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Coleoid cephalopod molluscs comprise squid, cuttlefish and octopuses,

and represent nearly the entire diversity of modern cephalopods. Sophisticated

adaptations such as the use of colour for camouflage and communication, jet

propulsion and the ink sac highlight the unique nature of the group. Despite

these striking adaptations, there are clear parallels in ecology between coleoids

and bony fishes. The coleoid fossil record is limited, however, hindering

confident analysis of the tempo and pattern of their evolution. Here we use a

molecular dataset (180 genes, approx. 36 000 amino acids) of 26 cephalopod

species to explore the phylogeny and timing of cephalopod evolution. We

show that crown cephalopods diverged in the Silurian–Devonian, while

crown coleoids had origins in the latest Palaeozoic. While the deep-sea vampire

squid and dumbo octopuses have ancient origins extending to the Early

Mesozoic Era, 242+38 Ma, incirrate octopuses and the decabrachian coleoids

(10-armed squid) diversified in the Jurassic Period. These divergence estima-

tes highlight the modern diversity of coleoid cephalopods emerging in the

Mesozoic Marine Revolution, a period that also witnessed the radiation of

most ray-finned fish groups in addition to several other marine vertebrates.

This suggests that that the origin of modern cephalopod biodiversity was

contingent on ecological competition with marine vertebrates.
1. Introduction
Octopus, cuttlefish and squid showcase advanced intelligence, a wide range of

body sizes, sophisticated camouflage and mimicry, unique jet-locomotion and

ingenious decoy countermeasures in the ink sac [1–3]. Charismatic in these

ways, and owing to their importance as fishing stocks, cephalopods have

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2016.2818&domain=pdf&date_stamp=2017-03-01
mailto:jakob.vinther@bristol.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.3693223
https://dx.doi.org/10.6084/m9.figshare.c.3693223
http://orcid.org/
http://orcid.org/0000-0001-8045-2856
http://orcid.org/0000-0003-0949-6682
http://orcid.org/0000-0002-3584-9616
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Salmacina

Alvinella

Gadila

Solemya
Ennucula

Crassostrea

Neotrigonia
Myochama

Astarte

Perotrochus
Granata

Monodonta
Haliotis

Pomacea
Hinea

Urosalpinx
Rubyspira
Euspira

Hydatina
Aplysia

Tylodina
Philine

Oxynoe
Ophicardelus

Phallomedusa
Microhedyle

Nautilus pompilius

0.1 substitutions per site

Cephalopoda

Gastropoda

Bivalvia

Scaphopoda

Annelida

M
ollusca

Vampyroteuthis infemalis
Grimpoteuthis glacialis

Pareledone albimaculata
Bathypolypus arcticus

Octopus vulgaris
Octopus cyanea

Abdopus aculeatus
Hapalochlaena maculosa

Sepia officinalis
Sepia esculenta

Idiosepius paradoxus
Euprymna scolopes

Sepioteuthis lessoniana
Sepioteuthis australis

Uroteuthis edulis
Loliolus noctiluca

Lolliguncula brevis
Doryteuthis pealeii

Spirula spirula
Sthenoteuthis oualanensis

Dosidicus gigas
Galiteuthis armata

Chiroteuthis calyx
Onychoteuthis banksi

Architeuthis dux

Mytilus galloprovincialis
Mytilus californianus

Capitella
Pomatoceros1/100

1/100

1/100

1/100
1/100

1/100

1/100
1/100

1/100

1/100

1/100

1/100

1/100

1/100
1/100

1/100

1/100
1/100

1/100
1/100

1/100
1/100

1/100

1/100

1/100
1/100

1/100
1/100

1/100
1/100

1/100

1/100

1/98

1/100

0.99/84

0.99

1

1
0.7

0.91
/100

0.76
1

0.86/53

1
0.82

1/100
0.99/97

1/100
0.98/100

0.88/100

0.99/100

0.9/100

Figure 1. Molecular phylogeny of cephalopod, gastropod and bivalve molluscs ( plus a scaphopod), with annelid outgroup; 180 genes, concatenated as 36 156
aligned amino acid positions with 26% missing data, modelled under CAT þ GTR þ G. Numbers at nodes denote Bayesian posterior probability/bootstrap support
as returned by RAXML under the LG [33] substitution model. Scale bar is expected substitutions per site.
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garnered great interest from ecologists and evolutionary

