approach.
 (The fact that the full ML estimator of 6 depends only on
 error contrasts follows upon observing that it depends on
 y only through the function L1* which, like L1, depends
 on y only through A1y.) A related observation has to do
 with translation invariance. (An estimator T(y) of a
 scalar- or vector-valued function of 6 will be called trans-
 lation invariant if T(y + Xa) = T(y) for all y and all
 p X 1 vectors a.) It is well-known that the REML estima-
 tor of 6 is translation invariant. However, the translation
 invariance of this estimator is not a valid reason for pre-
 ferring it to the full ML estimator (as has sometimes been
 maintained), because the full ML estimator is also transla-
 tion invariant.

 How does the REML estimator of 6 compare with the
 ML estimator with regard to mean squared error (MsE)?
 In general, the answer depends on the specifics of the
 underlying model and possibly on 6+. For models satisfy-
 ing the conditions (4.3) (i.e., ordinary fixed ANOVA or
 regression models) the ML estimator of the variance 01
 has uniformly smaller MSE than the REML estimator when
 p* < 4; however, the REML estimator has the smaller
 MSE when p* > 5 and n - p* is sufficiently large
 (n - p* > 2 suffices if p* > 13). MSE comparisons be-
 tween variance-component estimators obtained by solv-
 ing the likelihood equations for ML and variance-com-
 ponent estimators obtained by solving the likelihood
 equations for REML were made by Corbeil and Searle
 (1976b) and by Hocking and Kutner (1975) for several
 mixed and random ANOVA models.

 5. DERIVATION AND COMPUTATION OF
 DERIVATIVES AND OTHER RELEVANT

 ITEMS

 Various procedures for computing ML or REML estimates
 of 6 will be discussed in Section 6. These procedures are
 iterative, requiring the repeated evaluation of L, L1*, or
 L1; their first- or second-order partial derivatives; the
 expected values of their second-order partial derivatives;
 and/or related quantities. In deciding; on a procedure for
 a given application and in implementing that procedure,
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 it is imperative to know how to evaluate the required
 items efficiently.

 Using well-known results on matrix differentiation
 (Graybill 1969, Sect. 10.8; Nering 1970, Chap. 6, Sect. 7),
 we find

 aL1/a0i = - (2) tr [PQ(3V/dO)i)]
 + (12) (Y - X&)V-1 (aV/49j)V-1 (y - Xa)

 C) 2L11/V0k = - (2) tr [P (d2V/8WiO6k)
 - (aV/oa&)P(aV/oak) }]

 + (12) (y - Xa)'V-1[E (o2V/dai oak)

 - 2(aV/&Gi)P(aV/dO9k)]V-1(y - Xii)
 and

 E(a2L11aOia=k)- (2) tr [P(aV/aOi)P(&V/aOk)]

 Expressions for the first- and second-order partial deriva-
 tives of L with respect to the components of 0 and for the
 expected values of the latter partials can be obtained
 from the above expressions by first putting X = 0 and
 then substituting y - Xa for y. Expressions for all of the
 first- and second-order partials and expected second-
 order partials of L and Li* are given by Harville (1975).

 As observed by Searle (1970), the information matrix
 associated with the full likelihood function -is the matrix
 diag [B*, (X'V-1X)], where B* is the m X m matrix with
 ikth element (2) tr [V-l(aV/aOi)V_1(aV/dGk)]. The in-
 formation matrix associated with L1 is the m X m matrix
 B whose ikth element is (2) tr [P(&V/aOi)P(aV/&Gk)].

 In practice, it is generally inefficient and possibly un-
 feasible computationally to evaluate L, L1*, or L1; their
 partial derivatives; their expected second-order partials;
 or related quantities directly from expressions like those
 given previously. As noted earlier, the matrices R, D, and
 possibly Z and X often have relatively simple structures.
 Formulas were given in Section 3 that made it clear how
 to exploit these structures for purposes of computing
 BLUE'S of linear combinations of the elements of a and I.
 We now demonstrate how, by making use of the results
 of Section 3 and several related identities, comparable
 formulas can be obtained for the preceding items.

 Taking C to be the coefficient matrix of the linear sys-
 tem (3.3) and C* to be the matrix that results from sub-
 stituting X* for X in C, we find

 det (V) _ det (R) - det (I + Z'R-1ZD)

 det (V) . det (X*'V-lX*) -det (R) . det (C*)

 det (R) -det (X*'R-lX*) -det (I + Z'SZD), (5.1)

 V-(y - Xi) =R-'(y - Xii - Z) E S(y - Z0) (5.2)

 P R-1 -R-'(X, ZD)C-(X, Z)'R-1,

 Ztp_ (O, Iqxq)C-(X, Z)'R-1 . (5.3)

 Proofs of these identities are outlined by Harville (1975).
 To illustrate how the various results can be combined

 to produce formulas of the desired kind, we note that the

 representations,

 = - -() log [det (R)] - (2) log [det (C*)]

 - (')y'R- (y - X- Z)

 = -( 2) log [det (R)] - (12) loga [det (X*'R-lX*) ]
 (2) log [det (I + Z'SZD)]- (f)y'S (y - Z0)

 follow immediately from (5.1) and (5.2). Next, consider
 dL1/O60. If D depends on & but R and Z do not (as is the
 case for i = 1, ..., m - 1 in our formulations of the
 ordinary ANOVA models), then, using (3.7), we have

 dL1/dE = - (2) tr [(I + Z'SZD)-1Z'SZ(OD/doO)]
 + (2)v'(3D/3&)i

 where, if we wish, we could substitute the right side of
 (5.3) for (I + Z'SZD)-1Z'S. Finally, consider aL1/aoi,
 E(a2Ll/aOidak), and E2Ll/aOiaOk specifically for the case
 of the ordinary ANOVA models, taking the parameteriza-
 tion to be 0 = oyi (i = 1, ..., m). Upon defining the par-
 titioned matrix

 Til ... Tlc
 T=

 T ic .. Tcc

 where Tij is qi X qj, to be the lower right corner of any
 generalized inverse of C (which is necessarily equal to
 (I + Z'SZD)-1, see Harville (1976, p. 392)) and observing
 that (for the ordinary ANOVA models)

 c

 Tik + lYc+lYk , TijZj'SZk I, if k = i,
 l= = 0, if k $i,

 we find

 Oila-yi = - (12)Yi-'Eqi - tr (Tii)]
 + (Q)yc+9i'9i , (5.4)

 aLla,yc+i = - (2),yc+i1[E(n - p*)
 - y'S(y - Z0)] , (5.5)

 (-2)E (&2LL/3j9-yi) = yi-2 tr [ (I -Ti)2] t
 (-2)E (&2 1/-Y9iCYk) = Yi-1Yk-1 tr [TikTki]

 (-2)E (d1L /ley i c+l)= 1=i-7C+- [qi-tr (Tsi) ]
 (2)E (,2Li/dOyc+1aec+,) = ycy 1-2 (n - p*)

 (-2) a2 Ll/oyjyi = -yj-2 tr [(I -Tii)2]
 + 2yC+iZ-j -Tj(Ij-T 9j

 (-2)a2L1/laeYiYk = -Yi1Yk tr [TikTki]
 - 2yec+ k1lyij'Tikk X

 (-2)a2 Li/c17ja7,+i = qi%V 1
 (-2)C 2Lj1aoyc+layc+i= -,yc+i-2[(n - p*)

 - 2y'S(y - ZP)]

 for k $ i 1,.. .,c, where vi is the qi X 1 vector defined
 by V9= (= , ..., vc'). (For those of the expressions that
 involve partial differentiation with respect to yi, we
 require yi > O i = 1, ...c+ 1.)

 The above representations are closely related to
 various of the representations given by Patterson and
 Thompson (1971), Henderson (1973a and 1973b),
 Hemmerle and Hartley (1973), Thompson (1975), and
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 Corbeil and Searle (1976a). Depending upon the par-
 ticulars of the model being considered, it may be possible
 to further simplify these representations by algebraic
 means. For example, "complete" simplification is possible
 in the case of the random two-way nested ANOVA model

 as evidenced by Searle's results (1970).
 Note that first- and second-order partial derivatives

 and expected second-order partial derivatives for L, L1*,
 and L1 for one parameterization of (2.1) can be obtained
 from those for a second parameterization by making use

 of the chain rule of calculus (see, e.g., Nering (1970,
 Chap. 6, Sect. 5)). In particular, in the case of the

 ordinary ANOVA models, expressions for partial deriva-

 tives taken with respect to c-12, . . ., ?c+12 can be obtained
 from those taken with respect to yri, *.., -e+' and vice
 versa. General formulas for going from one information
 matrix to the other are given by Zacks (1971, p. 227).

