56 Highlights of Linear Algebra

I.8 Singular Values and Singular Vectors in the SVD

The best matrices (real symmetric matrices .S) have real eigenvalues and orthogonal
eigenvectors. But for other matrices, the eigenvalues are complex or the eigenvectors
are not orthogonal. If A is not square then Az = Az is impossible and eigenvectors
fail (left side in R™, right side in R™). We need an idea that succeeds for every matrix.

The Singular Value Decomposition fills this gap in a perfect way. In our applications,
A is often a matrix of data. The rows could tell us the age and height of 1000 children.
Then A is 2 by 1000: definitely rectangular. Unless height is exactly proportional to age,
the rank is 7 = 2 and that matrix A has two positive singular values o; and 2.

The key point is that we need two sets of singular vectors, the u’s and the v’s.
For a real m by n matrix, the n right singular vectors vy, ..., v, are orthogonal in R"™.
The m left singular vectors wui,...,u, are perpendicular to each other in R™.
The connection between n v’s and m u’s is not Az = Az. That is for eigenvectors.
For singular vectors, each Av equals ou :

Avy =0o1u1 - - Avp = 0pUy Avr-i-l =0 :+ Av, =0 1

I have separated the first 7 v’s and u’s from the rest. That number 7 is the rank of A, the
number of independent columns (and rows). Then r is the dimension of the column space
and the row space. We will have r positive singular values in descending order
012022 ...>20,>0. The last n —r v’s are in the nullspace of A, and the
last m — r s are in the nullspace of AT.

Our first step is to write equation (1) in matrix form. All of the right singular vectors
v to v, go in the columns of V. The left singular vectors u; to u,, go in the columns
of U. Those are square orthogonal matrices (VT = V~1 and UT = U~!) because
their columns are orthogonal unit vectors. Then equation (1) becomes the full SVD,
with square matrices V and U :

AV =UX Alvi ..V .. 0 |=| U1 .. Ur .. Up

2
You see Avy, = o uk in the first 7 columns above. That is the important part of the SVD.
It shows the basis of v’s for the row space of A and then w’s for the column space.
After the positive numbers o1, ..., 0, on the main diagonal of X, the rest of that matrix
is all zero from the nullspaces of A and AT,

The eigenvectors give AX = XA. But AV = UX needs two sets of singular vectors.
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Example 1 3 o111 -1} _ 1 1 -3 3v5

AV =UX 4 5|,~|1 1| vio| 3 1 NG
The matrix A is not symmetric, so V is different from U. The rank is 2, so there are two
singular values o1 = 3v/5 and 03 = v/5. Their product 3 - 5 = 15 is the determinant of A
(in this respect singular values are like eigenvalues). The columns of V' are orthogonal and

the columns of U are orthogonal. Those columns are unit vectors after the divisions by v/2
and /10, so V and U are orthogonal matrices: V' =V ~tand UT = U1,

That orthogonality allows us to go from AV = UX to the usual and famous
expression of the SVD : Multiply both sides of AV = UX by V! = VT

The Singular Value Decompositionof Ais A =UXZ V7T, 3)

Then column-row multiplication of UY. times VT separates A into r pieces of rank 1:

Pieces of the SVD A=UsVT = cyuvT + - + opu,vl. @)

In the 2 by 2 example, the first piece is more important than the second piece because

o1 = 3v5 is greater than oy = V5. To recover A, add the pieces alul'vrlr + o2u2v;f:

3v6_[17[11] V6 [-3][-11]_3f11] 17 38 -3] [30
V1023 V102! 1 T 2183|'2|—-1 1| |45F¢F
This simplified because \/5/ \/ﬁ \/§ equals 1/2. Notice that the right singular vectors
(1,1) and (—1,1) in V are transposed to rows v, va of V'T. We have not yet explained
how V and U and X were computed !

