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Synopsis Twenty years after its proposal, the monophyly of molting protostomes—Ecdysozoa—is a well-corroborated

hypothesis, but the interrelationships of its major subclades are more ambiguous than is commonly appreciated.

Morphological and molecular support for arthropods, onychophorans and tardigrades as a clade (Panarthropoda)

continues to be challenged by a grouping of tardigrades with Nematoida in some molecular analyses, although onycho-

phorans are consistently recovered as the sister group of arthropods. The status of Cycloneuralia and Scalidophora, each

proposed by morphologists in the 1990s and widely employed in textbooks, is in flux: Cycloneuralia is typically non-

monophyletic in molecular analyses, and Scalidophora is either contradicted or incompletely tested because of limited

genomic and transcriptomic data for Loricifera, Kinorhyncha, and Priapulida. However, novel genomic data across

Ecdysozoa should soon be available to tackle these difficult phylogenetic questions. The Cambrian fossil record indicates

crown-group members of various ecdysozoan phyla as well as stem-group taxa that assist with reconstructing the most

recent common ancestor of panarthropods and cycloneuralians.

A history of Ecdysozoa

Few studies have revolutionized the field of animal sys-

tematics as much as the phylogenetic analysis of 18S

rRNA sequence data of a handful of metazoans pub-

lished by Aguinaldo et al. (1997) in which they proposed

the clade Ecdysozoa, a monophyletic group of animals

that molt their cuticle during the life cycle. The original

analysis included members of the ecdysozoan phyla

Arthropoda (Euarthropoda sensu Ortega-Hern�andez

2016; see that paper for a historical account of the use

of names such as Arthropoda, Euarthropoda,

Tactopoda, and others), Onychophora, Tardigrada,

Nematoda, Nematomorpha, Kinorhyncha, and

Priapulida (molecular data for Loricifera were unavail-

able at the time). This study was soon followed by other

molecular and morphological analyses corroborating

or discussing the relevance of Ecdysozoa (e.g., Giribet

1997; Giribet and Ribera 1998; Schmidt-Rhaesa

et al. 1998). Ecdysozoa, as understood nowadays (see

different configurations in Fig. 1), includes the mem-

bers of three putative subclades, Nematoida (composed

of Nematoda and Nematomorpha), Scalidophora

(Priapulida, Loricifera, and Kinorhyncha) and

Panarthropoda, the latter being ecdysozoans with paired

ventrolateral segmental appendages, i.e., Arthropoda,

Onychophora, and Tardigrada (Fig. 1a). The first two

are commonly grouped together as Cycloneuralia (Fig.

1a), the name referring to a ring-shaped circumpharyng-

eal brain.

Since these early analyses, Ecdysozoa has been

supported by a diverse source of data, both morpho-

logical and molecular (but see W€agele et al. 1999;

W€agele and Misof 2001; Pilato et al. 2005), contra-

dicting the longstanding hypothesis of panarthro-

pods being closely allied to annelids in the clade

Articulata (Haeckel 1866), for which segmentation
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Fig. 1 Summary of selected ecdysozoan phylogenies from (A) Nielsen (2012); and other less resolved versions presented in recent

textbooks and reviews: (B) Dunn et al. (2014); Brusca and Giribet (2016); Giribet (2016b); (C) Piper (2013); (D) Giribet (2016a);

version D, highlighted in grey is the version that we currently support based on all available data. Selection of of metazoan phylogenies

based on analysis of: (E) EST data (Campbell et al. 2011); (F) transcriptomes (Borner et al. 2014); (G) ESTs (Dunn et al. 2008); (H)

ESTs (Hejnol et al. 2009); (I) transcriptomes (Laumer et al. 2015).
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was the unifying character. Some authors tried to

reconcile the Articulata and Ecdysozoa hypotheses

by providing intermediate evolutionary scenarios be-

tween these two groups (Nielsen 2003), but no data

have supported this scenario. Molecular analyses oc-

casionally fell victim to common biases, and placed

additional taxa within Ecdysozoa, notably the un-

stable Chaetognatha (e.g., Zrzav�y et al. 1998;

Paps et al. 2009), now thought to be related to

Gnathifera (Fröbius and Funch 2017), and

Buddenbrockia (Zrzav�y et al. 1998), since reassigned

with confidence to Myxozoa (Jiménez-Guri et al.