 The chain rule can also be used to obtain the partial
 derivatives of L2* or L2 from the partial derivatives of

 Li* or L1.
 The above results completely link the problem de-

 scribed in Section 3 of estimating linear combinations of

 the elements of a and L when 0+ is known to the problem
 of evaluating L, L1*, and L1, their first- and second-order
 partial derivatives, and their expected second-order
 partial derivatives. For each of the approaches given in
 Section 3 to the first problem, they point the way to a
 corresponding approach to the second problem. Note,
 however, there is a consideration in the second problem

 not ordinarily present in the first. In the estimation of

 linear combinations of the elements of a and L when 0+ is
 known, there is only a single set of computations, while,

 in the iterative procedures for the ML or REML estimation

 of 6, similar computations must be performed for each of
 a sequence of 0 values. When the computations must be
 carried out for more than one 0 value, they should be
 accomplished such that, to the greatest extent possible,
 those operations that depend on 0 are segregated from

 those that do not, so the latter operations need be per-
 formed only once. Hemmerle and Hartley (1973) discuss
 this point in the context of the ML estimation of variance
 components, and Corbeil and Searle (1976a) describe the
 analogous considerations for REML estimation.

 In general, the evaluation of first-order partial deriva-

 tives can require considerable computations beyond those

 necessary to evaluate L, L1*, or L1; the evaluation of the

 expected values of the second-order partial derivatives

 can require many computations additional to those

 needed to evaluate the first-order partial derivatives; and

 the evaluation of the second-order partial derivatives

 themselves can require still more extensive computations.

 However, judging from the preceding representations,

 it would appear, in the case of the ordinary ANOVA

 models, first- and even second-order derivative informa-
 tion can be had rather cheaply. In assessing the relative

 difficulty of the computations for any particular applica-

 tion, information on the numerical solution of linear

 equations such as that provided by Westlake (1968) can
 be invaluable.

 6. NUMERICAL PROCEDURES FOR MAXIMUM
 LIKELIHOOD ESTIMATION

 Ordinarily, we must resort to an iterative numerical
 procedure to obtain a ML or REML estimate of 0. How-

 ever, there are simple cases where the estimate can be

 found by analytical means. Herbach (1959) derived
 explicit expressions for the ML estimators of the parame-
 ters (the mean and two variance components) of the
 balanced one-way random-effects model. The results of

 W.A. Thompson (1962) can be used to obtain explicit
 expressions for the REML estimators of the variance com-

 ponents of any balanced ANOVA model. Thompson worked
 these out himself for several models including the bal-

 anced two-way crossed random-effects ANOVA model

 (both with and without interaction). While the standard
 ANOVA estimators of variance components comprise a
 solution to the likelihood equations for REML in the case

 of the balanced ANOVA models, the likelihood equations

 for full ML do not admit an explicit solution for all such
 models. Explicit solutions to the latter equations exist
 for the balanced two-way nested ANOVA models, though
 not for the balanced two-way crossed random-effects

 ANOVA model with interaction (Hartley and Rao 1967;
 Miller 1973; Herbach 1959).

 There are many iterative numerical algorithms that
 can be regarded as candidates for computing ML or REML
 estimates of 0. Some were developed specifically for
 special cases; e.g., for computing ML estimates of variance

 components. Others are general procedures for the
 numerical solution of broad classes of constrained non-
 linear optimization problems. There is no real hope for

 finding a single iterative numerical algorithm for the ML

 or REML estimation of 0 that will be best, or perhaps even
 satisfactory, for every application. An algorithm that
 requires relatively few computations to converge to a

 ML or REML estimate in one setting may converge slowly
 or even fail to converge in another. In deciding which
 among available algorithms to try in a particular applica-
 tion, we must make some judgments about their computa-
 tional requirements and their other properties as applied
 to a given setting. This section is devoted to describing
 the various algorithms and their characteristics. The
 initial descriptions, given in Subsections 6.1 and 6.2,
 ignore any complications brought about by constraints
 on the parameter space, i.e., by 8 being confined to Q
 when Q is a proper subset of Euclidean m space. In Sub-
 section 6.3, several techniques are considered for modify-
 ing the various algorithms to cope with constraints.

 6.1 Specialized Algorithms

 On the kth iteration of an iterative algorithm for pro-
 ducing a ML or REML estimate of 0, the current value for
 the estimate is converted into a new value. In the follow-

 ing, we denote by 6(k) the value produced by the algo-
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 rithm on its kth iteration, and, for any quantity f which
 is a function of 6, we use f(k) to represent the value of f
 at 6 = 6(k), e.g., V(k) = V{O(k)}. The value 6(0) used to
 start the algorithm must be supplied by the user.

 Anderson (1973) and Henderson (1973a) proposed
 iterative algorithms designed specifically for handling

 certain special cases of the problem of computing ML
 estimates of 6. Their approaches are in effect based on
 manipulating the equation aLi*/d6 = 0 into the form

 6 = g (6; y) for some m X 1 vector g of functions of 6.
 Nonlinear equations of this form can be solved by the

 method of successive approximations, which consists of

 taking 6(k+l) = g{6(k); y} (see, e.g., Beltrami (1970,

 Sect. 1.2)).

 Anderson's iterative algorithm for computing a ML

 estimate of 6 is for the special case where V has the repre-
 sentation (2.3). Anderson found in effect that dL1*/aO = 0
 can be rewritten as B*6 = d, where B* is as defined in
 Section 5 and d is the m X 1 vector whose ith element is

 (1) (y - X)'V-1(aV/aoa)V--'(y - X&)

 For fixed 6 such that V is nonsingular, B* is necessarily

 positive semidefinite and the linear system B*b = d is
 consistent for 6 (see LaMotte 1973). When B* is non-
 singular (and thus positive definite), which is the case if

 and only if G1, . . ., Gm are linearly independent matrices,
 the equation B*O = d is equivalent to the equation
 0 = B*-1d. The method of successive approximations as

 applied to the latter equation is to take the (k + 1)st
 iterate to be 6(k+l) = [B*(k)]-ld(k). In the event that

 sufficient conditions given by Anderson (1969) for the
 existence of an explicit solution to the likelihood equa-

 tions are met, the iterative procedure converges in one
 iteration from any starting value (Miller 1973).

 A similar iterative algorithm can be constructed for
 computing a REML estimate of 6 for the case where V has
 the representation (2.3). The likelihood equations for
 REML can be put in the form BO = d. For fixed 6 with V
 nonsingular, B is positive semidefinite and the linear
 system Bb = d is consistent for 6 (LaMotte 1973, pp. 316
 and 327-8). The matrix B is nonsingular if and only if 6i
 is estimable in the class of quadratic translation-invariant
 estimators for i = 1, .. ., m (again see LaMotte 1973),
 in which case Bo d is equivalent to 6 = B-1d. Applying
 the method of successive approximations to the latter
 equation yields an iterative algorithm for computing a
 REML estimate of 6 analogous to Anderson's procedure for
 computing a ML estimate.

 Anderson's iterative algorithm and its REML analog can
 of course be used to compute ML and REML estimates of
 the variance components a12, ..., a1+12 associated with
 the ordinary ANOVA models. However, Anderson's algo-
 rithm differs from the iterative algorithm proposed by
 Henderson (1973a). Henderson's algorithm, which is the
 same in principle as a procedure discussed by Hartley
 and Rao (1967, Sect. 5), is designed specifically for com-

 puting ML estimates of variance components. By using

 representations for dL1*/dayi and dLi*/dayc?i analogous to

 (5.4) and (5.5), the equations aLi*/ayi = 0 and aL1*/

 a,y,+ = 0 can be put in the form

 oaj2 = [j'j + a>, tr (Tii*)]/qi, i = 1, ..., c, (6.1)

 C+ 2 = y'(y-X - Z)/n , (6.2)
 where

 = [.J and (I + Z'R-1ZD)-l

 Tii* ... Tic*'

 el* .. cc*

 Henderson's algorithm consists of applying the method of
 successive approxinmations to (6.1) and (6.2). An analo-
 gous algorithm for computing REML estimates of 0-2, ....

 ac+l2 is obtained by applying the method of successive ap-
 proximations to

 ai2= LL'1 + jt2 tr (T1))]/q,, i = 1, ..., c , (6.3)

 C+ i2 = y'(y-Xo- Z)/(n- p*) (6.4)

 Note that (6.1) and (6.3) can be rewritten as

 ai2 = [-'5j]1[q -tr (Tii*)], i = 1, ..., c, (6.5)
 ai= -[j'j]1[q -tr (Ti)], i = 1, ..., c . (6.6)
 Possibly interesting modifications of Henderson's pro-
 cedure and its REML analog are obtained by applying the
 method of successive approximations to (6.5) and (6.2),
 rather than (6.1) and (6.2), and to (6.6) and (6.4),
 rather than (6.3) and (6.4).