The Reduced Form of the SVD

The full form AV = UX in equation (2) can have a lot of zeros in ¥ when the rank of A
is small and its nullspace is large. Those zeros contribute nothing to matrix multiplication.
The heart of the SVD is in the first 7 v’s and u’s and o’s. We can reduce AV = UX
to AV, = U,X, by removing the parts that are sure to produce zeros. This leaves the
reduced SVD where X,. is now square :

- g1
AV, =U.S, Al|lwv .. v |=|w .. u g )
row space column space Or
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‘We still have VTT V,. = I and U;F U, = I, from those orthogonal unit vectors ©’s and u’s.
But when V;. and U, are not square, we can no longer have two-sided inverses: V, VT # T
and U, UT # 1.

1/3 12 2
Example V.= |2/3 andVTTVrz[l]butVTVrng 2 4 4 |=rankl.
2/3 2 4 4

Problem 21 shows that we still have A = U, X, VTT. The rest of UL VT contributes
nothing to A, because of those blocks of zeros in ¥. The key formula is still A =
alulv;r + -+ arurv?. The SVD sees only the r nonzeros in the diagonal matrix 3.

The Important Fact for Data Science

Why is the SVD so important for this subject and this book ? Like the other factorizations
A =LUand A = QR and S = QAQT, it separates the matrix into rank one pieces.
A special property of the SVD is that those pieces come in order of importance.
The first piece Ululvrf is the closest rank one matrix to A. More than that is true:
The sum of the first k pieces is best possible for rank k.

A = o1u1vT + -+ + orukv; is the best rank k approximation to A :

Eckart-Young If B has rank k then ||A — A,|| < ||A — Bj||. (6)

To interpret that statement you need to know the meaning of the symbol ||4 — B]|.
This is the “norm” of the matrix A — B, a measure of its size (like the absolute value
of a number). The Eckart-Young theorem is proved in Section 1.9.

Our first job is to find the v’s and u’s for equation (1), to reach the SVD.

First Proof of the SVD

Our goal is A = UXV'T. We want to identify the two sets of singular vectors, the u’s and
the v’s. One way to find those vectors is to form the symmetric matrices AT A and AAT :

ATA = (v2TUT) (UzvT) = veTevT (M
AAT = (Uzv?h) (veTUT) =UuzszTUT ®

Both (7) and (8) produced symmetric matrices. Usually ATA and AAT are different.
Both right hand sides have the special form QAQT. Eigenvalues are in A = 2T or
YX.T. Eigenvectors arein Q = V or Q = U. So we know from (7) and (8) how V and
U and ¥ connect to the symmetric matrices AT A and AAT.
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V contains orthonormal eigenvectors of AT A
U contains orthonormal eigenvectors of AAT

o2 to o2 are the nonzero eigenvalues of both AT Aand AAT

We are not quite finished, for this reason. The SVD requires that Av, = opu.
It connects each right singular vector v to a left singular vector ug, for k = 1,...,7.
When I choose the v’s, that choice will decide the signs of the u’s. If Su = Au then
also S(—u) = A(—u) and I have to know the correct sign. More than that, there is
a whole plane of eigenvectors when A is a double eigenvalue. When I choose two v’s
in that plane, then Av = owu will tell me both w’s. This is in equation (9).

The plan is to start with the v’s. Choose orthonormal eigenvectors vy,...,v,
of AT A. Then choose o, = /Ax. To determine the u’s we require Av = ou:
’, T 2 Avk
v’s then u’s AT Av, =o2v, andthen uy=—— for k=1,...,7 | 9
Ok

This is the proof of the SVD ! Let me check that those u’s are eigenvectors of AAT :

T 2
AATy; = AAT<ﬂ’ﬁ> = A(A A”’“) = ATk — 52, (10)

Ok Ok Ok

The v’s were chosen to be orthonormal. I must check that the u’s are also orthonormal:

3

Av Av v (ATAvy) o 1 ifj=k
T, _ J kY _ Z35 _ 9% T, _ g
u]uk—(%) (ak>_ oon oy 1k {0 it j2e D

Notice that (AAT)A = A(ATA) was the key to equation (10). The law (AB)C =
A(BC) is the key to a great many proofs in linear algebra. Moving the parentheses is a
powerful idea. This is the associative law.

