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Abstract 

In 1922, Phytophthora capsici was described by Leon Hatching Leonian as a new pathogen infecting pepper (Capsicum annuum), with disease 
symptoms of root rot, stem and fruit blight, seed rot, and plant wilting and death. Extensive research has been conducted on P. capsici over the last 
100 years. This review succinctly describes the salient mile markers of research on P capsici with current perspectives on the pathogen's distribution, 
economic importance, epidemiology, genetics and genomics, fungicide resistance, host susceptibility, pathogenicity mechanisms, and management. 
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Phytophthora capsici was first observed as a pathogen of chile 
pepper (Capsicum annuum L.) in New Mexico by Leon Hatchig 
Leonian while working as an assistant biologist at the State Agricul- 
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tural Experiment Station of the New Mexico College of Agriculture 
and Mechanic Arts from 1918 to 1919 (Anonymous 1919). The 

description of P. capsici by Leonian (1922) included sporangia, 
zoospores, tuberous mycelial outgrowths, and oospores; discase 

symptoms observed on roots, stems, fruit, and seeds; and iso- 

late pathogenicity. Information on management of the new disease 
was limited to seed selection and fungicide application. Since the 
1990s, P capsicihas been featured in abstracts, articles, and reviews 

(Babadoost and Islam 2002; Barchenger et al. 2018; Granke et al. 

2012; Hausbeck and Lamour 2004; Ristaino and Johnston 1999; 

Saltos et al. 2022; Sanogo and Ji 2012, 2013) and book chapters 

(Erwin and Ribeiro 1996; Lamour 2013; Lamour and Kamoun 

2008; Sanogo and Bosland 2013). The salient mile markers (Fig. 1) 

for 100 years of research on P capsici are reviewed herein with cur- 
rent perspectives on the pathogen's distribution, economic impor- 
tance, epidemiology, genetics and genomics, fungicide resistance, 
host susceptibility, pathogenicity mechanisms, and management. 
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Global Economic Importance and Distribution 

Phytophthora capsici affects the production of numerous an- 
nual and perennial crops grown in field and greenhouse systems 

(Cerkauskas et al. 2015; de Cara et al. 2018) in the Americas, 

Europe, Asia, Africa, and Australia (Barchenger et al. 2018; Parada- 

Rojas et al. 2021). Ranking among the most important pathogens of 
solanaceous and cucurbitaceous crops (Babadoost and Islam 2002; 

Barchenger et al. 2018; Hausbeck and Lamour 2004; Islam et al. 

2004; Ristaino and Johnston 1999; Saltos et al. 2022; Sanogo and 

Ji 2012), the pathogen can cause total crop loss from root rot, stem 
and foliage blight, fruit rot, and plant wilting and death (Fig. 2). 

Several studies have documented the occurrence and extent of 
P capsici in various agroscosystems (Erwin and Ribeiro 1996; 
Lamour 2013). However, there are no data on the cost of yearly 
losses caused by this pathogen in each region worldwide. In 
Ontario, Canada, a 1997 disease outbreak caused an estimated yield 

loss of 40 to 60% and 20% in pepper (C. annuum) and butter- 
nut squash (Cucurbita pepo L.) fields, respectively (Anderson and 
Garton 2000). n New Mexico, P capsici affected 80% of chile 

pepper fields surveyed from 2002 to 2004 (Sanogo and Carpenter 
2006). P capsici was discovered in North Carolina in 1948. Since 
2010, more than 50 P capsici samples across 32 different counties 

have been received by the Plant Disease and Insect Clinic at North 
Carolina State University (Parada-Rojas and Quesada-Ocampo 
2022). When hot chile pepper fields were surveyed across three 
provinces in Central Vietnam from 2010 to 2018, disease incidence 
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was estimated to be 5 to 75% (Nguyen and Van Quang Tran 2022). 
In South Africa, P capsici was identified from solanaceous and cu- 

curbitaceous plants collected from 77 fields in five provinces from 
2000 to 2008 (Meitz et al. 2010). 

In 1935, post-harvest Phytophthora rot was observed on water- 
melon fruit grown in Colorado and shipped to New York (Wiant 
and Tucker 1940). Today, Phytophthora fruit rot of watermelon 
is an emerging disease, especially in the Southeast United States 
(Kousik et al. 2014a, b, 2016). If disease occurs during fruit set, a 

total loss may occur; fruits are susceptible at all ages (Kousik et al. 
2018). Disease outbreaks from 2003 to 2008 and 2013 to 2015 led 

the National Watermelon Association to rank P capsici as a top 
research priority (Kousik et al. 2014a, 2016). 

