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I1.2 Least Squares : Four Ways

Many applications lead to unsolvable linear equations Ax = b. It is ironic that this is
such an important problem in linear algebra. We can’t throw equations away, we need to
produce a best solution Z. The least squares method chooses Z to make ||b — AZ||?
as small as possible. Minimizing that error means that its derivatives are zero: those are
the normal equations AT AZ = ATb. Their geometry will be in Figure I1.2.

This section explains four ways to solve those important (and solvable!) equations:

1 The SVD of A leads to its pseudoinverse AT, Then Z = A1 b: One short formula.
2 AT AZ = ATb can be solved directly when A has independent columns.
3 The Gram-Schmidt idea produces orthogonal columns in ). Then A = QR.

4 Minimize ||b — Az||? + 62||z||%. That penalty changes the normal equations to
(AT A + 62I)xzs = ATb. Now the matrix is invertible and x5 goes to Z as § — 0.

A" A has an attractive symmetry. But its size may be a problem. And its condition
number—measuring the danger of unacceptable roundoff error—is the square of the
condition number of A. In well-posed problems of moderate size we go ahead to solve
the least squares equation ATAZ = ATb, but in large or ill-posed problems we find
another way.

We could orthogonalize the columns of A. We could use its SVD. For really large
problems we sample the column space of A by simply multiplying Av for random vectors
v. This seems to be the future for very big computations: a high probability of success.

First of all, please allow us to emphasize the importance of ATA and ATCA.
That matrix C is often a positive diagonal matrix. It gives stiffnesses or conductances or
edge capacities or inverse variances 1/0*—the constants from science or engineering or
statistics that define our particular problem: the “weights” in weighted least squares.

Here is a sample of the appearances of AT A and ATC A in applied mathematics :
In mechanical engineering, AT A (or ATCA) is the stiffness matrix
In circuit theory, AT A (or ATC A) is the conductance matrix
In graph theory, AT A (or ATCA) is the (weighted) graph Laplacian
In mathematics, AT A is the Gram matrix : inner products of columns of A

In large problems, AT A is expensive and often dangerous to compute. We avoid it if
we can! The Gram-Schmidt way replaces A by QR (orthogonal @, triangular R). Then
AT A is the same as RTQTQR = RTR. And the fundamental equation ATAZ = ATb
becomes RTRZ = RTQTb. Finally thisis RZ = QTb, safe to solve and fast too.

Thus ATA and AT C A are crucial matrices—but paradoxically, we try not to compute them.
Orthogonal matrices and triangular matrices.: Those are the good ones.
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AT is the Pseudoinverse of A

I will first describe the pseudoinverse AT in words. If A is invertible then At is A1
If Ais m by n then A" is n by m. When A multiplies a vector  in its row space, this
produces Az in the column space. Those two spaces have equal dimension r (the rank).
Restricted to these spaces A is always invertible—and A7 inverts A. Thus AT Az = «
exactly when z is in the row space. And AATb = b when b is in the column space.

The nullspace of A™ is the nullspace of AT. It contains the vectors y in R™ with
ATy = 0. Those vectors y are perpendicular to every Az in the column space. For these
y, we accept T = Aty = 0 as the best solution to the unsolvable equation Az = y.
Altogether AT inverts A where that is possible :

0 O 0 0O
The whole point is to produce a suitable “pseudoinverse” when A has no inverse.

Rule 1 If A has independent columns, then AT = (ATA)" AT andso ATA=1.
Rule 2 If A has independent rows, then AT = AT(AAT)~! andso AAT =1T.
Rule 3 A diagonal matrix ¥ is inverted where possible—otherwise 7 has zeros :

The pseudoinverse of A = { 2 0 } is AT = { 1/2 0 ] .

o1 0 0 0 1/04 0 0 On the four subspaces
S=| 0 o 0 0] ¥t= 8 1/0"2 g StE 7 S5t=1
0 0 00 0 0 0 StE =0 EXt=0