2007). Likewise, early phylogenomic analyses

restricted to a handful of available genomes pro-

posed non-monophyly of Ecdysozoa, often favoring

a group called Coelomata that united arthropods

with chordates to the exclusion of nematodes (Wolf

et al. 2004; Philip et al. 2005; Rogozin et al. 2007),

but that hypothesis was soon refuted with improved

evolutionary models (Lartillot et al. 2007). Virtually

all subsequent phylogenomic analyses have found

support for Ecdysozoa (e.g., Philippe et al. 2005;

Irimia et al. 2007; Dunn et al. 2008; Hejnol et al.

2009). That is not however the case from mitoge-

nomics (Podsiadlowski et al. 2008; Rota-Stabelli

et al. 2010; Popova et al. 2016), but as of today,

no mitochondrial genomes are available for

Nematomorpha or Loricifera—and some loriciferans

may altogether lack mitochondria (Danovaro et al.

2010; Danovaro et al. 2016).

Although Ecdysozoa was originally portrayed by

some to be an artifact of flaws in molecular system-

atics (W€agele and Misof 2001), morphologists had

already implicitly or explicitly questioned Articulata

while instead supporting a clade that unites molting

protostomes. Eernisse et al. (1992) published a

phylogenetic analysis of a morphological data matrix

resolving Panarthropoda with Nematoda and

Kinorhyncha (Priapulida was left unresolved in a

basal protostome trichotomy), while recognizing

the annelid lineages as part of Spiralia. This visionary

phylogeny of bilaterians received little subsequent at-

tention, but clearly spoke in favor of morphological

arguments that conflict with Articulata. Even before

Eernisse et al. (1992), Crowe et al. (1970) mentioned

the similarity in the organization of the cuticles of

tardigrades and nematodes and how “On this basis a

phylogenetic affinity of tardigrades for nematodes was

supported.” Later, while discussing the phylogenetic

position of the recently discovered loriciferan body

plan (Kristensen 1983), R. M. Kristensen stated that

“Annulation of the flexible buccal tube, telescopic

mouth cone, and the three rows of placoids are found

only in Tardigrada and Loricifera (Kristensen 1987).

Because tardigrades exhibit several arthropod charac-

ters (see Kristensen 1976, 1978, 1981), this last finding

supports a theory about a relationship between some

aschelminth groups and arthropods (Higgins 1961).

That theory has recently gained support derived pri-

marily from new ultrastructural data, e.g., the fine

structure of the chitinous cuticular layer, molting cycle,

sense organs, and muscle attachments” (Kristensen

1991, 352). This hypothesis had already been postu-

lated in Higgins’ unpublished PhD thesis, and mor-

phological support for Ecdysozoa and/or

inconsistencies with Articulata were proposed soon

after the publication of the seminal molecular paper

by Aguinaldo et al. (e.g., Kristensen 2003; Giribet

2004; Mayer 2006; Koch et al. 2014). A key implica-

tion of the acceptance of Ecdysozoa is thus whether

the annelid and panarthropod segmentation is hom-

ologous, and if so, at what level (see discussions in

Scholtz 2002; Giribet 2003; Scholtz 2003; Minelli

2017).

Is there morphological support for
Ecdysozoa?