 The following lemma was proven by Harville (1975).

 Lemma 1: For the ordinary ANOVA models (with R, D,
 and Q as specified in Section 2), (i) tr (Ti*) > 0; (ii)
 tr (Tti) > 0; (iii) qi > tr (Ti*) provided at2 > 0, with
 strict inequality holding if Zi z 0; and (iv) qi > tr (Ti)
 provided ai2 > 0, with strict inequality holding if
 rank (X, Zj) > p*.

 The lemma implies that Henderson's iterative pro-
 cedure for computing ML estimates of variance com-
 ponents and its REML analog have an apparently pleasing
 property (which is not shared by Anderson's algorithm).
 Suppose that y does not lie in the column space of X,
 which is the case with probability one when, e.g., y is
 normally distributed. If the algorithms are started with
 strictly positive values for the variance components, then
 at no point can the values for the variance components
 ever become negative. In fact, starting from strictly
 positive values, they can never reach zero values either,
 though it is possible for them to attain values arbitrarily
 close to zero. Note that these algorithms ordinarily should
 not be started with a zero value for any variance com-
 ponent, since the value for that component would then
 continue to be zero throughout the iterative procedure.
 A further implication of the lemma is that the modified
 Henderson procedure, which is based on (6.5) or (6.6)

 rather than on (6.1) or (6.3), is well defined, unless at
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 some point a zero value is attained for some variance
 component. That is, the denominators of (6.5) and (6.6)
 are strictly positive unless o-i2 = 0, in which case the
 denominators are zero. The latter phenomenon causes no
 difficulty if we agree to take the value { a2} (k+l) for o-2 on
 the (k + 1)st iteration to be zero whenever { a } (k) = 0.
 The modified algorithms, like the originals, can never
 reach negative values, nor should they ordinarily be
 started with zero values for any of the variance com-
 ponents since, once a zero value is inserted, it is never
 changed. The iterates derived from (6.5) or (6.6) have
 an intuitively appealing form. On each iteration, ci2 is
 "estimated" by computing the sum of squares of the
 "BLUE's" of the components of the qi X 1 vector L1 de-

 fined by 5' = (51', ..., 5') and by then dividing by a
 number between qi and zero.

 6.2 General Algorithms

 To locate a ML or REML estimate of 6, we can, in the
 special cases where they apply, try one of the iterative
 numerical algorithms described in Section 6.1. We can
 also consider iterative numerical algorithms developed
 for the general problem of maximizing an arbitrary func-
 tion. Moreover, when confronted with a situation for
 which there is no specialized algorithm, we are forced to
 use one of the general procedures. In this subsection,
 several general algorithms and their properties are de-
 scribed and references are indicated where more complete
 information can be found. The discussion will be in terms
 of the problem of computing a REML estimate of 0, i.e.,
 the problem of computing a value of 0 that maximizes
 L1. This will cause no real loss of generality, since the
 extensions to the problems of maximizing L with respect
 to 0 and a, maximizing L1* with respect to 0, and more
 generally maximizing an arbitrary function will be
 obvious.

 The (k + 1)st iterate of an iterative maximization
 algorithm has the representation 6(k+l) = 6(k) + PkWk,
 where Wk is a vector that serves to identify the direction
 of search and Pk is a positive scalar that determines the
 distance to be traversed in the indicated search direction.
 Many of the proposed algorithms are gradient algorithms.
 A gradient algorithm, as applied to the maximization of
 L1, is one where wk has a convenient representation of the
 form wk = Nk{OL1/06} (k) for some m X m matrix Nk.
 The various gradient methods are characterized by differ-
 ent choices for Nk and pk. If Nk iS chosen to be positive
 definite, then necessarily there exists a pk (Pk > 0) such

 that L1{1(k+1); y} > L1{b(k); y}, unless of course
 I dL1/aO } (k) = 0. In fact, this inequality holds for positive
 definite Nk if Pk is taken to be sufficiently close to zero
 (see, e.g., Beltrami 1970). With regard to the choice of
 Pk, the methods fall into three categories: (i) Pk = 1;
 (ii) Pk = Ak (to some degree of approximation), where k
 is the value of the scalar p that maximizes fk (p)
 = L1[b(k) ? pwk; y] for p > 0, i.e., Pk iS chosen so as to
 maximize progress in the indicated search direction; and
 (iii) Pk iS taken to be any positive value of p for which

 fk(p) > fk(O), i.e., we merely require that the (k + 1)st
 iteration produce some progress in the indicated search
 direction. In (iii), some effort (short of that required to
 approximate Ak) may be expended to find a value of p for
 which fk (p) is "large." The determination of the Pk
 specified by (ii) or (iii) is a one-dimensional search prob-
 lem. Suitable algorithms for one-dimensional searches are
 discussed by Murray (1972). They require at a minimum
 that fk(p) be evaluated at various trial values of p, and
 thus can be very time consuming in instances where the
 evaluation of L1 involves extensive computations.

 Two of the oldest and best known of the gradient
 algorithms are the steepest ascent algorithm and the
 Newton-Raphson algorithm. In the method of steepest
 ascent, Nk = I for all k and customarily Pk = pk. The
 steepest ascent algorithm is one of the few that is sup-
 ported by convergence theorems (see, e.g., Beltrami
 (1970) and Powell (1970)). Unfortunately, its rate of
 convergence is often found to be intolerably slow (Powell
 1970). Bard (1974, p. 88) states, "the method is not
 recommended for practical applications." Hartley and
 Vaughn (1972) describe, in the context of the ML estima-
 tion of variance components, a variation of the steepest
 ascent algorithm. Their approach requires that a system
 of c differential equations be solved numerically on
 each iteration. In the Newton-Raphson procedure,
 Nk = {J(k)}-l and Pk = 1, where J is the m X m matrix
 whose ijth element is -a2L1/iai60j. (It is assumed here
 that J(k) is invertible.) Unlike the steepest ascent method,
 the Newton-Raphson procedure utilizes second-order,
 partial derivatives. When applied to a quadratic function
 that has a negative definite Hessian matrix, the Newton-
 Raphson procedure will converge to the maximizing value
 in a single iteration from any starting point. Even when
 it is applied to a function like L1 which is not quadratic,
 the Newton-Raphson algorithm can be expected to locate
 a maximizing value in relatively few iterations provided
 it is started within a sufficiently small neighborhood of
 that value (see, e.g., Bard 1974). However, if the starting
 value is poor, it may converge to a stationary point which
 is not a local or global nmaximum and often does not
 converge at all (Powell 1970). This difficulty is overcome
 in the extended or modified Newton-Raphson procedure.
 The extended procedure uses the same search direction
 as the original, but Pk is determined so that Li{6(k+l) ; y}
 is at least somewhat larger than L1 { 6(k); y }. (If
 the directional derivative is negative in the direction
 { J (k) }{-11{aL1/a0} (k), the search direction - I J(k) }-1{ Lil
 a>} (k), can be used instead.)