Epidemiology and Detection 

The unique ability of P capsicito incite economic crop loss is due, 
in part, to the production of sexual and asexual structures including 
sporangia, zoospores, and cospores (Fig. 3) enabling the pathogen 
to persist, disseminate, and infect. Uchida and Agaraki (1985) first 
documented the formation of chlamydospores by P. capsici. The 
pathogen may be naturally present in some virgin soils prior to the 
establishment of commercial crops (Erwin and Ribeiro 1996). Use 

of infested irrigation water from ponds and rivers (Gevens et al. 
2007; Hudson et al. 2021) has been identified in some regions as 
a means of field infestation. When surface irrigation sources in 
Michigan were monitored over 4 years, Gevens et al. (2007) 
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Mile markers for 100 years of research on Phytophthora capsici. The first report of plant infection by 2 capsici was in chile pepper in the early 1920s 
by L. H. Leonian in New Mexico. Over the next couple of decades (1930 to 1950), there were numerous reports of the pathogen occurring across 

the Americas. Currently, P capsiciis a major pathogen affecting production of peppers, cucurbits, and some other vegetable crops in most growing 
areas of the world. Inheritance of resistance to P capsici root rot and the life cycle of the pathogen were described in the late 1960s and early 1970s, 
respectively. Occurrence of a “resting spore” for P capsici was discovered in the 1980s. The following decade marked the development of novel 

proteomic tools including ELISA, which was successfully used to identify P capsici and the release of a resistant bell pepper. Genomic revolution 
between the 1990s and 2000s allowed the identification of quantitative trait loci (QTLs) and the seguencing of the whole genome of P capsici and 
“Criollo de Morelos 334”, a resistant landrace from Mexico. Novel PCR tools such as loop-mediated isothermal amplification (LAMP) resulted in rapid 
determination of P capsici in the field in the 2020s. Pecan husks and shells were recently demonstrated to induce disease resistance, leading the 

way for more efficient management practices. 
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detected P capsici at several sites along a river system. Lewis Ivey and weeds (French-Monar et al. 2006; Ploetz and Haynes 2000; Tian 
and Miller (2013) combined species-specific PCR (Silvar et al. and Babadoost 2004). Leonian (1922) emphasized the importance 

2005) with cucumber baiting to detect P capsici in ponds and | of clean seed based on his observation of chile pepper infection by 
ditches used as sources of irrigation water for vegetable produc-  P capsici. However, research has not focused on the survival and 
tion in northwestern Ohio. P capsici was detected between late | reproduction of P capsici in weed host tissue. It is possible that in 
June and late September in water samples, representing ahighrisk | today's modem seed production systems, P capsici does not pose 
of contamination of vegetable crops during the growing season. the threat that it did in Leonian”s time. 

Once introduced in a production field, P capsici may persist in Phytophthora capsici and its interactions with host plants are in- 
debris of susceptible host plants, including seeds (Leonian 1922) fluenced by environmental aerial and edaphic variables including 

FIGURE 2 
Symptoms and signs of Phytophthora blight on A and B, plants and fruit of chile pepper, G, bell pepper leaf, D, fruit and seeds of bell pepper, 
E, tomato fruit, F eggplant, G, snap bean, H, squash, |, cucumber fruit, J, watermelon fruit, K, pumpkin fruit, and L, squash fruit. Note the abundant 
production of mycelium growth on fruits infected by Phytophthora capsiciin Ito L. Photo credits: A and B, S. Sanogo; C, D, and |, S. Miller; E, F G, 

and K, M. McGrath; and H, J, and L, C. Parada-Rojas and L. Quesada-Ocampo. 
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moisture and temperature (Babadoost and Pavon 2013; Barchenger 

et al. 2018; Bowers et al. 1990; Erwin and Ribeiro 1996; Haus- 

beck and Lamour 2004; Lamour 2013; Ristaino and Johnston 1999; 

Sanogo and Ji 2012). Sanogo (2004, 2006, 2007b) examined the 

relationship of salinity, soil water saturation, and soil chemical com- 
position with pathogen reproduction and infection of pepper. Spo- 
rangium and zoospore production was observed to decrease with 
increasing salinity levels, but disease severity increases with salin- 
ity levels. Furthermore, soil salinity increases salt injury and disease 
severity in P capsici-susceptible plants but not in P capsici-resistant 
plants. Additionally, soil water saturation does not predispose pep- 
per plants to infection by P. capsici, and nonagricultural soils are 
more conducive to asexual reproduction than agricultural soils. Sev- 
eral studies have examined the interaction of P capsici with other 
pathogenic microorganisms such as Verticillium dahliae (Sanogo 
2007a; Sanogo and Carpenter 2006) and beneficial soil microbiome 
(Li et al. 2019). 