Finally we have to choose the last n — r vectors v,4; to v, and the last m — r vectors
Ur41 tO Uy, This is easy. These v’s and w’s are in the nullspaces of A and AT,
We can choose any orthonormal bases for those nullspaces. They will autematically be
orthogonal to the first v’s in the row space of A and the first «’s in the column space.
This is because the whole spaces are orthogonal: N(4) L C(AT) and N(AT) L C(A).
The proof of the SVD is complete.

Now we have U and V and ¥ in the full size SVD of equation (1). You may have
noticed that the eigenvalues of AT A are in ©TY, and the same numbers o? to o2 are
also eigenvalues of AAT in ¥XT. An amazing fact: B A always has the same nonzero
eigenvalues as AB : 5 pages ahead.
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4 5

With rank 2, this A has two positive singular values o; and o. We will see that o is larger
than Amax = 5, and oy is smaller than A, = 3. Begin with ATA and AAT :

25 20 9 12
20 25 12 41

Example 1 (completed) Find the matrices U, %,V for A = [ 3.0 ]

ATA:[ AAT=[

Those have the same trace (50) and the same eigenvalues o = 45 and 02 = 5. The square
roots are 07 = v/45 and o2 = /5. Then 0102 = 15 and this is the determinant of A.
A key step is to find the eigenvectors of AT A (with eigenvalues 45 and 5):
25 20 |[1 1] 25 20 ][ -1 -1
[20 25][1]_45[1 [20 25}[ 1}_5[ 1]

Then v, and v, are those orthogonal eigenvectors rescaled to length 1. Divide by v/2.

1771 1 (-1 Av;
Right singular vectors v; = — Vg = — Left singular vectors u; =
g sing : ﬁ_l] R [ 1] ® o
Now compute Av; and Avy which will be o1u; = V45 u; and gaug = VBus:
3 1 1 1
Aoy = > - \r45_[ ] -
' \/5[3] V1o | 3 a
1 -3 1 -3
Avy = — = \/5—[ ] = ou
’ ﬁ[ 1} viol 1 2

The division by /10 makes u; and uy orthonormal. Then o7 = /45 and 09 = NG
as expected. The Singular Value Decomposition of A is U times X times V'T.

1 1 -3 V45 171 -1
\/10[3 1} [ \/5] \/5[1 1] a2
U and V contain orthonormal bases for the column space and the row space of A
(both spaces are just R?). The real achievement is that those two bases diagonalize A:
AV equals UX. The matrix A = UXVT splits into two rank-one matrices,
columns times rows, with \/5 \/—16 =+/20.

V45 [ 1 1 VB[ 3 -3 30

T T _ - = =
alulvl—i—cfzuzvz—m[?.s]—t—m[_l 1] [45] A.

Every matrix is a sum of rank one matrices with orthogonal w’s and orthogonal v’s.

U=
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Question: If § = QAQT is symmetric positive definite, what is its SVD ?

Answer: The SVD is exactly USVT = QAQT. The matrix U = V = @ is orthogonal.
And the eigenvalue matrix A becomes the singular value matrix X.

Question: If S = QAQT has a negative eigenvalue (Sx = —a ), what is the singular
value and what are the vectors v and w ?

Answer: The singular value will be ¢ = +a (positive). One singular vector (either u
or v) must be —x (reverse the sign). Then Sz = —ax is the same as Sv = ou.
The two sign changes cancel.

Question : If A = @ is an orthogonal matrix, why does every singular value equal 1 ?