 The method of scoring is a gradient procedure that
 applies when the function to be maximized depends on
 data points (observed values of random variables). It
 is identical to the Newton-Raphson procedure except
 that the role of the second-order partial derivatives is
 played instead by their expected values. As applied to
 the maximization of L1, the (k ? 1)st iterate of the
 method of scoring is defined by putting Nk,= { B k)}
 and Pk = 1. Note that Nk, in this method coincides with
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 the large-sample covariance matrix of the REML estimator
 of 0 evaluated at 0 = 6(k), which illustrates a general
 property of the method when it is applied directly to the
 maximization of a likelihood function. The method of
 scoring as defined above can also be applied to the prob-
 lem of maximizing "reduced" likelihood functions like
 L1*, L2*, or L2. It is to be expected that this will produce
 iterates for the remaining parameters different from those
 produced by applying the method directly to the relevant
 likelihood function. The advantage of the method of

 scoring over the Newton-Raphson method is that, since
 the expected values of second-order partial derivatives
 are ordinarily easier to compute than the second-order
 partial derivatives themselves (refer to Section 5), it will
 generally require less computer time per iteration, though
 possibly at the expense of an increased number of itera-
 tions to convergence. In the case of the ML or REML
 estimation of variance components, this advantage may,
 however, be fairly insignificant (again refer to Section 5).'
 The method of scoring can be extended or modified in the
 same way as the Newton-Raphson procedure by con-
 sidering values for Pk different from one. Note, when the
 method of scoring is applied to the maximization of L1,
 it defines a search direction in which at least some in-
 crease in L1 can be achieved (provided {0L1/ao} (k) 7j 0)
 since ordinarily B (k) will be positive definite (see Section
 6.1). This again illustrates a general property of the
 method when applied directly to the maximization of a
 likelihood function. The (k + 1)st iterate generated by
 applying the method of scoring to the maximization of L
 with respect to 6 and by then substituting a{ 6() } for a
 is, in the case where V has the linear representation (2.3),
 the same as the (k + 1)st iterate defined by T.W.
 Anderson's iterative ML algorithm. This observation was
 first made by J.N.K. Rao (see Miller 1973). Moreover,
 the iterates produced by the REML analog of Anderson's
 algorithm are identical to those defined by applying the
 method of scoring to the maximization of L1 with respect
 to 6 (Hocking and Kutner 1975). Thus this procedure can
 be viewed as a special case of the method of scoring.

 The extended or modified Newton-Raphson procedure
 represents an attempt at retaining the good performance
 of the Newton-Raphson procedure when it is started
 close to a maximizing value while improving on its per-
 formance when it is started with a poor estimate. A
 similar philosophy underlies the gradient method de-
 scribed by Bard (1974, Sect. 5-8), which is based on the
 work of Levenberg (1944), Marquardt (1963), and
 Goldfeld, Quandt, and Trotter (1966). As applied
 to the maximization of L1, the (k + 1)st iterate of
 the latter method is obtained by taking Pk = 1 and

 Nk = EAk + XkMk]-l. Here, Mk is a positive definite
 matrix, Xk is a scalar that ordinarily is taken to be posi-
 tive, and Ak either equals J (k) (the negative of the Hessian
 matrix at 0 = 6(k)) or is some approximation to it. The
 matrix Ak + XkMk will be positive definite provided Xk iS
 taken to be sufficiently large (even if Ak iS indefinite).

 When Ak = J(k) and Mk = I, the search direction em-

 ployed in this method can be regarded as a compromise
 between the steepest ascent direction and the Newton-
 Raphson direction. Based on scaling considerations, a
 good choice for Mk is to take it to be the diagonal matrix
 whose diagonal elements are the absolute values of the
 diagonal elements of Ak, except that zeros are replaced
 by ones (Bard 1974, Sect. 5-8). The scalar Xk should be

 chosen so L,1{(k+l); y} > L11{(k); y}. Algorithms for de-
 termining a suitable Xk are discussed by Bard (1974);
 Goldfeld, Quandt, and Trotter (1966); Marquardt
 (1963); and Powell (1970). The reason for taking pk = 1
 in this approach is that the step size as well as the search
 direction are taken into account in choosing Xk. Just as
 the computations per iteration can ordinarily be de-
 creased by going from the Newton-Raphson algorithm to
 the method of scoring, we can expect the computations
 per iteration in the above method to be reduced by
 taking Ak = B (k) rather than Ak = J(k). When Ak=B(k),
 this method can be regarded as one natural extension of
 Marquardt's highly successful algorithm for solving
 nonlinear least-squares problems.

 The search for improved optimization algorithms is an
 ongoing process. Recent progress was reviewed by
 Powell (1970) and Murray (1972). One relatively new
 class of methods consists of the gradient methods known
 as variable-metric methods. These methods use an Nk
 whose construction does not require second-order partial
 derivatives (or their expected values) but which never-
 theless approximates J (k) for sufficiently large k. A
 valuable feature in many instances is second-order partial
 derivatives need not be computed. Perhaps the best
 known of the variable-metric algorithms is the Davidon-
 Fletcher-Powell algorithm described by Powell (1970). It
 has been widely used and has been very successful.

 6.3 Modifications to Accommodate Constraints on 6

 Ordinarily, the space Q to which 6 is constrained has a
 representation of the form

 Q= {I :r(O)[ >, ?]0, ... .,rd(O)[ >, ?]0 , (6.7)

 for some functions r1, . . ., rd. Here, [>, ?] is used to
 indicate that the inequality can be a strict inequality or
 not. For example, in our formulations of the ordinary
 ANOVA models, we can let d = c + 1 and ri(0)
 = 0s (i = 1, ..., c + 1), and take the last inequality
 in (6.7) to be a strict inequality.

 As noted in Section 6.2, Henderson's iterative algo-
 rithm for computing ML estimates of variance components
 and its REML analog are not affected by the constraints
 on the parameter space; i.e., by the nonnegativity con-
 straints on the variance components. With it, negative
 components are simply never encountered. Unfortu-
 nately, none of the gradient algorithms discussed in
 Section 6.3 have this kind of property. When they are
 applied, e.g., to the maximization of L, L1*, or L1, any of
 them can in general produce an iterate that lies outside
 the constraint space. In particular, in the case of the
 ordinary mixed ANOVA models, they can produce an
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 iterate with negative values for one or more of the vari-
 ance components. (This is also true of Anderson's itera-
 tiveprocedure see Miller (1973)).Hemmerleand Hartley
 (1973) encountered this difficulty in applying the
 Newton-Raphson method to the problem of computing
 ML estimates for eri2 and for the positive square roots of

 the ratios 'y1, ..., ye. When an iterate was obtained with
 negative or nearly negative values for one or more ele-
 ments, they set those elements equal to zero and in effect
 constrained them to be zero on subsequent iterations.
 This approach to the problem is not satisfactory because
 it can cause the procedure to converge to a point that is

 not even a constrained local maximum of L1*, let alone a
 constrained global maximum, i.e., a ML estimate. (See
 the discussion by Bard 1974, Sect. 6-3.) The same criti-
 cism applies, though to a lesser extent, to the approach
 taken by Miller (1973) in using Anderson's procedure to
 compute ML estimates of variance components. He dis-
 regarded the nonnegativity constraints, unless the pro-
 cedure converged to a vector having one or more negative
 components, in which case he restarted the algorithm
 with those components subsequently constrained to re-
 main at zero. He continued to fix any zero components
 and to restart the algorithm until no negative values
 were obtained. Because iterates are permitted that can lie
 outside the parameter space, there is an additional diffi-
 culty with Miller's approach. The procedure may on
 occasion call for evaluating items that depend on 6 at
 points at which they are ill-conditioned or even undefined.

 Satisfactory techniques for modifying unconstrained
 maximization algorithms so as to take into account in-
 equality constraints are discussed by Bard (1974),
 Beltrami (1970), and Gill and Murray (1974). At least

 three of these techniques more or less meet our needs:
 (i) the penalty technique, (ii) the gradient projection
 technique, and (iii) the transformation technique.

 There are actually many penalty techniques. Among
 these, the interior techniques, which cause each iterate to
 lie in the interior of the parameter space, are the best
 suited for the ML or REML estimation of 0. One interior
 technique is that proposed by Carroll (1961). In terms
 of the maximization of L1, Carroll's technique is to apply
 the unconstrained maximization algorithm to the function

 d

 +,(o) = Li(6; y)- xq/rj(6)
 j=i

 where 01, .. ., cd are small positive constants, rather than
 to L1 itself. The algorithm is started in the interior of the
 constraint space and, at each iteration, the distance
 traversed in the indicated search direction is limited (if
 necessary) so that the resulting iterate is again interior
 to the constraint space. The underlying philosophy is

 that the function 41 is close to L1 except in the neighbor-
 hood of boundaries where it assumes very large negative
 values, which serve as barriers that deflect the algorithm.
 Ordinarily, the maximization of i+ should be carried out
 for more than one set of values of cp1, .. ., c/u. When con-
 vergence is obtained for one set, the values of 41, . .., fI'd

 are reduced and the algorithm is applied to V again start-
 ing at the point of convergence in the previous applica-
 tion. The process is terminated when reductions in

 Ol1 .. i* cd no longer produce significant changes in the
 point of convergence.