Epidemiological and etiological studies are dependent on effi- 
cient detection and identification of isolates of P capsici recovered 

from soil, water, and plant tissues. Beginning in the late 1980s, 

several commercial serological assays for Phytophthora became 
available. The laboratory assays were based on double antibody 
sandwich enzyme-linked immunoassay (DAS ELISA) in a 96-well 
plate format with a polyclonal capture antibody and a monoclonal 
detection antibody. These were followed later by rapid (less than 10 
min) field-usable assays in flow-through and lateral flow formats. 
The assays are genus specific, detecting a wide array of Phytoph- 
thora species, including P. capsici, but cross-react with a few other 

oomycetes. Flow-through and ELISA assays were used successfully 
to detect P capsici in pepper and cucurbit tissues in Ohio (Miller 
et al. 1994). ELISA was also used to detect and quantify P cap- 
sici in soil (Miller et al. 1997); four pepper fields were intensively 
sampled, and P capsici was detected at low to moderately high 
levels but was highly heterogeneous, limiting the ability to predict 
P capsici levels in soil or ascertain treatment thresholds without 
intensive, cost-prohibitive sampling prior to planting. Commercial 
lateral flow assays are now widely used for routine diagnosis in the 
field and diagnostic lab of Phytophthora blight and diseases caused 
by other Phytophthora spp. when sporangia are not present on the 
sample, whereas PCR and isothermal nucleic acid amplification 
assays provide species-specific P capsici detection (Parada-Rojas 
et al. 2021). 

Hudson et al. (2020) developed a novel loop-mediated isother- 
mal amplification (LAMP) primer set that could rapidly identify P 
capsici in the field. This assay detects P capsici at inoculum concen- 
trations as low as 1.2 x 102 zoospores/ml, making it 40 times more 

sensitive than conventional PCR methods, and the results can be eas- 

ily visualized with colorimetric LAMP dye in the field. When tested 

FIGURE 3 
Structures formed by Phytophthora capsici. A and B, sporangia, with zoospores visible in the sporangium on the right in B. C, An oospore. Photo 

credits: A and €, Parada-Rojas and L. Quesada-Ocampo and B, S. Sanogo. 
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against closely related oomycete relatives of P capsici, including 
P sansomeana, P sojae, P cinnamomi, P palmivora, Pythium ulti- 

mum var, ultimum, and several others, it was still able to differentiate 

between the different pathogens and only showed positive results 
for P capsici. This LAMP assay was then used to test 42 irriga- 
tion ponds in nine counties in southern Georgia, and 10 ponds in 
five different counties were found to contain P capsici (Hudson 

et al. 2021). A summary of the morphological and molecular fea- 
tures used in the identification of P capsici has been provided by 
Parada-Rojas et al. (2021). 

Genetics and Genomics 

The increase in the epidemiological understanding of P cap- 
sici has been achieved through breakthroughs in many research 
areas, including the genetics and genomics of P capsici. Some 
of these breakthroughs came from studies focused on the rise of 
populations of P capsici resistant to the fungicides metalaxyl and 
mefenoxam (Parra and Ristaino 1998, 2001). These fungicides were 

quickly overcome by co-dominantly controlled resistance (Lamour 
and Hausbeck 2000). P capsici is a diploid organism with dormant 
sexual spores (oospores) to survive the winter and fallow periods. 
It should take at least 2 years to obtain isolates with full resistance 
(homozy gosity of the co-dominant alleles) based on studies to deter- 
mine the plausibility of young (weeks old) oospores contributing 
to overall genetic diversity within a single cropping season (e.g., 
continental United States for vegetables). These studies indicate 
that there is a strong dormancy period, and germination of what 
appear to be fully formed oospores led to the resulting “progeny” 
being identical to one or the other parent isolate (Al or A2 mating 
type) (Donahoo and Lamour 2008; Hurtado-Gonzales and Lamour 
2009), referred to as apomixis. Yet, full resistance (homozygosity) 
occurred within a single growing season. Detailed population ge- 
netic analyses revealed genetically isolated sexual populations, no 
clonal overwintering, fungicide application and resistance strongly 
correlated, and a curious caveat: newly resistant populations main- 
tained a high level of genetic diversity (Lamour and Hausbeck 
2001). Many in vitro crosses demonstrated that meiosis alone (due 