biologists. However, cephalopod evolutionary relationships

and divergence times have remained unclear, in part, owing

to uncertainties in their fossil record. The past 540 Ma of

cephalopod evolution can be viewed as having three ecologi-

cally distinct phases. Originally shelled, sea-floor-dwelling

molluscs, cephalopods are descended from superficially

limpet-like ancestors in the Cambrian [4,5]. The protective

shell later became adapted as a chambered buoyancy organ

[6], giving rise to free-swimming forms by the latest Cambrian

that radiated into several Ordovician lineages [7]. Subsequently,

internalization and reduction of the mineralized shell facilitated

adaptation for alternative ecologies in the coleoids [8].

Anatomical evolution is in part shaped by the ecological

relationships between predator– and prey species. Cephalo-

pods (and in particular oceanic squid) fill a niche that largely

overlaps with fishes as active mesopredators [9]. Considering

the evolutionary trajectory of cephalopods from heavily

shelled animals to rapid hunters, the question of how and

when this development took place remains unresolved.

Previously, coevolution between marine predators and prey

has been hypothesized from the fossil record of the Jurassic

and the Cretaceous, and this ecological shift has since

become known as the Mesozoic Marine Revolution [10,11].
By contrast, the fossil record leaves limited insight on the

providence of modern coleoid groups [12], despite their well-

documented ancestors and relatives especially among the

ammonites and belemnites. Their mineralized, chambered

portion of the shell (phragmocone and rostrum) has a high

potential for preservation, but as the phragmocone became

internalized, reduced, and in many cases lost entirely, so

too was a clear narrative through fossils. Soft tissue fossiliza-

tion is rare, but cirrate and incirrate octopods are known from

the Late Cretaceous (Cenomanian) Hâkel and Hâdjoula

Lagerstätte, while cirrate forms and stem octobrachians are

recorded in the Jurassic [13]; these are known to preserve

the unmineralized gladius and soft tissues. Stem group deca-

brachians, such as belemnites and other belemnoids are

known, preserving their phragmocones and, occasionally,

soft tissues [14,15]. By contrast, the extant octopuses, cuttle-

fish and squid are characterized by shell reduction and loss

[16], and are prone to major taphonomic biases in tissue

preservation [14]. Consequently, clarifying evolution of

coleoids from the Mid-Palaeozoic to the present must, there-

fore, rely on alternative palaeobiological approaches, such as

the estimation of molecular divergence times.

The first molecular divergence times of cephalopod evol-

ution recovered very ancient divergences for the coleoids [17],
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suggesting extensive gaps in the fossil record. However, these

studies used controversial calibrations from the Late Palaeo-

zoic, such as Shimanskya [18] and Pohlsepia [19], for which

the assignment to the coleoid crown group is dubious [20].

Subsequent studies attempted to estimate cephalopod diver-

gences using calibrations from outgroups, such as bivalves

and gastropods and recovered much younger divergence

estimates, that were surprisingly congruent, irrespective of

differences both in methodology and gene sampling [20,21].

These independent studies recovered a divergence between

the nautilids and the coleoids around the Silurian–Devonian

boundary, or the earliest Devonian (approx. 415 Ma), which

is congruent with unequivocal evidence for fossil stem

group coleoids (ammonoids and bactritids) [22,23] and

stem group nautilids [24] in the Early Devonian. Cephalopod

beaks also appear in the fossil record in the Devonian [25].

These observations suggest that the fossil record documents

the origin of the crown group and that the concomitant evol-

ution of the beak [20] coincides with a dramatic shift in

predator–prey dynamics, termed the Devonian Nekton

Revolution [26]. The jawed vertebrates radiated at this time,

incident with a global shift in predatory style towards

increased high-metabolism predation and durophagy [27].

The coincidence of jawed vertebrates and beaked cephalo-

pods radiating at the Silurian–Devonian boundary may

thus be interpreted as a response to the changes in the

predator–prey landscape.