 The gradient projection technique can be used when-
 ever all of the inequality constraints are linear constraints
 (as in computing ML or REML estimates of variance com-
 ponents), i.e., whenever ri(O) = ui'6 - ci, for some
 m X 1 vector ui and some scalar ci (i = 1, ..., d). In
 conjunction with the gradient projection technique,
 we suppose that none of the inequality constraints
 are strict inequalities, i.e., the constraints are ui'O
 > cs (i = 1, ..., d), and ui has been normalized so that
 ui'ut= 1. (A strict inequality ui'6 > ci can be approxi-
 mated by the constraint ui'6 > ci + Ei, where Ei is some
 small positive constant.) Any of the unconstrained
 gradient algorithms can be modified by the gradient pro-
 jection technique. At the completion of the kth iteration
 of the modified algorithm, we have ui'6(k) > ci for some

 values of i and U,10(k) = ci for the remainder. On the
 (k + 1)st iteration, certain of the latter constraints are
 treated as active constraints. The active constraints are
 selected in accordance with algorithms like those discussed
 by Gill and Murray (1974). Put Uk = (uj(i), ..., uj(n)
 where constraints j(1), . . ., ji( are the active constraints,
 and denote by Ak the choice for Nk in the unconstrained
 gradient algorithm. The gradient projection technique is
 to use the gradient procedure which has

 Nk = [I - AkUk (Uk AkUk) 1Uk/]Ak

 and which restricts Pk so that no constraint is violated but
 which otherwise determines Pk as in the unconstrained
 case. The gradient projection technique thus modifies the

 the original search direction Akf{L1/60} (k) by projecting
 it into the space determined by those vectors O satisfying
 Uk'O = 0. This technique is considered to be superior to
 the penalty technique for handling linear constraints,
 especially when it is suspected that the maximizing value
 may be located on a boundary.

 Sometimes a constrained maximization problem can be
 transformed into an unconstrained maximization problem
 by a change of variables (Bard 1974). For example, the
 ordinary ANOVA models can be parameterized so that R
 = 0m21 D = diag [E12I, . . ., Om_12I], and Q = {6: Om $? O}.
 Here, -12 =]2, ... m2 = -G2. To obtain aMLorREML
 estimate of - 12) .,m2, we can now maximize Li* or L
 with respect to 6, subject only to the constraint am $? 0,
 and then transform the maximizing vector by squaring
 its elements. This maximization problem is, for all prac-
 tical purposes, unconstrained because the constraint,
 Om ? 0, ordinarily never comes into play. This kind of
 approach was used by Hartley and Vaughn (1972). One
 possible drawback in using this technique, to compute
 REML estimates of variance components for example, is
 that additional stationary points of L1 are introduced, i.e.,
 for Gi = 0, 9L1/3G@ = 0 even though 3L1/&cT~2 $ 0. Thus,
 we should use this technique only in conjunction with
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 algorithms that guarantee at least some increase in the
 value of the objective function on each iteration.

 6.4 Discussion

 In a given application, it may be possible to improve
 the performance of the various iterative optimization
 algorithms by first transforming the variables. Most of
 these algorithms are at their best when applied to func-
 tions that are at least approximately quadratic. Thus any
 transformation that makes the function more closely
 resemble a quadratic function over the relevant region
 should be helpful. In particular, in using the Newton-
 Raphson algorithm to compute ML estimates for the
 ordinary ANOVA models, Hemmerle and Hartley (1973)
 found that the behavior of the algorithm could be im-
 proved significantly by parameterizing in terms of

 \/7,y * I \/,yc) y,+ rather than in terms of Pyi, ..., ^Yc+,1.
 In general, it will be more efficient to compute ML

 estimates of a and 6 by applying the various iterative
 optimization algorithms to the "reduced" function L1*
 rather than to L itself. Similarly, when the problem of
 maximizing L1* or L1 can be reduced in dimension by
 analytical means to the problem of maximizing L2* or L2
 (refer to Sections 4.1 and 4.3), it is to be expected that it
 will be more efficient to compute ML or REML estimates of
 6 by applying the iterative algorithms to the latter func-
 tions. Analytical reductions have proved to be useful in
 nonlinear least-squares problems (see, e.g., Lawton and
 Sylvestre 1971).

 There is ordinarily no assurance that a value of 6 ob-
 tained by applying an iterative maximization algorithm
 to L, L1*, or L2*or to L1 or L2 is a ML or REML estimate
 of 6. Even if such a 6 value is obtained by starting the
 algorithm with what is thought to be an excellent guess
 or estimate, it is good practice to apply the algorithm
 several more times, using a different starting point on
 each occasion. If these repetitions all yield the same 6
 value, we can be more confident that we have located a
 ML or REML estimate.

 Actual numerical experience in using the various itera-
 tive algorithms to compute ML or REML estimates of vari-
 ance components seems to be very limited and is largely
 confined to a variation of the method of steepest ascent
 (Hartley and Vaughn 1972), the Newton-Raphson pro-
 cedure (Hemmerle and Hartley 1973; Corbeil and Searle
 1976a; Jennrich and Sampson 1976), the method of
 scoring (Jennrich and Sampson 1976), and to Anderson's
 method (Miller 1973).

 7. APPROXIMATING THE RESTRICTED MAXIMUM
 LIKELIHOOD APPROACH

 Efficient computational algorithms for producing ML
 or REML estimates of 6 can be devised by making use of
 the results outlined in Sections 3 through 6. As the speed
 of electronic computers increases, the number of settings
 feasible to compute ML or REML estimates also increases.
 Nevertheless, there remain numerous situations where

 their computation is unthinkable. The latter situations
 are essentially those where the computations necessary
 to form and solve the linear system (3.3) are too extensive.
 In this section, we outline an approach to the estimation
 of 6 that can be viewed as an approximation to the REML
 approach. This approximate approach can be used when
 the computation of the exact ML or REML estimate is too
 demanding.

 In cases where the function Li is known to have a
 unique stationary point which lies in the constraint space
 Q and which corresponds to a global maximum, the prob-
 lem of computing a REML estimate of 6 is essentially that
 of forming the system of nonlinear equations 3L,/30 = 0
 and solving it for 6. If the computations required to
 evaluate aL/IaO are too extensive, REML estimation can-
 not be undertaken. The equations 9L,/36 = 0 consist in
 effect of m translation-invariant quadratic forms set equal
 to their expectations. This observation suggests when the
 REML approach is unfeasible computationally, we take
 our estimate of 6 to be the solution 6 to G (6; y) = 0,
 where G(6; y) = Q(6; y) - E(Q), and where Q(6; y) is
 a vector whose elements Qi = y'riy (i = 1, ..., m)
 consist of m translation-invariant quadratic forms which
 resemble those used in REML estimation but which are
 easier to evaluate. The quadratic forms used in REML are

 (2) (y - X)V-' (V/O06)V- (y - X)
 =2() (y - X&-Z)'R-l(aVlaoi)R-1

 .(y-X -Z?) (7.1)

 = ( )(y- ZI)'S (QV/a6i)S (y - Z) , (7.2)

 i = 1, . . ., m. For i such that D depends on Oi but R and
 Z do not, these quadratic forms have the additional
 representations

 -(2)5'(caD-'/aOj)i , (7.3)

 provided 6 is such that D is nonsingular. One technique
 for "approximating" the quadratic forms used in REML
 is to replace a and/or a in (7.1), (7.2), or (7.3) with
 rx = Hy and 0 = A(y - X&), where H is a p X n matrix
 such that E(Xa) = X(Y and A is a q X n matrix, both of
 which must be specified. The elements of H and A may
 be functions of 6. The matrices H and A should be chosen
 so that, for the case where 6+ is known, Xx and a with
 6 = 6+ are good estimators of Xa and 5, but, at the same
 time, they must be such that a and a are computable for
 any given 6 value. In cases where R is hard to invert, we
 could replace R-1 in (7.1) or (7.2) with some "approxima-
 tion," as well as substituting a and a for & and 1.