to sexual oospore dormancy) could not drive the rapid develop- 
ment of fully resistant, genotypically diverse populations (Erwin 
and Ribeiro 1996). A significant insight was gleaned performing 
reverse genetics on P capsici: An induced point mutation could 
rapidly become homozygous (or disappear) in asexual zoospore 
progeny of a mutagenized sample (Hulvey et al. 2010). At this 
point, there were no whole genome resources, and consequently, the 
process was poorly understood. The first whole genome sequence, 
based on a scheme of backcrossing to reduce heterozygosity, re- 
vealed a novel phenomenon known as loss of heterozygosity (LOH) 

Cc 
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(Lamour et al. 2012). Accordingly, diverse contiguous genomic 
regions of the oospore progenies” genomes had “converted” to ho- 
mozygosity, but not through the process of meiosis, which was 
performed as predicted by Mendelian inheritance across the re- 
mainder of their genomes. h essence, all the oospore progenies 
had at least some portion of their genomes where meiotic recombi- 
nation could not have produced the resulting allelic configurations 
(e.g., a length of contiguous Aa alleles sexually recombined with 
aa genotypes produced long stretches of AA genotypes). This phe- 
nomenon was not confined to one portion of the genome, and it 
was estimated that approximately 30% of the entire genome was 
impacted by LOH when assessing the progeny cumulatively. It was 
also shown that sequence coverage across the LOH regions did not 
support loss of a chromosome—simply that one haplotype was re- 
tained and the other lost (Lamour et al. 2012). Not surprisingly, the 
resulting sexual progeny displayed diverse phenotypes, including 
dramatic changes in virulence and pathogenicity. 

Further investigation of the stability of the P. capsici genome 
during asexual growth and sporulation (in the laboratory and within 
countries with large and long-lived clonal populations such as Peru 
and China) revealed that LOH was not limited to sexual crosses 

and was a common factor for asexual progeny (Gobena et al. 2012; 
Hu et al. 2013; Hurtado-Gonzales et al. 2008). Interestingly, whole 

genome sequencing of single-zoospore progeny revealed samples 
with regions that appeared to have variable ploidy, generally rang- 
ing from diploid to triploid, and further, continued growth of these 
samples could plausibly result in higher ploidy regions “collaps- 
ing” to the diploid state, thus revealing how an induced (or natural) 
recessive mutation (in an organism famous for its ability to quickly 
generate millions of sporangia and hundreds of millions of motile 
zoospores) could quickly bring an advantageous allele to the state 
of homozygosity (Hu et al. 2020). This underscores the impact of 
LOH within the context of asexual and sexual reproduction. There 
are no new alleles —simply the mitotic propagation of progeny with 
regions that were initially heterozygous and are now homozygous. 
The most basic challenge to scientific inquiry is being able to repli- 
cate experiments where it is crucial that the isolate (or isolates) 

under investigation retains the genomic structure (e.g., complement 
of heterozygosity) that exists while they are in the field or while 
being used in laboratory, greenhouse, or field studies. This work 
clearly shows that mitotic progeny are not always faithful copies 
of the clonal parent; instead, they are composed of many genomic 
variations, which can lead to rapid changes in growth morphology, 
chemical sensitivities, and virulence and pathogenicity (Hu et al. 
2020). For example, in the work of Hu et al. (2020), the investiga- 

tion of 241 AZ mating type isolates revealed that 74% had switched 
to the Al mating type (the A2 is reported to be controlled by a 
mating type region in the heterozygous state). The Al mating type 
was stable. It is common when sharing isolates with other research 
groups to have them “ask for another copy” as the isolates being 
used are no longer able to perform as they did previously (Lamour 
2013). 

The occurrence of the phenomenon of LOH during sexual and 
asexual processes has significance in the genetic diversity of P cap- 
sici. From several studies, it has emerged that P capsici does not 
persist clonally over multiple years in regions with a fallow or win- 
ter period (e.g., North America), and it may form geographically 
distinct populations with minimal gene flow among populations, 
restricting sexual reproduction to within geographically distinct 

populations of P capsici (that may be relatively closely located, as 
close as 1 hectare distance) (Dunn et al. 2010; Lamour and Hausbeck 

2002; Quesada-Ocampo et al. 2011; Siegenthaler et al. 2022). 