Several authors tried to articulate a few morpho-

logical characters that could be apomorphic for

Ecdysozoa, most related to their cuticle—cuticles

are present across the animal kingdom but are dif-

ficult to define (Rieger 1984; Ruppert 1991). Some of

the proposed cuticular characters include its trilay-

ered ultrastructure and the formation of the epi-

cuticle from the tips of epidermal microvilli,

annulation, molting (probably through ecdysteroid-

mediated hormones), or lack of cilia for locomotion

(Schmidt-Rhaesa et al. 1998). Other characters in-

clude the terminal position of the mouth (Giribet

2003), a character that like annulation, is often

found in Cambrian ecdysozoan fossils that have

been assigned to the stem groups of lineages whose

extant members have secondarily modified this trait.

Recent developmental data, however, suggest that the

terminal mouth of priapulans has a ventral embryo-

logical origin, which the authors interpret as the an-

cestral state in ecdysozoans (Mart�ın-Dur�an and

Hejnol 2015).

Some of these characters, especially the annulated

cuticle and the terminal mouth are prevalent in many

Cambrian fossils, including stem-group arthropods

such as Kerygmachela (see Budd 1998), possible stem-

group onychophorans such as Collinsium (see Yang

et al. 2015), lobopodians of uncertain systematic pos-

ition such as Onychodictyon (Ou et al. 2012), and lobo-

podians that are either allied to tardigrades or near the

base of Panarthropoda such as Aysheaia (Fig. 2D). The
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annulated cuticle, however, does not occur in many

modern ecdysozoans (it is only present in Priapulida,

Onychophora, and some Nematoda), and the mouth

has a ventral position in some Tardigrada, in

Onychophora, and in most Arthropoda. While segmen-

tation exists in four of the seven ecdysozoan phyla, it is

unclear how many times it evolved, and at least it would

have originated independently in Kinorhyncha and

Panarthropoda—but the unstable position of

Tardigrada makes this inference difficult.

One of the characteristics often cited for Ecdysozoa is

the presence of a-chitin in their cuticle, but to date this

has only been found in Priapulida and Panarthropoda

(Greven et al. 2016). In addition, the cuticle of

Pentastomida, which are bona fide members of the

crustacean–hexapod clade, Tetraconata or

Pancrustacea (Abele et al. 1989; Giribet et al. 2005;

Regier et al. 2010; Oakley et al. 2013; Rota-Stabelli

et al. 2013; Li et al. 2016), contains ß-chitin

(Karuppaswamy 1977). No information is yet available

Fig. 2 Exceptionally preserved Cambrian and Ordovician fossil Ecdysozoa. (A and B) Wronascolex antiquus, a palaeoscolecid worm

from the early Cambrian Emu Bay Shale, Australia; (A) mostly complete specimen, scale 1 cm; (B) paired terminal hooks, scale 2 mm;

(C) Gamascolex vanroyi, a palaeoscolecid from the Late Ordovician of Morocco. Scanning electron micrograph showing rows of plates

on the cuticular annulations, scale 0. 5 mm. Image courtesy of Diego Garc�ıa-Bellido; (D) Aysheaia pedunculata, a lobopodian from the

middle Cambrian Burgess Shale, Canada, scale 2.5 mm; (E) Eolorica deadwoodensis, a loriciferan preserved as a Small Carbonaceous

Fossil from the late Cambrian of Canada, scale 0.25 mm. Image courtesy of Tom Harvey and Nick Butterfield; (F) Ottoia prolifica, a

cycloneuralian from the Burgess Shale, Canada, scale 5 mm. Images (D) and (F) courtesy of Xiaoya Ma.
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about the type of chitin present in the other members of

Ecdysozoa.

The evolution of the ecdysozoan nervous systems has

centered on understanding the nature of the brain,

which is circumoral in the non-panarthropods (and

has been used in the diagnosis of Cycloneuralia as a pu-

tative clade) but has cephalic ganglia in the three panar-

thropod groups (Martin and Mayer 2014; Mart�ın-

Dur�an et al. 2016), as well as the nature of the paired

versus unpaired nerve cords (Mart�ın-Dur�an et al.