 The expression [E(K)}-'[var (Q)][E(K')]-', where
 K (6; y) is the m X m matrix whose jth column is
 - aG/doj, may furnish a useful approximation to var (6)
 for "large" samples (Harville 1975). When Q1, . . . Qm are
 the quadratic forms actually used in REML rather than
 approximations, this expression simplifies to B-1.

 There are several hazards in estimating 6 by the ap-
 proximate REML approach described above, i.e., by solving;
 the equations G(6; y) = 0, where Qt is given by (7.1),
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 (7.2), or (7.3) with a and a substituted for a and ~. In
 REML, the likelihood equations may not have a solution
 that lies in the constraint space Q, and, even if there are
 solutions in Q, some or all of them may not correspond to
 maximizing values of L1, i.e., to REML estimates. Similarly,
 in the approximate REML approach, there may not exist
 a solution to G (6; y) = 0 that lies in Q and, even if such
 a solution does exist, it may not be a desirable estimate.
 In implementing the REML approach, we were able to
 circumvent these difficulties, at least to some extent, by
 using "hill-climbing" techniques, which force increases in
 L1 at each iteration, preventing convergence to unde-
 sirable stationary points, and which can be modified to
 accommodate constraints. This observation points the
 way to what may be a useful modification of the approxi-
 mate REML approach. Instead of merely solving the
 equations G (6; y) = 0, we could proceed just as though
 we were maximizing a function whose gradient vector is
 G(O; y). We could use various of the gradient algorithms
 described in Section 6.2 to maximize this function, with
 appropriate modification for constraints as described in
 Section 6.3. (See Harville 1975 for further information.)
 The final iterate would comprise our estimate of 6.

 In applying various of the gradient algorithms in our
 approximate REML approach, we must, on each iteration,
 evaluate Qi, E(Qi), OQi1/Gj, O[E(Qi)]/Oaj, and/or
 E(&Qi1/&j), (i, j = 1, ..., i). We have

 E(Qi) = tr (riV) = tr (R4FiR1) + tr (D1Z'riZD1)

 so that E(Qi) can be evaluated by performing the same
 operations on each column of R' and each column of
 ZD` as are performed on y in computing Qi. This tech-
 nique is essentially Hartley's method of synthesis (see
 Rao 1968). The computation of the other required items
 can be approached in a similar manner.

 8. RELATIONSHIPS OF MAXIMUM LIKELIHOOD
 AND RESTRICTED MAXIMUM LIKELIHOOD

 TO OTHER METHODS

 8.1 MIVQUE's and MINQUE's

 Much of the recent literature on the problem of esti-
 mating variance components, and more generally on the
 problem of estimating 6 when V has the representation
 (2.3), has centered on the derivation of estimators that
 have minimum MSE at some point in the parameter space,
 i.e., that are locally best when attention is restricted to
 estimators satisfying various conditions. The initial work
 was done by Townsend (1968) and by Townsend and
 Searle (1971). They derived exact expressions for the
 locally best quadratic unbiased estimators of the two
 variance components associated with the unbalanced
 one-way random ANOVA model, under the assumptions
 that y is normal and the mean vector is 0. Harville (1969a)
 considered the same setting but dropped the assumption
 that the mean vector is null. Harville gave some results
 on estimators that are locally best in the class of quadratic
 unbiased estimators and in the class of translation-in-

 variant quadratic unbiased estimators, though his results
 were left in very inconvenient form. These early efforts
 were generalized and greatly improved upon by LaMotte
 (1970, 1971, and 1973). LaMotte's results apply to all
 linear models for which V has the representation (2.3),
 though he did assume normality. He considered several
 classes of estimators for a linear function l'6, and, for
 each class, produced convenient representations for the
 locally best estimators. In particular, he showed that,
 when attention is restricted to translation-invariant
 quadratic unbiased estimators, the estimator that is
 locally best at 6 = 6* is 1'6 where 6 is any solution to the
 linear system

 [B(O*)]6 = [d(O*)] (8.1)

 (provided that l'6 is estimable in the class of translation-
 invariant quadratic estimators, which is the case if and
 only if the equations [B (0*) ]'v = I have a solution for 'v).
 Rao (1971b and 1972) independently obtained similar
 results and, in addition, indicated extensions to non-
 normal cases. Following Rao, we use MIVQUE as an ab-
 breviation for locally best (minimum variance) transla-
 tion-invariant quadratic unbiased estimator. (The E in
 MIVQUE can also stand for estimation.)

 In general, quadratic unbiased estimators of l'6 (in-
 cluding MIVQUE's) can yield estimates that violate the
 constraints on the parameter space, so that strictly
 speaking they are not estimators at all. Nevertheless, as
 observed by Kempthorne (Searle 1968, p. 783), they can
 be regarded as useful condensations of the data, just as
 true estimators are. What,is questionable is the practice
 of comparing these pseudo-estimators on the basis of
 their MSE's. For reasons discussed by Harville (1969b,
 Sect. 3.3.5), such comparisons are potentially misleading.

 The traditional approach to the estimation of 6, when
 V has the representation (2.3) as in the case of the
 ordinary ANOVA models, is to equate m translation-in-
 variant quadratic forms (that are not functionally de-
 pendent on 6) to their expectations and solve the resulting
 linear system for 6. The ith of the likelihood equations
 9L/(0 = 0 depends on the data only through the qua-
 dratic form (1) (y - Xa)'V-'GiV-1 (y - Xa). Suppose that,
 in this quadratic form, we substitute & (6) for a and then
 replace 6 with a fixed value 6*. The result is a translation-
 invariant quadratic form that is functionally independent
 of 6. LaMotte (1970) considered estimating 6 by equating
 the m translation-invariant quadratic forms generated in
 this way to their expectations. He found that the resulting
 linear system is the same as the linear system (8.1) as-
 sociated with MIVQUE. Thus in the case of assumed
 normality, this approach is completely equivalent to the
 MIVQUE approach.

 Rao (1970, 1971a, and 1972) proposed an intuitive
 estimation procedure that can be used in particular to
 estimate linear functions of the variance components

 associated with the ordinary ANOVA models. He observed

 in effect that, if o and e~ (the realized or sample value of e)
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 were known, a natural estimator for

 c+1

 1'0= E xici2

 would be t=l

 (X,+?/n)Ctt + L (X\i/q)j'j = (a/ , (8.2)
 i=l

 where w'= (', c') and where A is a suitably defined
 matrix. Since A and E are in fact unknown, Rao suggested
 estimating Es Xi-i2 by the translation-invariant quadratic
 unbiased estimator that most closely resembles (8.2).
 More precisely, observing that y'ry = wU'rUw, with
 U = (Z, I), for any translation-invariant quadratic
 estimator y'ry, he proposed the estimator y'r*y, where

 f* minimizes IIU'FU - 1ll for r such that y'ry is a
 translation-invariant quadratic unbiased estimator of

 Ei Xio-i2. Here, 11 11 denotes a matrix norm. It can be
 shown that, when the Euclidean norm is used, y'r*y
 = 1'6, where, with 0* = 1, o is a solution to the linear
 system (8.1). Rao went on to observe that the difference
 between a translation-invariant quadratic estimator y' Fy

 and 'Ax can be expressed as 1'A (U'FU - )A1, where

 A = diag (o-fI, . . ., oc+?I) and X represents the stan-
 dardized vector A-1X. Taking A* to be the value of A at
 0 = 0*, where the value of 0* can be based on prior in-
 formation, we could also consider estimating Ei Xici2 by
 y'r*y, where now F* minimizes ))A(U'U - &)All for
 translation-invariant quadratic unbiased estimators y' ry.
 Again, when the Euclidean norm is employed, it can be
 shown that y'r*y = 2'6 where 6 is any solution to the
 linear system (8.1). Rao called these estimators MINQUE's
 (minimum norm quadratic unbiased estimators). It is

 clear that a MINQUE of Ei Xiui2 (based on a Euclidean
 norm) is the same as a MIVQUE (derived on the basis of
 the normality assumption).

 Several observers (Harville 1969b; LaMotte 1970; and
 Rao 1972) have suggested an iterative MIVQUE procedure.
 The iterates could be defined in terms of the linear system
 (8.1). If the procedure converges to some point in the
 parameter space, that point is necessarily a stationary
 point of L1 (see Section 6.1). Thus, if we disregard any
 complications that might be caused by constraints on the
 parameter space or by nonconvergence or convergence to
 a point that does not correspond to a maximum of L1,
 then iterative MIVQUE is identical to REML. A similar ob-

 servation was made by Hocking and Kutner (1975).
 Note that the iterates produced by the iterative MIVQUE
 procedure are the same as those defined by the REML

 analog of Anderson's iterative algorithm (again refer to
 Section 6.1), implying in particular that the initial iterate
 of the REML version of Anderson's procedure is a MIVQUE.