Several phenotypic markers have been employed to assess varia- 
tionin populations of P capsici and other plant pathogens, including 

response to temperature and fungicides, mating types, and virulence 

attributes. Using response to temperature, Bowers et al, (2007) were 
able to separate temperate and tropical isolates of P capsici into two 
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distinct groups. Separation based on temperature response was sup- 
ported by amplified fragment length polymorphism analysis, with 
low genetic diversity among temperate isolates and high genetic di- 
versity among tropical isolates. Some studies found no correlation 
between phenotypic markers and molecular markers (Silvar et al. 
2006). 

Within P capsici, several physiological races or virulence groups 
have been identified using host differentials in pepper (Barchenger 
etal. 2018; da Costa Ribeiro and Bosland 2012; Glosier et al. 2008; 

Jiang et al. 2015; Monroy-Barbosa and Bosland 2011; Oelke et al. 
2003; Sy et al. 2008). In many vegetable growing areas, both mat- 
ing types of P capsici (Al and A2) are present in production fields, 
and consequently, new races may arise as a result of recombination 
between mating types. The existence of physiological races or vir- 
ulence groups and mating types represents a serious challenge to 
the durability of genetic resistance to P capsici. 

Resistance and Susceptibility of Plant Hosts 

With the goal of using host resistance in managing Phytophthora 
blight, numerous studies have been conducted on understanding the 
susceptibility and resistance of crops to P. capsici. Some important 
components of this effort have been the identification of sources 
of resistance, inheritance patterns, and genes associated with resis- 

tance. Multiple sources of resistance to P. capsici (root and fruit rot 
resistance) have been reported in the literature in species of Cap- 
sicum, Cucurbita, and Citrullus (Candole et al. 2010; Kousik et al. 

2012, 2014b, 2018, 2021; Meyer and Hausbeck 2013; Naegele and 

Hausbeck 2020; Ortega et al. 1991; Walker and Bosland 1999). 

Identification of the resistance and susceptibility of various hosts is 
based on a wide array of symptomatic reactions following natural 
and artificial inoculations with P capsici under field and controlled- 

environment conditions. Observed symptomatic reactions were cor- 
related with plant and fruit characteristics. 

In Capsicum spp., the most prominent resistance source is 
*Criollo de Morelos 334”, a landrace from Mexico (Ortega et al. 

1991; Walker and Bosland 1999). At Texas A&M University, the 

resistance selection program has been focused on the wild C. an- 
nuum accession “Fidel”. This is due to less linkage drag experienced 
in F; and backcross families for fruit quality traits and yield. Mul- 
tiple families have been developed with this line crossed with elite 
Anaheim, cayenne, ancho, and jalapefio parents. Resistance expres- 

sion appears to be recessive as less than 10% of F; plants were 
resistant after inoculation with highly virulent strains of P. capsici 
(Gonzalez-Paredes 2004). 

Many other potential sources of resistance in Capsicum have been 
reported (Barchenger et al. 2018; Candole et al, 2010; Parada-Rojas 
and Quesada-Ocampo 2019). The focus in all screening efforts has 
been the identification of resistance to root rot, foliar blight, and 

fruit rot (Barchenger et al. 2018). Naegele and Hausbeck (2020) 

evaluated pepper lines for P capsici resistance, comparing root 
rot resistance to fruit rot resistance and genetic structure. Pepper 
accessions with resistance to root and fruit rot belonging to differ- 
ent genetic subpopulations were identified and are candidates for 

partial-resistance loci to incorporate into new cultivars. 

In Citrullus, although Phytophthora fruit rot of watermelon was 
described in the 1940s, sources of resistance were identified only 

in 2012 (Kousik et al. 2012). Germplasm for use in breeding pro- 

grams (Kousik et al. 2014b) with broad resistance to P capsici 

isolates from across the United States (Kousik et al. 2021) has 

also been developed from these resistance sources. Fruits of the 

resistant germplasm are resistant to P capsici at all stages of de- 
velopment (Kousik et al. 2018). These resistant germplasm lines 

belong to Citrullus mucosospermus and can be easily crossed with 
cultivated watermelon (C. lanatus). However, ithas been a challenge 

to incorporate this resistance into usable germplasm lines. 
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Fruit rot has also been the focus of screening germplasm for re- 
sistance to P. capsici in Cucurbita. Alzohairy et al. (2020) used 