2016). According to these authors, the ancestral nervous

system of the Ecdysozoa might have comprised an un-

paired ventral nerve cord (seen in Priapulida,

Kinorhyncha, Nematoda, and Nematomorpha), but

the architecture of the brain in the ancestral ecdysozoan

remains unclear. The monophyly versus paraphyly of

Cycloneuralia (discussed below) is central to the inter-

pretation of whether a collar-shaped or dorsal ganglio-

nar brain is plesiomorphic for Ecdysozoa.

From a molecular standpoint, researchers have pro-

posed a series of synapomorphies, such as the identi-

fication of ecdysozoan tissue-specific markers,

including neural expression of horseradish peroxidase

(HRP) immunoreactivity (Haase et al. 2001). Another

molecular synapomorphy, a supposed multimeric

form of a ß-thymosin gene in arthropods and nemat-

odes to the exclusion of other metazoans (Manuel et al.

2000), has been subsequently refuted (Telford 2004).

Ecdysozoans have colonized the land and freshwater

independently in multiple lineages (in Nematoda,

Nematomorpha, Tardigrada, Onychophora,

Chelicerata, Myriapoda, Hexapoda, and several other

panxcrustacean lineages) between the Cambrian and

the Devonian (Rota-Stabelli et al. 2013; Lozano-

Fernandez et al. 2016; Schwentner et al. 2017).

Clearly, their cuticle has provided them with the phys-

ical properties (i.e., avoiding desiccation and providing

mechanical support) to conquer the land multiple

times—from all other animals, only chordates, platy-

helminths, rotifers, annelids, nemerteans, and molluscs

have been able to terrestrialize.

Ecdysozoan phylogeny—past and
present

Despite the vast genomic resources available for many

members of Ecdysozoa, relationships within its con-

stituent clade remain in flux (Fig. 1), to the point that

many authors use some ecdysozoan clades as bona fide,

even though no molecular support for them exists, thus

relying on morphological hypotheses. Such is the case

for Scalidophora (Cephalorhyncha sensu Nielsen) (Fig.

1A–C), a putative clade composed of Kinorhyncha,

Loricifera, and Priapulida (e.g., Edgecombe 2009;

Dunn et al. 2014; Mart�ın-Dur�an et al. 2016). Likewise,

whether Scalidophora and Nematoida form the clade

Cycloneuralia (¼ Introverta sensu Nielsen) or a grade,

with Nematoida as the sister group of Panarthropoda, is

still unresolved. While the challenge to the monophyly

of Cycloneuralia is mostly molecular, some morpho-

logical inconsistencies are noteworthy. For example,

the “typical” cycloneuralian brain, a ring neuropil

with anteriorly and posteriorly positioned neuronal

somata, is shared by nematodes, kinorhynchs, loricifer-

ans, and priapulans, but not nematomorphs (Schmidt-

Rhaesa and Rothe 2014).

The Cycloneuralia and Panarthropoda controversies

hinge on the question of nematodes and tardigrades and

their attraction. In the context of Panarthropoda, tardi-

grades are sometimes believed to be the sister group of

arthropods (see Yang et al. 2015 for a recent cladistic

analysis), mostly due to similarities in the ganglionar

peripheral nervous system (Mayer et al. 2013)—as

opposed to that of onychophorans. A tardigrade-

arthropod clade (Tactopoda) is also recovered in

some cladistic analyses coding for a broad range of fos-

sils (Smith and Caron 2015; Yang et al. 2015), although

the signal comes principally from characters of the

nerve cord in extant taxa. However, a series of phyloge-

nomic analyses have cast some doubt about the mem-

bership of Tardigrada in Panarthropoda. Several studies

have found a relationship of Tardigrada to Nematoida

(this debate is often discussed as a nematode–tardigrade

relationship, but this is not entirely precise, as several

studies excluded nematomorphs; The monophyly of

Nematoida is generally well supported, and thus we

should refer to a nematoid–tardigrade relationship, al-

though in a few studies tardigrades nested within nem-

atoids) (Hejnol et al. 2009; Borner et al. 2014), or

recovered either that grouping or Panarthropoda under

different analytical conditions (Dunn et al. 2008). Other

studies suggest that the tardigrade-nematoid group is

due to a long-branch attraction artifact (Campbell et al.