 Suppose that, assuming normality, there exists a
 UMIVQUE of 2'0, i.e., an esti.mator which, among all
 translation-invariant quadratic unbiased estimators of

 2/0, has uniformly (for all 0 CE Q) minimum variance.
 Then, every MIVQUE of 2/0 is a UMIVQUE, implying that
 2/B-d is functionally independent of 0. Taking 6 to be
 any REML estimate of 0, it follows that 2/6 agrees with the

 UMIVQUE of 1'6, provided that 6 satisfies 0L1/O0 = 0, as
 would necessarily be the case if 6 were an interior point

 of U. Moreover, if there is a UMIVQUE of every component

 of 0, then B-ld is functionally independent of 0, so that
 there is a 0 EE Q satisfying the REML equations aL1/aO = 0
 if and only if B-1d EE Q, in which case the REML equations
 admit the explicit solution 0 = B-1d, and the REML

 version of Anderson's iterative procedure converges (to
 the UMIVQUE of 0) in a single iteration. (See Gautschi
 (1959) and Graybill and Hultquist (1961) for some dis-

 cussion of the existence of uniformly minimum variance
 quadratic unbiased estimators of variance components.)

 Rao's MINQUE approach does not require any normality

 assumptions, nor is its intuitive appeal diminished by

 nonnormality. The fact that MIVQUE's derived on the

 basis of normality turn out to be MINQUE's in important
 instances may, because of the relationships between

 MIVQUE and REML noted above, indicate that ML or REML

 estimators of 0 derived under normality assumptions are

 reasonable estimators even when the form of the dis-
 tribution of b and e is unspecified.

 8.2 ANOVA-Like Methods

 The most commonly used methods for estimating vari-
 ance components are the Methods 1, 2, and 3 set forth

 by Henderson (1953). In these methods, mean squares
 associated with various ANOVA tables are set equal to their

 expectations, and estimates are obtained by solving the

 resulting linear equations. (In Method 2, the data vector
 is corrected for fixed effects before forming the ANOVA

 table.) Searle (1968, 1971a, and 1971b) gave excellent
 descriptions of Henderson's methods and indicated

 various generalizations. Henderson's methods yield trans-
 lation-invariant quadratic unbiased estimators. In bal-

 anced-data cases, these estimators coincide with the
 normality-derived REML estimators, provided the non-

 negativity constraints on the variance components do not

 come into play (Patterson and Thompson 1974). In gen-
 eral, however, the only parallel between Henderson's
 methods and REML would seem to be that both are based

 on equating translation-invariant quadratic forms to
 their expectations. In REML, the quadratic forms are
 functions of the variance components, the expectations
 are nonlinear, and modifications are incorporated to ac-
 count for the nonnegativity constraints; while, in
 Henderson's methods, the quadratic forms are func-
 tionally independent of the variance components, the
 expectations are linear, and negative estimates of variance
 components can be realized. Cunningham and Henderson

 (1968) proposed a modified version (subsequently cor-

 rected by R. Thompson (1969)) of Henderson's Method

 3 which seems more akin to REML. It uses equations of the

 form (3.8) in place of the normal equations ordinarily

 used in Method 3 to form reductions in sums of squares,
 with the consequence that the quadratic forms are no

 longer free of the variance components and an iterative

 process iS necessary.
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 For those ANOVA models that can be parameterized so
 that V has the form (2.3) for some mutually orthogonal
 idempotent matrices G1, ..., G,+1, Nelder (1968) pro-
 posed an iterative ANOVA-like method for estimating
 variance components that is essentially equivalent to
 REML (see Patterson and Thompson 1974).

 One problem with Henderson's methods for estimating
 variance and covariance components is that the methods
 are not necessarily well defined. That is, it is not always
 clear which mean squares from what ANOVA tables should
 be used (see Searle 1971a or 1971b). How these methods
 should be extended to the general problem of estimating
 6 is even less clear. In contrast, ML and REML estimators
 are always well defined (at least conceptually). More-
 over, except for balanced-data cases, little is known
 about the goodness of the Henderson estimators, other
 than they are unbiased and translation invariant. It is
 well-known that, at least in particular cases, there are
 biased estimators that have uniformly (assuming nor-
 mality) smaller MSE's than the Henderson estimators (see
 Klotz, Milton, and Zacks 1969). What is more surprising
 is the recent discovery by Seely (1975) and by Olsen,
 Seely, and Birkes (1976) that, at least in the case of most
 unbalanced mixed- or random-effects models having one
 random factor (i.e., c = 1), there are translation-in-
 variant quadratic unbiased estimators of al that have
 uniformly smaller variance than the Henderson Method-3
 estimator. In contrast, MIVQUE estimators, which (as
 noted in Section 8.1) are closely related to REML estima-
 tors, are admissible in the class of translation-invariant
 quadratic unbiased estimators. Moreover, Olsen, Seely,
 and Birkes (1976) constructed, for a particular case, a
 MIVQUE estimator that is uniformly better than the cor-
 responding Henderson Method-3 estimator. These revela-
 tions would seem to constitute a strong argument for
 using REML in preference to Henderson's methods when
 REML iS feasible computationally and possibly for using
 an approximate REML approach similar to the one out-
 lined in Section 7 when it is not.

 8.3 Bayesian Methods

 A review of some pre-1970 Bayesian results on infer-
 ence for variance components was given by Harville
 (1969b). When loss is proportional to squared error, the
 estimator of a variance component (or of any other pa-
 rameter) that minimizes Bayes risk is the paraineter's
 posterior mean. However, in all but fairly simple cases,
 the computation of the posterior mean of a variance com-
 ponent or, more generally, of 6 is found to be unfeasible
 even when numerical integration techniques are used.
 Moreover, if an improper prior is employed in place of the
 "true" prior, the posterior mean may, because of its
 sensitivity to the tails of the posterior density, represent
 a rather unsatisfactory condensation of the data. Be-
 cause of these difficulties with the posterior mean, pos-
 terior modes are sometimes proposed as estimators. We
 can use either the mode of the marginal posterior density
 of a parameter or the relevant component of the mode

 of the joint posterior density of that parameter and
 various other parameters. It would seem preferable to
 use the posterior density that has the maximum possible
 number of "nuisance" parameters integrated out (at
 least among those that have proper priors). A posterior
 mode can be computed numerically by techniques like
 those outlined in Sections 6.2 and 6.3. Moreover, a
 posterior mode is insensitive to the tails of the posterior
 density.

 Suppose that y has the representation (2.1). If we wish
 to analyze the data by Bayesian techniques, we need to
 specify a prior distribution for a and 6. Lindley and
 Smith (1972) suggested in effect that, in many cases, it is
 possible to redefine the terms of the model (2.1) so as to
 arrive at a second model of the form (2.1) in which it is
 reasonable, a priori, to take the components of a to be
 independently and uniformly distributed over the real
 line and to be independent of 6, even though this assump-
 tion might not be realistic for the original model. The
 Lindley-Smith technique amounts to expressing various
 of the fixed effects in the original model as deviations
 from hyperparameters, expressing the hyperparameters
 as deviations from hyper-hyperparameters or "second-
 order" hyperparameters, expressing second-order hyper-
 parameters as deviations from third-order hyperparame-
 ters, etc. In the redefined model, the highest-order hyper-
 parameters comprise the components of a; the compo-
 nents of 5 include the deviations of various orders or,
 possibly, appropriate linear combinations of those devia-
 tions, together with the components of the original 5
 vector; and additional "parameters" may be inserted
 into the original 6 vector to accommodate the new entries

 in the vector 5. Of course, in the new model, some com-
 ponents of b are random variables only in a subjective
 sense, but this is not objectionable if a Bayesian analysis
 is anticipated.