All matrices The pseudoinverse of A = UXVT is AT = VX+UT, (1)‘33

A Row space to column space
AT Column space to row space

Atb =zt

ATe=0

nullspace of AT
= nullspace of AT

Pseudoinverse A~

nullspace
of A

I 0 | row space
+ A4 —
ATA = [ 0 O } nullspace

Figure I1.1: Vectors p = Az™ in the column space of A go back to ™ in the row space.
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This pseudoinverse A™ (somerimes written AT with a dagger instead of a plus sign)
solves the least squares equation AT AZ = ATb in one step. This page verifies that z+ =
A*tb = VEtUTbis best possible. At the end of this section, we look in more detail at A*,

Question : The formula AT = VXHUT uses the SVD. Is the SVD essential to find A* ?
Answer: No, AT could also be computed directly from A by modifying the elimination
steps that usually produce A~!. However each step of arithmetic would have to be exact !
You need to distinguish exact zeros from small nonzeros. That is the hard part of AT,

The Least Squares Solution to Az = b is T = ATb

I have written 7 instead of Z because the vector 1 has two properties:

1 ¢ =xt = A1Tb makes ||b — Ax||? as small as possible. Least squares solution

2 If another Z achieves that minimum then ||z || <||Z|]. Minimum norm solution

T = A1b is the minimum norm least squares solution. When A has independent
columns and rank r» = n, this is the only least squares solution. But if there are nonzero
vectors x in the nullspace of A (so r < n), they can be added to xzt. The error
b — A(z* + x) is not affected when Az = 0. But the length ||zt + z||? will grow
to ||zt |2 + ||z||?. Those pieces are orthogonal : Row space L nullspace.

So the minimum norm (shortest) solution of ATAZ = ATb is x+ = Atb,
1 has a zero component in the nullspace of A.
O ./.El _ 6 . +
oJla]-18]s

0
1/3 0 6 2 0 :
+ — At — —
xT =A b—[ 0 0][8}_[0}' Allvectors[wz}aremthenullspaceofA.

Example 1 The shortest least squares solution to .

} is shortest.

All the vectors T = [ $2 } minimize ||b — AZ||? = 64. Butz™ = { 3
2

That example shows the least squares solutions when A is a diagonal matrix like ¥.
To allow every matrix UX VT, we have to account for the orthogonal matrices U and V.
We can freely multiply by UT without changing any lengths, because UTU = I :

Squared error Ib — Az|* = ||b - USVTz||? = ||UTb - =V T2 (2)
Setw = VTx to get ||[UTb — w||?. The best w is XTUTh. And finally T is ATb:
w=VTet =STUTb and VT = V7! leadto z+ = VETUTH = Atb.  (3)

The SVD solved the least squares problem in one step A1 b. The only question is the
computational cost. Singular values and singular vectors cost more than elimination.
The next two proposed solutions work directly with the linear equations AT Az = ATb.
This succeeds when AT A is invertible—and then Z is the same as .
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When is AT A Invertible ?

The invertibility (or not) of the matrix AT A is an important question with a nice answer :
AT A is invertible exactly when A has independent columns. If Az = 0 then = = 0

Always A and AT A have the same nullspace ! This is because AT Az = 0 always leads to
xTAT Az = 0. Thisis ||Az||> = 0. Then Az = 0 and « is in N(A). For all matrices :

N(ATA) = N(A) and C(AAT) = C(A) and rank (AT A) = rank (AAT) = rank (A)

We now go forward when AT A is invertible to solve the normal equations ATAZ = ATb.

The Normal Equations ATAZ = ATb

Figure 1I.2 shows a picture of the least squares problem and its solution. The problem is
that b is not in the column space of A, so Ax = b has no solution. The best vector p = AT
is a projection. We project b onto the column space of A. The vectors Z and p = AZ
come from solving a famous system of linear equations: AT AZ = ATb. To invert AT A,
we need to know that A has independent columns.

The picture shows the all-important right triangle with sides b, p, and e.

b

e = b — p = error vector

p = projection of b 3
= AZ in the column space ‘

Figure I1.2: The projection p = AZ is the point in the column space that is closest to b.