scanning electron microscopy imaging to show a high correla- 
tion between a thickened cuticle and epidermis in maturing winter 
squash fruit and disease resistance, indicating that a structural bar- 
rier forms as fruit matures. Pathogen hyphas were observed to 
penetrate susceptible Chieftain butternut (C. moshata) fruit exo- 
carp at 7 days post-pollination (dpp) directly from the surface 6 h 
postinoculation (hpi), degrading the fruit cell wall within 48 hpi; 
resistant fruit (14, 21 dpp) was unaffected. Mature fruit of pump- 
kins with hard, gourd-like rinds is less susceptible to Phytophthora 
fruit rot than pumpkins producing conventional rinds (McGrath and 
Superak 1999). Middle Eastern squash is less susceptible than yel- 
low summer squash and thus is a potential alternative crop and 
source of resistance in breeding (McGrath et al. 1994). 

Histological, cytological, and biochemical changes in susceptible 
and resistant hosts have been described in several studies (Piccini 

et al. 2019). For example, in the Capsicum-Phytophthora capsici 
pathosystem, in susceptible hosts, P capsici colonizes all cortical 
and vascular tissues of secondary roots and taproots, with a high 
number of hyphae shown on these roots; in contrast, in resistant 

hosts, colonization is limited to a few secondary roots with the 
presence of very few hyphae (Dunn and Smart 2015). Additionally, 
deposition of callose in the xylem of roots was reported to be denser 
in infected, resistant plants than in noninfected, resistant plants, 
whereas such deposition was not observed in susceptible infected 
and noninfected plants (Piccini et al, 2019). 

Extensive research has been conducted on the differential expres- 
sion of several plant-defense genes during infections of susceptible 
and resistant plants by P. capsici (Ayala-Dofias et al. 2021; Bagheri 
et al. 2020; Richins et al. 2010). Additionally, several genes have 

been demonstrated to be expressed during the occurrence of in- 
duced resistance to P. capsici as mediated by colonization of plants 
by nonpathogenic microorganisms such as species of Trichoderma 
and by application of plant activators such as acibenzolar-S-methyl 
(Bae et al. 2011; Bellini et al. 2021). 

Inheritance studies have elucidated the genetic system of 
host—parasite interactions in various pathosystems (Ortega et al. 
1991; Walker and Bosland 1999). Resistance to P capsici is com- 

plex and may be controlled by multiple dominant and recessive 
genes (Barchenger etal. 2018; Crosby et al. 2012; Gonzalez-Paredes 
2004). Additionally, in Capsicum spp., there is evidence that ex- 
pression of disease resistance may be hampered by the presence of 
inhibitor genes (Reeves et al. 2013). Advances in genomics have 
led to the characterization of quantitative trait loci (QTLs) associ- 

ated with resistance in Capsicum using linkage analysis (Lozada 
et al. 2021a). A genome-wide association study was also previ- 
ously implemented, and the short arm of pepper chromosome 5 has 
been pinpointed as a major genomic region harboring P. capsici 
resistance QTLs (Siddique et al. 2019). Evidence from meta-QTL 

analysis (Lozada et al. 2021b) and transcriptomics (Du et al. 2021) 

further identified chromosome 5 for resistance to P capsici. Marker- 
assisted selection could therefore be targeted at this chromosomal 
region for the genetic improvement of P capsici disease resistance 
in Capsicum spp. 

Management Approaches 

When Leonian completed his description of P capsici in 1922, 

he recommended two main control measures: seed selection and 

application of fungicides. Research conducted since then has led to 

the identification of multiple strategies that may be used to reduce 
the impact of P capsici in various crops. 

Knowledge of the field history is of paramount importance in 
the mitigation of Phytophthora blight. Planting in fields with no 
history of the occurrence of P capsici is ideal. However, care must 

be exercised to prevent the introduction of the pathogen into such 

926 PHYTOPATHOLOGY? 

F REVMIEVN 

fields by cleaning farm equipment used in infested fields, by hand 
sanitation after handling fruits in fields with high incidence and 
severity of the disease, and by avoiding infested irrigation water 
from ponds and rivers. 

In fields with a history of the pathogen, risk mitigation centers 
on the reduction of inoculum potential (Sanogo 2019) and main- 
taining it at nonthreatening levels through water management, crop 
rotation, fungicide application, and integrated systems. Water man- 
agement is a key component for mitigating the risk posed by P 
capsici (Sanogo and Ji 2013). This component involves using high- 
quality irrigation water, minimizing saturation conditions in soil by 
using water-efficient irrigation systems such as drip irrigation, and 
growing plants in raised beds. When transplanting into raised beds, 
itis critical to ensure the hole is filled with soil so water cannot pool 
around the plant stem. All of these efforts can be thwarted by in- 
tense rainfall events, which are predicted to become more common 
with climate change. 