2011; Rota-Stabelli et al. 2013) and instead recovered

Panarthropoda as a clade (Pisani et al. 2013) when using

better models of evolution. The debate is not settled, as

many of these studies relied on old ESTs and newer

analyses based on genome data or new transcriptomes

have found the nematode–tardigrade grouping

(Laumer et al. 2015), although the small number of

arthropods included in the sample (designed to resolve

other parts of the protostome tree) lessens the impact of

this result.

Molecular analyses excluding Loricifera have sup-

ported a sister group relationship of Scalidophora to

Nematoida and Panarthropoda (e.g., Petrov and

Vladychenskaya 2005; Mallatt and Giribet 2006;

Campbell et al. 2011; Pisani et al. 2013; Rota-Stabelli
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et al. 2013; Borner et al. 2014), or have favored a sister

group relationship of Priapulida to the remaining ecdy-

sozoans (Hejnol et al. 2009). Analyses contradicting

Scalidophora place Loricifera closer to

Nematomorpha than to Kinorhyncha and Priapulida

(Sørensen et al. 2008), or left Loricifera largely unre-

solved (Park et al. 2006), although these early analyses

were based on just one or two markers. The first phy-

logenomic analysis to include data on Loricifera places

Armorloricus elegans with Priapulida, albeit without sig-

nificant support (Laumer et al. 2015), and this study

lacked data on Kinorhyncha and taxonomic sampling

was not designed around Ecdysozoa.

The issues with Loricifera noted above largely in-

volve limited molecular sampling to date. In con-

trast, the debate about the position of tardigrades

in ecdysozoan phylogeny involves incongruence be-

tween well sampled datasets. Tardigrades have been

placed in Panarthropoda using a plethora of mor-

phological characters, as well as in several molecular

analyses designed to counter long branch attraction,

and based on a novel microRNA (Campbell et al.

2011), but, as discussed above, they are also often

drawn to Nematoida in molecular analyses (Yoshida

et al. 2017). In contrast to the unstable relationships

of tardigrades, however, in most cases Onychophora

have stabilized as the sister group of Arthropoda

(e.g., Hejnol et al. 2009; Campbell et al. 2011;

Rota-Stabelli et al. 2013; Borner et al. 2014), a rela-

tionship that contradicts the Tactopoda hypothesis.

Clearly, further resolution of ecdysozoan relation-

ships is needed, as genomic and transcriptomic resour-

ces are still limited for Loricifera, Kinorhyncha,

Priapulida, and Nematomorpha. Major efforts should

be directed toward resolving the Cycloneuralia and

Scalidophora questions that presently render the deep

splits in Ecdysozoa ambiguous, but also toward more

refined analytical treatment of data, including

improved models of evolution. We thus favor, for the

time-being, the partially unresolved phylogeny pre-

sented in Fig. 1D until some of these most unstable

taxa are available and analyses targeting a well

thought-out set of genes provide convincing results.