Answer: All singular values are ¢ = 1 because ATA = QTQ = I. Then ¥ = I.
But U = Q and V = [ is only one choice for the singular vectors » and v :

Q=UZVT canbe Q = QIIT orany Q = (QQ:1)IQT.
Question : Why are all eigenvalues of a square matrix A less than or equal to o1 ?
Answer : Multiplying by orthogonal matrices U and VT does not change vector lengths :
l|Az|| = ||USVTz|| = ||Z2VT2|| < 01||VTz|| = o1]||| forallz.  (13)
An eigenvector has || Az|| = |\ ||z||. Then (13) gives |A| ||z|| < o1 ||z|| and |A]| < o75.
Question: If A = zyT has rank 1, what are u; and v; and o ? Check that |\;| < o;.

Answer : The singular vectors u; = x/||z|| and v1 = y/||y|| have length 1. Then oy =
||z|| ||y|] is the only nonzero number in the singular value matrix Y. Hereis the SVD:

Rank 1 matrix  zy “ T (||l ||||y|]) Tl ” = u01v7.

Observation The only nonzero eigenvalue of A = xy” is A\ = yTx. The eigenvector
is = because (xyT)z = z(yTz) = Ax. Then |N| = |yTz| < o1 = ||y||l|z]|-
The key inequality |A\;| < oy becomes exactly the Schwarz inequality.

Question : What is the Karhunen-Loéve transform and its connection to the SVD ?

Answer: KL begins with a covariance matrix V' of a zero-mean random process. V is
symmetric and positive definite or semidefinite. In general V' could be an infinite matrix
or a covariance function. Then the KL expansion will be an infinite series.

The eigenvectors of V, in order of decreasing eigenvalues 02 > 02 > ... > 0, are the
basis functions u; for the KL transform. The expansion of any vector v in an orthonormal
basis w1, Uz, ...is v = 3 (ulv)u,.

In this stochastic case, that transform decorrelates the random process: the u; are
independent. More than that, the ordering of the eigenvalues means that the first k terms,
stopping at (w} v)uk, minimize the expected square error. This fact corresponds to the
Eckart-Young Theorem in the next section 1.9.

The KL transform is a stochastic (random) form of Principal Component Analysis.
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The Geometry of the SVD

The SVD separates a matrix into A = UX VT : (orthogonal) x (diagonal) x (orthogonal).
In two dimensions we can draw those steps. The orthogonal matrices U and V rotate the
plane. The diagonal matrix ¥ stretches it along the axes. Figure 1.11 shows rotation
times stretching times rotation. Vectors x on the unit circle go to Az on an ellipse.

vV o1Uy

Figure I.10: U and V are rotations and possible reflections. Y. stretches circle to ellipse.

This picture applies to a 2 by 2 invertible matrix (because o1 > 0 and o2 > 0). First
is a rotation of any  to V' Tz. Then X stretches that vector to XV Ta. Then U rotates to
Az = ULV Tx. We kept all determinants positive to avoid reflections. The four numbers
a, b, ¢, d in the matrix connect to two angles 6 and ¢ and two numbers o1 and o3.

a b | | cos§ —sind o1 cos¢ sing (14)
c d| | sinf cosf Iop) —sing cos¢ |-
Question. If the matrix is symmetric then b = ¢ and A has only 3 (not 4) parameters.
How do the 4 numbers 0, ¢, 01, 02 reduce to 3 numbers for a symmetric matrix S?

The First Singular Vector v,

The next page will establish a new way to look at v;. The previous pages chose the v’s
as eigenvectors of AT A. Certainly that remains true. But there is a valuable way to
understand these singular vectors one at a time instead of all at once. We start with v
and the singular value o;.

|Az||

Maximize the ratio
|||

. The maximum is o, at the vector £ = v;. (15)

The ellipse in Figure 1.10 showed why the maximizing « is v;. When you follow v,
across the page, it ends at Av; = oyu; (the longest axis of the ellipse). Its length started
at ||v|| = 1 and ended at || Av,|| = 01.
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But we aim for an independent approach to the SVD ! We are not assuming that we
already know U or X or V. How do we recognize that the ratio ||Az||/||z|| is a maximum
when & = v1 7 Calculus tells us that the first derivatives must be zero. The derivatives will
be easier if we square our function :

||[Az|> zTATAz «"Sz

Problem : Find the maximum value A of = (16)
||| |2 zTx Tz
This “Rayleigh quotient” depends on 21, ..., xz,. Calculus uses the quotient rule, so we
need
0 0
G (mTz) = 30 (a;% TE S +:c,i) = 2(z); 17)