 Lindley and Smith proposed, as an estimate for 6, the
 6 component of the mode of the joint posterior density of

 a, 5, and 6. They acknowledged that this estimate may be
 unsatisfactory if vague priors are assumed for certain
 components of 6. In fact, their approach can lead to
 estimators of variance components that are identically
 equal to zero when used with vague priors. Lacking
 evidence to the contrary, it must be assumed that their
 approach can also lead to unsatisfactory estimators when
 used with informative priors, though they may be less
 obviously unsatisfactory. The problem with their ap-
 proach may stem from the severe "dependencies" that
 undoubtedly exist between components of 6 and com-

 ponents of 5 in the joint posterior density of a, 5, and 6,
 which may lead to the 0 component of the mode of the
 joint posterior density being far removed from, say,
 E(6 y).

 A seemingly superior approach would be to take the
 estimate of 6 to be the 6 component of the mode of the
 marginal posterior density of a~ and 6 or, better yet, the
 mode of the marginal posterior density of 6. Suppose the
 distribution of b, e is multivariate normal, p*- p, and

This content downloaded from 
�����������143.107.183.5 on Mon, 13 May 2024 22:38:04 +00:00������������ 

All use subject to https://about.jstor.org/terms



 336 Journal of the American Statistical Association, June 1977

 a priori the components of a are independently and uni-
 formly distributed over the real line and are independent

 of 6 so that the joint prior density of a and 6 is propor-
 tional to h (6) for some function h. For purposes of esti-
 mating 6 alone, it can, for reasons noted by Harville
 (1974), make sense to adopt such a prior density even if
 the model is such that prior information on a is actually
 available. It follows from Harville (1974) that the
 marginal posterior density of 6 (the density obtained by
 formally integrating out a) is proportional to the product

 of h(o) and the likelihood function of an arbitrary set of
 (n - p*) linearly independent error contrasts. For
 h (6) _ 1, the 6 component of the mode of the marginal
 posterior density of a and 6 is simply the ML estimate, and
 the mode of the marginal posterior density of 6 is the
 REML estimate. For h (6) = [det {B (6) } 2, which is the

 Jeifreys' prior for 6 derived from Li alone, we have, in
 the case of the ordinary fixed ANOVA or regression models
 as defined by (4.3), that the 6 component of the mode of
 the marginal posterior density of a and 6 is the estimator
 [l/(n + 2)](y - X')(y - Xi), and the mode of the
 marginal posterior density of 6 is the estimator
 [1/(n - p* + 2)](y - Xt)'(y - X). The latter esti-
 mator has a downward bias of "only" 201/(n - p* + 2)
 and has uniformly smaller MSE than both the ML and

 REML estimators of Al (except in the case p* = 2, where
 it coincides with the ML estimator) and in fact has uni-
 formly smaller MSE than any other estimator of the form
 (1/k) (y - Xa)' (y - Xx), so that it may have appeal for
 frequentists who care about MSE but not about small
 biases. It is an intriguing possibility that the pseudo-
 Bayesian procedure that estimates 6 by maximizing

 Li(6; y) + (1) log Edet {B (6) }] , (8.3)

 for 6 ( Q, might be an equally satisfying procedure in
 more complicated settings.

 9. FURTHER RESEARCH

 There are still many aspects of the problem of esti-
 mating variance components, and more generally the
 problem of estimating 6, that need to be investigated. In
 this, the final section, an attempt is made to identify
 some of these areas.

 The "realistic" asymptotic results developed by Miller
 (1973) for ML estimators of variance components for the
 ordinary ANOVA models need to be extended to various
 other models of the form (2.1) and to REML estimators.
 The results of Weiss (1971 and 1973) should prove useful
 here. Also, for particular models, such as the ordinary
 ANOVA models, it would be nice to know what parameteri-
 zations produce the "fastest convergence" to asymptotic
 normality.

 In Sections 3 and 5, results were described which can
 be used to exploit structure in the R, D, Z, and X matrices
 for purposes of computing L, L1*, or L1, their first- and
 second-order partial derivatives, and expected values of
 their second-order derivatives. Some explicit simplifica-

 tions were given for the ordinary ANOVA models. It may

 be worthwhile to work out detailed procedures for other
 commonly used models. Thompson (1973) did essentially
 this for MANOVA models.

 While it is unlikely that any one of the iterative pro-
 cedures for computing ML or REML estimates of 0 will be
 best or even satisfactory in every instance, useful guide-
 lines for choosing a procedure may be possible for par-
 ticular classes of models such as ANOVA models. Also, it
 would be nice to know how the various models should be
 parameterized in order to effect convergence in the fewest
 possible number of iterations. Analytical results like
 those discussed in Section 5 can be very useful in deciding
 on an algorithm, but well-planned numerical studies, like
 those carried out by Bard (1970) for nonlinear least-
 squares problems, will ultimately be needed. If Hender-
 son's iterative algorithm for computing ML estimates of
 variance components and its REML analog are demon-
 strated to be superior computational procedures, it would
 be worthwhile to attempt extensions, e.g., to the problem
 of computing ML or REML estimates of covariance
 components.

 The approximate REML scheme outlined in Section 7
 needs to be further developed and evaluated. A good
 start would be to determine, for particular models such
 as ANOVA models, good choices for a and 0 or, equiva-
 lently, for H and A. It would be nice to know how the
 approximate REML scheme compares with, say, Hender-
 son's Methods 1 and 2 as a procedure for estimating
 variance and covariance components.

 The pseudo-Bayesian procedure that estimates 0 by
 maximizing the expression (8.3) would seem to be worth
 investigating. This might be done first for balanced
 ANOVA models. If the procedure looks good there, its
 performance in more complicated settings could be
 evaluated.

 In cases where the estimate of 0 is not of interest in
 itself, but rather is to be used indirectly in estimating
 21/'f + 12g (by substituting it for O+ in (3.2)), the possible
 estimators of 0 should be compared on the basis of a loss
 function reflecting those intentions. Efron and Morris
 (1976) made some comparisons of this kind for a par-
 ticular case. Further work along these lines is needed.

 [Received December 1976.]
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 Comment

 J. N. K. RAO*

 1. Harville has covered a lot of ground in this excellent

 review paper. It contains several important features: (1)

 a treatment of the variance component models as special

 cases of the general linear model (2.1) which creates a

 unified presentation; (2) a review of the recent work of

 Henderson and Harville on the estimation of random

 effects in the model and its relationship to variance

 components estimation, especially from the viewpoint of

 computations; (3) a thorough discussion of specialized
 methods as well as general algorithms for computing
 maximum likelihood (ML) estimates; and (4) an exami-

 nation of the relationships of ML estimates to ANOvA-type

 estimates of Henderson, MINQUE of C.R. Rao and others,
 and Bayesian estimates. However, the scope of this
 paper is somewhat narrow since it is mainly concerned

 with point estimation of the variance components.
 2. A brief account of Miller's (1973) recent work on

 asymptotic, properties of ML estimates is provided in
 Section 4.2. Miller removed a restriction of Hartley and
 Rao (1967), viz., the number of observations falling into
 any particular level of any random factor stays below a
 universal constant. However, he was able to establish
 only a Cram6r-type consistent result (viz., some root of
 the likelihood equation is consistent) which is not so

 * J.N.K. Rao is Professor, Department of Mathematics, Carleton
 University, Ottawa KlS 5B6, Canada.

 gratifying as the Wald-type result: an estimate of the
 parameter vector which makes the likelihood function
 an absolute maximum is consistent, i.e., a ML estimate is
 consistent. Using sufficient conditions similar to those of
 Wald, a corrected version of Hartley-Rao's proof estab-
 lishes the Wald-type consistency result under the above-
 mentioned restriction, but it will not work if this re-
 striction is removed (see Miller (1973), p. 257). Perhaps
 an alternative set of sufficient conditions might give the
 desired result without the restriction of Hartley-Rao.

 3. Recent work on the computational aspects of ML
 estimates (Section 6) is certainly impressive, and we
 need further research in this direction. However, none
 of the proposed algorithms guarantees a solution which
 indeed is a ML estimate. The behavior of the likelihood (as
 a function of the variance components) appears complex;
 even for the simple unbalanced one-way layout, the
 likelihood equation may have multiple roots or the ML
 estimate is a boundary value rather than any of these
 roots (see Klotz and Putter (1970)). We therefore need
 to exercise more caution when resorting to numerical
 algorithms, especially with Monte Carlo studies involving
 the computing of ML estimates for several thousand
 samples.

 Henderson's iterative algorithm (which is a simplifi-
 cation of Hartley-Rao's equation 51 (1967)) appears
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