Even defining panarthropods morphologically is

less straightforward than it might appear, as most

characters typically used in textbooks are absent in

one of the three phyla. They all have paired ventro-

lateral segmental appendages with terminal claws,

but the nature of these appendages differs among

them. Only arthropods have undergone a true

arthropodization process, with both segmental scler-

ites and appendage segments cuticularized and sep-

arated by arthrodial membranes. In spite of this, at

least onychophorans and arthropods share the same

general patterns of gap gene expression along the

proximo-distal axis of the appendages (Janssen and

Budd 2010; Janssen et al. 2015); these data are not

yet known for tardigrades. Likewise, all three groups

(tardigrades, onychophorans, and arthropods) have a

ganglionar supraesophageal brain, but that of tardi-

grades is composed of a single segment (Gross and

Mayer 2015), that of onychophorans of two, proto-

cerebrum and deutocerebrum (Mayer et al. 2010),

while arthropods have three, protocerebrum, deuto-

cerebrum and tritocerebrum. The ventral nerve cords

of these three groups also differ greatly, with a paired

ganglionated nerve cord in tardigrades and arthro-

pods versus a lack of segmental ganglia in onycho-

phorans (Martin et al. 2017). This is also

concomitant which their external appearance, as

onychophorans instead of external segments show

an annulated cuticle. Nevertheless, the segment po-

larity protein engrailed is expressed in the posterior

ectoderm of developing segments in each of the three

panarthropod groups, suggesting that it plays a com-

mon role in establishing segmental boundaries

(Gabriel and Goldstein 2007) and can be interpreted

as an autapomorphy related to panarthropod seg-

mentation. While segmented mesoderm and a mix-

ocoel have also been proposed as synapomorphies

for Panarthropoda (Nielsen 2012), these are not

observed in tardigrades.

Ecdysozoan genomics

Ecdysozoan genomics got an early start, as the nema-

tode Caenorhabditis elegans was the first published ani-

mal genome (C._elegans_Sequencing_Consortium

1998), to be followed by that of Drosophila melanogaster

(Adams et al. 2000). Both appeared before the first

drafts of the human genome, attesting to the import-

ance of these two ecdysozoans as model organisms.

Since then, more than a hundred ecdysozoan genomes

from different species have been published (Dunn and

Ryan 2015), and thousands more have been sequenced.

No other animal clade except perhaps for vertebrates

has such genomic resources. Additionally, high-

coverage transcriptomes are now available for virtually

every major ecdysozoan lineage (orders or equivalent)

(e.g., Misof et al. 2014; Sharma et al. 2014; Wang et al.

2014; Laumer et al. 2015; Fern�andez et al. 2016; Kocot

et al. 2017; Schwentner et al. 2017), although many have

yet to make it into publication.

Tardigrade genomics recently erupted in the sci-

entific debate as an unusual case of massive horizon-

tal gene transfer in the species Hypsibius dujardini

(Boothby et al. 2015), to be almost immediately

refuted (Koutsovoulos et al. 2016). However, both
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in H. dujardini and Ramazzottius varieornatus a small

proportion (ca. 1–2%) of horizontal gene transfer

seems justified (Hashimoto et al. 2016; Yoshida

et al. 2017). In the latter species, there is also a

loss of gene pathways that promote stress damage,

expansion of gene families related to ameliorating

damage, and evolution and high expression of novel

tardigrade-unique proteins (Hashimoto et al. 2016).

The proteome of the tardigrade Milnesium tardigra-

dum has been investigated to better understand stress

pathways (Schokraie et al. 2010; Förster et al. 2012).

More recently, differential gene expression between

hydrated and dehydrated stages and transition to

and from the tun state (the state shown during

anhydrobiosis) have shown interesting patterns

(e.g., down-regulation of several proteins of the

DNA replication and translational machinery and

protein degradation) during metabolic shutdown

when entering anhydrobiosis (Wang et al. 2014).

To date, a single unpublished genome is available

for Priapulus caudatus (GenBank accession #

NW_014577062), due to recent interest in priapulans

as model organisms for understanding early ecdyso-

zoan evolution. Transcriptomic resources are also

rather limited for priapulans, with just a few pub-

lished transcriptomes (Borner et al. 2014; Laumer

et al. 2015), and EST libraries (Dunn et al. 2008)

available.

The first sequences for an onychophoran genome

(Euperipatoides rowelli) are publicly available (https://

www.hgsc.bcm.edu/arthropods/velvet-worm-genome-

project), but no genome annotation has yet been pro-

duced. Transcriptomic resources have bloomed in re-

cent years, although Illumina-based transcriptomes

have only recently been produced (Fern�andez et al.