In a quest for developing effective irrigation water treatments, 
Granke and Hausbeck (2010) evaluated the efficacy of several al- 

gaecides containing active ingredients such as sodium hypochlorite, 
copper sulfate, chelated copper, or sodium carbonate peroxyhydrate 
on the infectivity of zoospores of P capsici. Zoospores were no 
longer motile within 3 min of water treatment, and zoospore mortal- 
ity was increased to over 80% in some treatments and reached 100% 
in others. Water may also be effectively treated using synthetic 
nonionic surfactants and biosurfactants (rhamnolipid and saponin), 
which have been demonstrated to be highly effective against dis- 
eases caused by zoosporic pathogens, including P. capsici, in recir- 
culating hydroponic systems (Nielsen et al. 2006; Pagliaccia et al. 
2007; Stanghellini et al. 1996). On the other hand, Lewis Ivey and 

Miller (2013) found that chlorine dioxide injected into irrigation 
water at concentrations designed to inhibit coliform bacteria did 
not reduce P capsici mycelial growth or sporangial germination 
and reduced zoospore populations by less than 50%. 

Phytophthora blight may be reduced with crop rotation, at least 
for 4 years, and management inputs such as bioactive crop residues 
from Brassicas with high glucosinolate content (McGrath and 
Menasha 2013) and other agricultural byproducts including organic 
materials from non-host crops, yard-waste compost, or brewery- 
waste compost (Babadoost and Payon 2013; Lujan et al, 2021; 
McGrath and Rangarajan 2002; Tian and Babadoost 2004) and 
biopesticides. The use of vegetable crops in the Brassicaceae fam- 
ily as biofumigants must be considered carefully. Members of this 
family have not been considered as hosts for P capsici. However, 
Krasnow and Hausbeck (2015) observed that P capsici reduced the 

fresh weight of all Brassica spp. evaluated and killed B. juncea 
“Pacific Gold" plants, commonly recommended for biofumigation. 
Thus, using Pacific Gold mustard as a biofumigant might not reduce 
soil populations of P. capsici (Krasnow and Hausbeck 2015). 

Host resistance is important to the management of Phytoph- 
thora blight. Screening efforts have identified several sources of 
genetic resistance that may be incorporated in the development of 
commercial cultivars. However, progress has been made only in 
Capsicum pepper, especially in bell pepper. Resistance is to root 
and crown rot. The evaluation of bell pepper breeding lines and 
cultivars with intermediate or high resistance to P. capsici has led 
to the commercial development and release of resistant cultivars 
and improved bell pepper production in regions where P. capsici 
remains a significant threat (Wyenandt and Kline 2019). The re- 

lease and adoption of bell pepper cultivars resistant to P. capsici 
have provided a powerful tool to pepper growers in many parts of 
the United States. In 1996, the Phytophthora-resistant bell pepper 

“Paladin? was released for commercial use and subsequently be- 
came the most widely grown bell pepper in states such as New Jersey 
(Ristaino and Johnston 1999). However, over the years, P. capsici 

resistance in Paladin has broken down in some fields in southern 
New Jersey. Since the release of Paladin, other bell pepper cultivars
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with intermediate resistance to P capsici have been released and 
widely adopted by bell pepper growers in New Jersey and other 
states. However, as the use of these resistant cultivars increased, the 

development of “silvering” or skin separation in harvested fruit has 
become an issue for some growers over the past two decades. Re- 
search in New Jersey has demonstrated that neither N fertility nor 
the type of production system affects the development of “silver- 
ing” in fruit but that it is more related to genotype (Kline et al. 2011; 
Wyenandt et al. 2017). Resistant cultivars commercially available 
in 2022 include sweet bell types (“Archimedes”, “Aristotle”, “Bayo- 
net”, “Cortes”, 'Currier”, “Declaration”, “Galileo”, Ilyn”, Intruder”, 

'Lulton”, “Majestic Red”, “Mercer”, “Paladin”, 'Playmaker”, 'Re- 

markable”, “Revolution”, “Sailfish”, 'Snapper”, “Tarpon”, “Telestar”, 

“Turnpike X5R”, and “Vanguard”) and hot types ('Becan”, 'Don 
Matias”, “Durango”, 'Legendario”, “Sargento”, “Sequoia”, “Spitfire”, 