Everybody understands that e is perpendicular to the plane (the column space of A).
This says that b — p = b — AZ is perpendicular to all vectors Az in the column space :

(Az)T (b— Az) = T AT(b— AZ) =0 forall x forces AT(b— AZ)=0. ' (4)

Everything comes from that last equation, when we write itas ATAZ = ATb.

Normal equation for Z ATAZ = ATb (5)
Least squares solution to Az = b z=(ATA)"1ATp : 6)
Projection of b onto the column space of A p=AZ=A(ATA)"1ATH | (7)
Projection matrix that multiplies btogivep P = A(ATA) AT (8)
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A now has independent columns : 7 = n. That makes AT A positive definite and invertible.
We could check that our Z is the same vector £+ = A1b that came from the pseudoinverse.
There are no other Z’s because the rank is assumed to be r = n. The nullspace of A only
contains the zero vector.

Projection matrices have the special property P2 = P. When we project a second
time, the projection p stays exactly the same. Use equation (8) for P :

P2 = A(ATA)TTATA(ATA)TIAT = A(ATA) AT = P. )

The Third Way to Compute Z : Gram-Schmidt

The columns of A are still assumed to be independent: r = n. But they are not assumed
to be orthogonal ! Then AT A is not a diagonal matrix and solving ATAZ = ATb needs
work. Our third approach orthogonalizes the columns of A, and then Z is easy to find.

You could say : The work is now in producing orthogonal (even orthonormal) columns.
Exactly true. The operation count is actually doubled compared to ATAZ = ATb, but
orthogonal vectors provide numerical stability. Stability becomes important when AT A is
nearly singular. The condition number of AT A is its norm ||AT A|| times ||(AT A)71]].
When this number 0% /a2 is large, it is wise to orthogonalize the columns of A4 in advance.
Then work with an orthogonal matrix Q).

The condition number of Q is ||Q|| times ||Q~1||. Those norms equal 1 : best possible.

Here is the famous Gram-Schmidt idea, starting with A and ending with Q.
Independent columns ay, ..., a, lead to orthonormal g4, ...,q,. This is a fundamental
computation in linear algebra. The first step is ¢; = ai/||a1||. That is a unit vector:
llg;]| = 1. Then subtract from a; its component in the g, direction:

Orthogonalize A; =a; — (al q;)q (10)

Gram-Schmidt step .
Normalize g, = Az/||Az|| (11)

Subtracting that component (a2 q;) g; produced the vector A, orthogonal to q; :

(a2 — (a3 ¢1)q;)" a1 = a3 g, —aj g, =0 since g7 q; = 1.

The algorithm goes onward to ag and A3 and gg, normalizing each time to make ||q|| = 1.
Subtracting the components of a3 along g, and g, leaves A3 :

. A
Orthogonalize Az = a3 — (a3 q,)q, — (a3 g,)q, Normalize g3 = HA—Z,H (12)

ATqi =AJg2=0 and ||gs||=1
Each gy, is a combination of a; to ai. Then each a is a combination of q1 to qg.
a; = [la1f| g,
a’s from ¢’s as = (a3 g;) q; + || Az2|| g, (13)
az = (a5 q;) @, + (a3 q2) g + || 4sll g3
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Those equations tell us that the matrix R = QT A with rij = q; a; is upper triangular :

11 Ti2 Ti3
ar @z asz | = | q; 49, qs 0 1722 723
. 0 0 733

is A= QR. (14)

Gram-Schmidt produces orthonormal ¢’s from independent a’s. Then A = QR.

If A= QR then R = QT A = inner products of g’s with a’s! Later a’s are not
involved in earlier ¢’s, so R is triangular. And certainly ATA = RTQTQR = RTR:

The least squares solutionto Ax = b is = R1Q7Tb.

The MATLAB command is [Q’ R] = q'r(A)‘ Every T’ij — quTa'] because R = QTA.
The vector Z = (ATA)~t ATbis (RTR)~* RTQTb. Thisis exactly Z = R~'Q7b.