2014). Additional transcriptomes are now being gener-

ated to investigate the phylogenetic position of onycho-

phorans with respect to arthropods and tardigrades and

for developmental research (e.g., Franke et al. 2015).

Complete mitochondrial genomes are however avail-

able for both onychophoran families (Podsiadlowski et al.

2008; Braband et al. 2010a; Braband et al. 2010b; Segovia

et al. 2011). These studies indicate that the mitochondrial

genome of velvet worms shows major rearrangements and

extreme mitochondrial tRNA editing (Segovia et al. 2011),

which seems to have persisted through the evolution of the

group.

Little is known about kinorhynch nuclear

genomes, with no size estimate or sequence currently

available. Only recently two mitochondrial genomes

have been published (Popova et al. 2016)—

Echinoderes svetlanae (Cyclorhagida) and Pycnophyes

kielensis (Allomalorhagida). Their mitochondrial

genomes are circular molecules approximately

15 Kb in size, with the typical metazoan complement

of 37 genes, which are all positioned on the major

strand, but the gene order is distinct and unique

among Ecdysozoa (Popova et al. 2016), including

duplicated methionine tRNA genes.

Other than a relatively low quality transcriptome

of Armorloricus elegans (Laumer et al. 2015), little is

known about the nuclear genome of loriciferans. No

information is available for any mitochondrial gene,

being probably the only animal phylum without even

a single sequence of cytochrome c oxidase subunit I—

the so-called “universal barcode” available for all

other animals. In addition, a lack of mitochondria

has been reported in some species (Danovaro et al.

2010).

Insights from Cambrian fossils

Even discounting the arthropods that are the most

common and diverse Cambrian fossils, the Cambrian

fossil record of ecdysozoans is spectacular, with sev-

eral putative basal lineages reaching a peak of diver-

sity at the time (see Maas 2013 for a synopsis of

Paleozoic vermiform ecdysozoans). Much of the

Cambrian cycloneuralian diversity is represented by

Palaeoscolecida (Harvey et al. 2010), a group of

often large-bodied worms that have a high preserva-

tion potential because of their robust, annulated cu-

ticle (Fig. 2A–C). Their cuticular sclerites (Fig. 2C)

have an extensive microfossil record when preserved

disarticulated from their scleritome. Burgess Shale-

type compression fossils (Fig. 2A) as well as three-

dimensionally preserved, secondarily phosphatized

Orsten fossils allow the sclerites to be associated

with both the overall cuticular structure as well as

other body parts, including paired terminal hooks

and an introvert that bears radially arranged spines

(Maas 2013). The posterior hooks (Fig. 2B) had been

cited as a character indicating affinities to

Nematomorpha (Hou and Bergström 1994), and a

system of large, helically wound cross-wise fibers in

the innermost layer of the cuticle is also comparable

to nematoids (Harvey et al. 2010). Numerous phylo-

genetic analyses have tackled the systematic position

of palaeoscolecids and other vermiform ecdysozoans

that are not obviously crown-group members of liv-

ing phyla (see Harvey et al. 2010; Wills et al. 2012;

Liu et al. 2014; Zhang et al. 2015 for recent ver-

sions). The controversies noted above regarding

higher level systematics of Ecdysozoa, notably

whether or not Cycloneuralia is a mono- or para-

phyletic with respect to Panarthropoda as well as the

status of Scalidophora, affect the classification of the

fossils. That is, although their introvert morphology
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may attest to cycloneuralian affinities, this may sim-

ply be a plesiomorphic character for Ecdysozoa.

In different analyses, palaeoscolecids are variably al-

lied with nematoids or with priapulans, the fossils

being sensitive to taxon sampling and character

weighting.