“Tzotzil”, and *Unique”). 
Fungicides have been the focus of numerous research publica- 

tions and are key tools in the management of P capsici targeting 
soil, seed, and plant in various solanaceous and cucurbitaceous 

crops (Babadoost and de Souza 2019; Babadoost and Islam 2003; 

Hausbeck and Lamour 2004; Kousik et al. 2011, 2014a, 2017; 

Matheron and Porchas 2000, 2002, 2014; McGrath and Fox 2008; 

Miller et al. 2018; Sanogo and Ji 2012; Wyenandt 2014; Wyenandt 

and Kline 2014). Old and new chemistries used include mefenoxam, 

fluopicolide, oxathiapiprolin, dimethomorph, mandipropamid, and 

cyazofamid. However, in several regions, the development of pop- 
ulations of P capsici resistant to fungicides has been observed 
for mefenoxam, fluopicolide, and cyazofamid (Dunn et al. 2010; 

Jackson et al. 2012; Parada-Rojas and Quesada-Ocampo 2018, 

2022; Parra and Ristaino 1998, 2001; Keinath 2007; Kousik and 

Keinath 2008; Lamour and Hausbeck 2000; Wang and Ji 2021). Ad- 

ditionally, Siegenthaler and Hansen (2021) first reported resistance 
of P capsici to oxathiapiprolin, a relatively new active ingredient. 

Other avenues that have been researched for application in 
management of P capsici include biopesticides and other biora- 
tional tools such as plant activators, botanical extracts, inorganic 

substances, and microbial formulations. Plant activators such as 

acibenzolar-S-methyl, botanical extracts such as phenolic extracts 
from pecan shell and husk, Trichoderma hamatum T382, and ex- 

posure to red light have been demonstrated to elicit induced resis- 
tance with a significant reduction in disease incidence and severity 
(Islam et al. 2002; Khan et al. 2004; Lujan et al. 2021; Matheron 

and Porchas 2002). Inorganic substances such as silicon have also 
been shown to reduce disease severity and to enhance plant growth 
in peppers (French-Monar et al. 2010). Research conducted on nu- 
merous microbial biopesticides documented that their efficacy has 
been inconsistent across crops, locations, and years (McGrath and 

Sexton 2019; Sanogo 2020; Sanogo and Lujan 2021). Microbial 
biopesticides, when used in conjunction with chemical fungicides, 
may provide an avenue for hampering the development of P cap- 
sici strains resistant to chemical fungicides (Wan and Liew 2020). 

Although it is known that these avenues are used by growers in var- 
ious regions, there have been no reports that document the extent 
to which each one is used. 

Phytophthora blight must be managed using a combination of 
tactics, including varietal resistance, cultural practices, crop rota- 

tion, fungicides, and biopesticides. Combinations of tools have been 

the focus of several studies and are pivotal to the sustainable man- 
agement of P capsici (Babadoost et al. 2010; Foster and Hausbeck 

2010; Granke et al. 2012; Hausbeck and Lamour 2004; Krasnow 

et al. 2017; Ristaino and Johnston 1999; Saltos et al, 2022; Sanogo 

and Ji 2012; Sanogo and Lujan 2021). 

Concluding Remarks 

Research conducted over the past 100 years has yielded a wealth 

of information on P capsici that has increased our understanding of 
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the biology and management of this global pathogen. Basic research 
is poised to continue to unravel the intricacies of the life cycle of P 
capsici using emerging technologies in genetics, genomics, physi- 
ology and biochemistry, and soil ecology and biology. In particular, 
the plasticity of the P capsici genome in the laboratory and the field 
presents significant challenges and requires further investigations. 
Applied research, especially focused on evaluating management 
tools in commercial and research fields, has been and continues to 

be challenging. Large in-field and year-to-year changes in disease 
occurrence in fields exacerbates effective blocking and research suc- 
cess. For example, fungicide treatments can be overwhelmed when 
an intensive rainstorm, especially occurring early in an experiment, 
creates highly favorable conditions for the development of Phy- 
tophthora blight. On the other hand, no disease may occur in the 
same research field when rainfall is limited despite use of excessive 
irrigation. Research aimed at increasing understanding of the spatio- 
temporal dynamics of the development of Phytophthora blight and 
the impact of mitotic genomic rearrangements (e.g., LOH) will be 
crucial for advances in the field evaluation of all management tools. 
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