To explore the tempo and mode of coleoid evolution, we

assembled a dataset of 180 nuclear genes of consistent rate of

molecular evolution, representing crown diversity across
Coleoidea. Phylogenetic and molecular divergence time

analyses were carried out in a Bayesian framework, apply-

ing a molecular evolution model accommodating rate and

compositional heterogeneity.
2. Experimental procedures
For full details of experimental procedures, see the electronic

supplementary material. We compiled a supermatrix with

data from 56 species (electronic supplementary material,

table S2) for 180 genes. Phylogeny was inferred from this

superalignment using the software package PHYLOBAYES MPI

v. 1.5a [28] under CAT þ GTR þ G. The maximum-likelihood

software RAXML MPI v. 8.1.15 [29] was applied to the same

dataset as used in Bayesian inference, applying LG þ I þ G.

PHYLOBAYES 3.3f was used to infer molecular divergence

times under the CIR [30] clock model, soft-bounds of 0.05

and a Yule-process birth–death model, with topology fixed

to that inferred by PHYLOBAYES MPI v. 1.5a. A prior was

applied to the root of 565+10 Ma, representing the root of

lophotrochozoa. Eleven fossil calibration points were applied

to the analysis, as shown in table (electronic supplementary

material, table S1).
3. Results
Our phylogenetic results confirm Nautilus as sister group to

coleoids [20,31]. In turn, coleoids comprise two monophyletic

groups: Octobrachia (Vampire squid, dumbo octopuses and
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incirrate octopuses) and Decabrachia (cuttlefish and squid,

including Spirula), in agreement with morphology and pre-

vious molecular studies [16,17,32] (figure 1). The vampire

squid Vampyroteuthis and the cirroctopod Grimpoteuthis
represent cirrate octopuses, branching deep as successive

sister groups to the incirrate octopuses (figure 1). Within

Decabrachia, we recover a monophyletic Myopsida assem-

blage, along with support for Teuthoidea with the inclusion

of Spirula, similar to previous studies [16,20]. However,

the relationships between the orders comprising the

Sepioidea (Sepiida, Idiosepiidae, Sepiolidae) are recovered as

paraphyletic. Oegopsid monophyly is supported, with Spirula
sister to this clade, in agreement with previous studies [16],

but the posterior probability values for many decabrachian

basal nodes are generally lower than in other parts of the phy-

logeny. Sepioid and myopsid relationships have proved

difficult to resolve [16], and further phylogenetic work remains

to clarify these.

Molecular divergence times were estimated, from the

same matrix used for phylogenetic inference, applying an

autocorrelated relaxed clock model (CIR process, figures 2

and 3; electronic supplementary material for further details

and additional analyses). Alternative treatments, model
applications and comparison of the joint priors induced by

our calibrations and models and the posterior divergence

times supported the data as informative, and resulted in con-

sistency in divergence time inference (figure 3; electronic

supplementary material, table S3 and figure S3). Notably,

our molecular divergence times are highly congruent with

previous molecular divergence estimates [20,34] that used

comparable calibration schemes. These studies, however,

had insufficient taxonomic spread and sample required for

more comprehensive investigation of the evolutionary

tempo of coleoids. Furthermore, our wide sample represents

crown diversity.

The oldest unequivocal crown group coleoids appear in the

latest Triassic, with belemnites representing stem group deca-

brachians, and phragmoteuthidids (Early Triassic or latest

Permian) proposed to represent stem group Octobrachia [35].

Our divergence times suggest that the coleoid crown diverged

in the Late Carboniferous or Permian. Fossil consilience is

shown by stem group vampire squid (loligosepiids) fossils

of the earliest Jurassic (approx. 195 Ma) [13,36]. Octopus-like

forms that are lacking the mantle fins and with reduced gladius

appear in the latest Cretaceous (Cenomanian, 94–100 Ma)

Lagerstätte of Hâkel and Hâdjoula, Lebanon [37]. Our
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divergence estimate for the incirrate octopods is in the Late

Cretaceous (approx. 100 Ma). Decabrachians have a near

non-existent fossil record, except for members of their stem

group (e.g. belemnites) and some forms that retain remnants

of the phragmocone—Spirula and cuttlefish. Stem group spiru-

lids appear in the latest Cretaceous (approx. 66–72 Ma) of West

Greenland [38]. Molecular estimates here suggest that spirulids

diverged from the Oegopsids at approximately 128 Ma. Sepiid

cuttlebones appear in the fossil record in the latest Cretaceous

(approx. 75 Ma [37]) and we estimate the sepiids represented in

our analysis to have diverged approximately 88 Ma.
4. Discussion
Our molecular divergence estimates show that the coleoid

fossil record [13,39] belies not only an earlier origin for key

cephalopod groups, but also significant differences in their

rate of diversification. Together with the molecular clock esti-

mates for coleoids that are lacking a fossil record, it is

possible to investigate events that shaped the diversity of the

group. Decabrachians diversify rapidly in the middle Mesozoic

(Jurassic), while incirrate octopuses arose in the Cretaceous.