Numerous other Cambrian vermiform ecdysozo-

ans are known from exceptionally preserved com-

pression fossils. The Burgess Shale species Ottoia

prolifica, for example, is known from thousands of

specimens that permit details of the eversion of the

introvert to be documented (Fig. 2F) (Conway

Morris 1977) and gut contents reveal the diversity

of prey that it ingested (Vannier 2012). Ottoia is

usually resolved in phylogenetic analyses as a stem-

group priapulan, but like many of the fossils its pos-

ition has been labile within “Cycloneuralia.” The

Cambrian vermiform ecdysozoans include some dis-

tinctive ecologies, including tube-swelling forms such

as Selkirkia (Conway Morris 1977).

With regards to the timing of ecdysozoan diversifca-

tion, the fossil record indicates that some extant phyla

were likely represented by their crown groups in the

Cambrian. This is the case, for example, for Loricifera,

of which Eolorica deadwoodensis, is a late Furongian

(late Cambrian) member (Harvey and Butterfield

2017). This species, with typical meiobenthic size and

morphology (Fig. 2E), exhibits the characteristic high

number of scalids of Loricifera, typical spinoscalid

form, and a loricate body. The latter particularly resem-

bles the members of the extant family Pliciloricidae in

its large number of plicae, and is consistent with

Eolorica being a crown group loriciferan. Likewise,

phylogenetic analyses have placed some early

Cambrian priapulans in crown-group Priapulida (Ma

et al. 2014), and Arthropoda is likewise represented in

the early Cambrian (ca 519 Ma) by crown-group taxa

(Edgecombe 2017).

Fossil taxa provide combinations of arthropod and

cycloneuralian characters not observed in any living ecdy-

sozoan. For example, a radial mouth composed of over-

lapping plates and radially aranged, scalid-like pharyngeal

teeth in such giant stem-group arthropods as the early

Cambrian Pambdelurion are interpreted as plesiomor-

phies shared by Panarthropoda and “cycloneuralians,”

and thus characters of the Ecdysozoa as a whole

(Edgecombe 2009; Vinther et al. 2016). Likewise, the

Cambrian lobopodian Hallucigenia, which has been inter-

preted as a stem-group onychophoran (Smith and

Ortega-Hern�andez 2014) or a stem-group panarthropod

(Caron and Aria 2017), has radially arranged circumoral

lamellae and pharyngeal teeth that compare with putative

homologues in tardigrades and cycloneuralians and ac-

cordingly cited as possible autapomorphies of

Ecdysozoa (Smith and Caron 2015). Cambrian lobopo-

dians are resolved in phylogenetic analyses as an aggrega-

tion of stem-group tardigrades, onychophorans and

arthropods (Yang et al. 2015; Caron and Aria 2017).

Based on the resulting trees, the most recent common

ancestor of extant Panarthropoda was a macroscopic

lobopodian with heteronomous body annulation, an

anteriorly-facing mouth with radial circumoral papillae,

and paired dorsolateral epidermal structures in segmental

association with lobopodous limbs (Smith and Ortega-

Hern�andez 2014).

The future of ecdysozoan phylogenetics

The incredible genomic resources available for ecdy-

sozoans hold a promise for a well-resolved phyl-

ogeny, although a major issue seems to be a highly

heterogeneous rate of evolution across lineages as

well as large variation in genome size and content,

as for example, some nematodes have among the

smallest genomes (Burke et al. 2015). Previous lim-

itations of size for genomic work, especially in lor-

iciferans, will soon no longer be an issue with

developing single cell genomic techniques (Zheng

et al. 2017). Yet, placing certain taxa continues to

be nearly intractable with existing phylogenetic

methods (Simion et al. 2017), and nematodes, tardi-

grades and most probably also loriciferans, do not

seem to be immune to some of these biases. The

bright side is that we have yet to test their relation-

ships with improved taxon sampling and modern

molecular (genomic/transcriptomic) data, and the

constant discovery of new fossils (e.g., Harvey and

Butterfield 2017) will continue to contribute toward

a better understanding of the stems leading to the

major ecdysozoan clades (see Edgecombe 2017).
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de Artr�opodos de México: Hacia una s�ıntesis de su conoci-
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