% (wTS;c) = a—i—z(z Z Sija:iwj> =2 Z Sijz; =2 (Sw)i (18)

i g J
The quotient rule finds 8/0z; (zT Sz /xTx). Set those n partial derivatives of (16) to zero:
(me)2(Sm)i— (mTSm)z(m)fo fori=1,...,n (19)

Equation (19) says that the best x is an eigenvector of S = AT A

TSz ||Az|?

2Sz = 2z and the maximum value of =
zTe [l

is an eigenvalue X of S.

3

The search is narrowed to eigenvectors of S = AT A. The eigenvector that maximizes is
x = wv;. The eigenvalue is \; = a%. Calculus has confirmed the solution (15) of
the maximum problem—the first piece of the SVD.

For the full SVD, we need all the singular vectors and singular values. To find vy
and o3, we adjust the maximum problem so it looks only at vectors & orthogonal to v;.

.. ||Az .
Maximize “”—Hll under the condition v;rw = 0. The maximumis o, at © = vs.
T
“Lagrange multipliers” were invented to deal with constraints on z like viz = 0.

T

And Problem 3 gives a simple direct way to work with this condition v; = 0.

In the same way, every singular vector v, gives the maximum ratio over all vectors
x that are perpendicular to the first vy, . . ., . The left singular vectors would come from
maximizing ||ATy||/||y]l. We are always finding the axes of an ellipsoid and the
eigenvectors of symmetric matrices AT A or AAT.

El
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The Singular Vectors of AT

The SVD connects v’s in the row space to u’s in the column space. When we transpose
A=UZVT, wesee that AT = VETUT goes the opposite way, from u’s to v’s :

ATy, = opvpfork =1,...,7 ATy, =0fork=r+1,...,m (20)
Multiply Avy, = opug, by AT. Remember AT Avy, = 02wy, in equation (9). Divide by 0.

A Different Symmetric Matrix Also Produces the SVD

We created the SVD from two symmetric matrices AT A and AAT. Another good way
uses one symmetric block matrix S. This matrix has r pairs of plus and minus eigenvalues.
The nonzero eigenvalues of this matrix S are o and —oy, and its size is m + n:

— 0 A : Uk — Uk
S = [ AT 0o ] has eigenvectors [ - } and { - ]

We can check those eigenvectors directly, remembering Avy, = orpuk and ATy, = ooy :

0 Al[zxur] [ Avx . Uk —uy |
[AT O:II:vk]_[iATuk]—ak[’Uk]and‘ak[’Uk . 21

That gives 2r eigenvalues. The eigenvectors are orthogonal : —uj uy + vivgy = —1+ 1.
Can you see the other (m — ) + (n — r) eigenvectors with A = 0 for that block matrix ?
They must involve the remaining «’s and v’s in the nullspaces of AT and A.

AB and B A : Equal Nonzero Eigenvalues
If Aism by n and B is n by m, then AB and B A have the same nonzero eigenvalues.

Start with ABx = Ax and A # 0. Multiply both sides by B, to get BABx = A\Bz.
This says that Bz is an eigenvector of BA with the same eigenvalue A—exactly what we
wanted. We needed A # 0 to be sure that this eigenvector Bz is not zero.

Notice that if B is square and invertible, then B~}(BA)B = AB. This says that
BA is similar to AB : same eigenvalues. But our first proof allows A and B to be m by n
and n by m. This covers the important example of the SVD when B = AT. In that case
AT A and AAT both lead to the singular values of A.

If m > n, then AB has m — n extra zero eigenvalues compared to BA.