Since this time documents an escalation—the evolution
of novel predation strategies—it prompts a consideration of

what anatomical changes took place in coleoids, particularly

decabrachians, at this time.

The iconic shell has had a shifting functional role through

cephalopod evolution, and is informative as to lifestyle

and ecology. Subsequent to ancestral internalization of the

phragmocone through the Carboniferous and Devonian, the

decabrachian and octobrachian lineages independently

evolved towards shell reduction [13,16], allowing enhanced

manoeuvrability and speed [15]. These groups would have

been in ecological competition with belemnites: stem group

decabrachians [39,40] with an elaborate internal shell, diver-

sifying in the Mid-Jurassic [41]. Our analysis suggests that

in the Late Jurassic and at the onset of the Cretaceous, belem-

nites became marginalized and replaced by modern groups

of decabrachians and finned octobrachians (figure 2) [13].

By retaining an elaborate internal phragmocone, belemnites

could not compress their mantle cavity for jet propulsion to

the same extent as the coleoid forms with a much more

reduced internal shell. Similar patterns have been inferred

from the Pacific fossil record in Japan [42], suggesting a dra-

matic turnover in particular approximately 100 Ma (figure 3).

Decabrachian coleoids are nektonic predators with

streamlined morphology, high metabolic rates and shoaling
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behaviour; adaptations in common with teleost fishes [43]. The

majority of modern teleost groups radiated during the Jurassic

and Cretaceous [44], concomitantly with the origin of most

modern coleoids as revealed by our molecular estimates and

the fossil record. The scenario in which Mesozoic ecological

shifts are exhibited in teleost fishes, chondrichthyans (sharks

and rays), and shelled invertebrates as investigated by Vermeij

[10] can be extended to cephalopods (figure 4). In the face of

high-metabolism, robust predators and niche-competitors, the

cephalopods may have responded in kind to these evolutionary

pressures. We hypothesize that the cephalopods evolved into

the forms we are familiar with today, while shelled groups

fell into extinction owing to the shifts in predation in this time

period. The Mesozoic Marine Revolution can thus be viewed

as the final stage in the shift from Palaeozoic ecologies into

the modern structure of marine ecosystems, where (at least in

the nektonic realm), agility superseded passive defence.

Ammonoids are stem group coleoids, which were common

throughout the Late Palaeozoic until the end of the Mesozoic.

Evidence from their radula morphology [23,46] suggests that

ammonoids primitively had stout teeth, similar to macropha-

gous predatory cephalopods. In the Jurassic, the group

evolved an enlarged calcareous lower jaw (aptychus) and

longer, multicuspidate radula teeth, which has been attributed

to a shift into microphagous suspension feeding [23,47]. As

such, the group ‘stepped out’ of the arms race and ecological

competition with the macrophagous predatory coleoids,

fishes and marine reptiles during the Jurassic and Cretaceous.

The group evolve increasingly ornamented shells in response

to increased predation, as revealed from shell repair scar
frequency [48], but eventually became extinct at the end of

the Cretaceous.
5. Conclusion
Taken together, molecular divergence times and the cephalopod

fossil record are consistent with a scenario in which predator–

prey arms races shaped the coleoid body plan, biodiversity

and ecology. The coincidence with the evolution of jawed ver-

tebrates and teleost fishes during the Devonian Nekton

Revolution and the Mesozoic Marine Revolution, suggests that

nektonic marine vertebrates have been key antagonists towards

cephalopods throughout most of their evolution.
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Paläont. Z. 66, 81 – 98. (doi:10.1007/BF02989479)

25. Klug C, Frey L, Korn D, Jattiot R, Rücklin M. 2016
The oldest Gondwanan cephalopod mandibles
(Hangenberg Black Shale, Late Devonian) and the
mid-Palaeozoic rise of jaws. Palaeontology 59,
611 – 629. (doi:10.1111/pala.12248)
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