Gram-Schmidt with Column Pivoting

That straightforward description of Gram-Schmidt worked with the columns of A in their
original order @1, a2, as, ... This could be dangerous! We could never live with a code
for elimination that didn’t allow row exchanges. Then roundoff error could wipe us out.

Similarly, each step of Gram-Schmidt should begin with a new column that is as
independent as possible of the columns already processed. We need column exchanges
to pick the largest remaining column. Change the order of columns as we go.

To choose correctly from the remaining columns of A, we make a simple change in °

Gram-Schmidt:
Old

Accept column a; as next. Subtract its components in the directions g, t0 g;_;

New When q;_, is found, subtract the g,_; component from all remaining columns

This might look like more work, but it’s not. Sooner or later we had to remove (a; q —1)4-1
from each remaining column a;. Now we do it sooner—as soon as we know ¢;_,. Then
we have a free choice of the next column to work with, and we choose the largest.

Elimination
Gram-Schmidt

Row exchanges on A left us with PA = LU (permutation matrix P)
Column exchanges leave us with AP = QR (permutation matrix P)

Here is the situation after 7 — 1 Gram-Schmidt steps with column pivoting. We have

J — 1 orthogonal unit vectors g to g;_; in the columns of a matrix ;1. We have the

square matrix R;_1 that combines those columns of (J;_; to produce j — 1 columns of A.
They might not be the first j — 1 columns of A—we are optimizing the column order.
All the remaining columns of A have been orthogonalized against the vectors g, t0 q;_;.

Step 7. Choose the largest of the remaining columns of A. Normalize it to léngth 1.

This is g;. Then from each of the n — j vectors still waiting to be chosen, subtract the

component in the direction of this latest q;. Ready now for step j + 1.
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We will follow Gunnar Martinsson’s 2016 course notes for APPM 5720, to express
step j in pseudocode. The original A is Ao and the matrices (Jo and Ry are empty.

Step j is the following loop, which starts with A;_; and ends at A;. The code stops
after j reaches min(m, n). Here is column pivoting in Gram-Schmidt :

i =argmax||4;_1(:, £)|| finds the largest column not yet chosen for the basis
q; = Aj-1(;, ©)/||A;-1(:, 7)|| normalizes that column to give the new unit vector g
Q; = [ Qji-1 4; ] updates ();_; with the new orthogonal unit vector q;

T = q;rAj_l finds the row of inner products of q; with remaining columns of A
R; = { ijl

- ] updates R;_; with the new row of inner products
j
Aj; = Aj_1 — q;r; subtracts the new rank-one piece from each column to give A4;

When this loop ends, we have @ and R and A = QR. This R is a permutation of an upper
triangular matrix. (It will be upper triangular if the largest columns in Step 1 come first,
so each ¢ = j.) The actual output can be an upper triangular matrix plus a vector
with the numbers 1,...,n in the permutation order we need to know, to construct R.

In practice, this QR algorithm with pivoting is made safer by reorthonormalizing :
q;, =4q; — Qj—l(Q_?—1Qj)
q; = q;/llg;|| (to make sure!)

There is a similar reordering for “Q) R with Householder matrices” to reduce roundoff error.
You have seen the essential point of pivoting : good columns come first.

Question : Both (2 from Gram-Schmidt and U from the SVD contain an orthonormal basis
for the column space C(A). Are they likely to be the same basis ?

Answer: No, they are not the same. The columns of U are eigenvectors of AAT. You
cannot find eigenvectors (or eigenvalues) in a finite number of exact “arithmetic” steps
for matrices of size n > 4. The equation det(A — A\I) = 0 will be 5th degree or higher: No
formula can exist for the roots A of a 5th degree equation (Abel). Gram-Schmidt
just requires inner products and square roots so () must be different from U.

In the past, computing a nearly accurate eigenvalue took a much larger multiple of n3
floating point operations than elimination or Gram-Schmidt. That is not true now.



