
Received: 25 November 2021 Accepted: 11 March 2022 Published online: 16 May 2022

DOI: 10.1002/agj2.21066

A R T I C L E

B i o m e t r y , M o d e l i n g , a n d S t a t i s t i c s

Calibration and evaluation of JULES-crop for maize in Brazil

Amauri Cassio Prudente Junior1 Murilo S. Vianna2 Karina Williams3,4

Marcelo V. Galdos2 Fábio R. Marin1

1“Luiz de Queiroz” College of Agriculture,

Univ. of São Paulo, Piracicaba, SP

13418-900, Brazil

2School of Earth and Environment, Univ. of

Leeds, Leeds LS2 9JT, UK

3UK Met Office, Fitzroy Road, Exeter EX1

3PB, UK

4Global Systems Institute, Univ. of Exeter,

Exeter EX4 4PY, UK

Correspondence
Amauri Cassio Prudente Junior, Univ. of

São Paulo, “Luiz de Queiroz” College of

Agriculture, Piracicaba, SP 13418-900,

Brazil.

Email: amauri.cassio@usp.br

Assigned to Associate Editor Yao Zhang.

Abstract
Maize (Zea mays L.) is a prominent Brazilian commodity, being the second largest

crop produced and fifth exported product by the country. Due to its importance for

the agricultural sector, there is a concern about the effect of climate change on the

crop. Process-based models are valuable tools to evaluate the effects of climate on

crop yields. The Joint UK Land Environment Simulator (JULES) is a land-surface

model that can be run with an integrated crop model parameterization. The resulting

model (JULES-crop) thus integrates crop physiology principles with the complex-

ity of atmosphere–biosphere coupling. It has been shown to be a valuable tool for

large-scale simulations of crop yields as a function of environmental and manage-

ment variables. In this study, we calibrated JULES-crop using a robust experimental

dataset collected for summer and off-season maize fields across Brazil. A targeted

local sensitivity analysis was performed to detect parameters of major importance

during the calibration process. After calibration, the model was able to satisfactorily

simulate both season and off-season cultivars. Modeling efficiency (EF) was high

for leaf area index (EF = .73 and .71, respectively, for summer season and off-season

datasets), crop height (EF = .89), and grain dry mass (EF = .61 and .89, respectively,

for summer season and off-season datasets). The model showed a lower accuracy

for simulating leaf dry mass in summer season cultivars (EF = .39) and soil moisture

(EF= .44), demonstrating the necessity of further improvements including additional

parametrizations of the rainfed conditions.

1 INTRODUCTION

Maize (Zea mays. L) crop has major economic and social

importance in Brazil and worldwide. It is relevant for food

security due to the nutritive value and chemical composition,

being the third most produced crop in the world (Wijewardana

et al., 2016). Brazilian maize production has been expand-

ing over the last decades because of advances in cropping

Abbreviations: DVI, development index; EF, efficiency index; JULES,

Joint UK Land Environment Simulator; LAI, leaf area index; NPP, net

primary productivity; PBCM, processed-based crop model.
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systems, positioning Brazil as the third largest world producer,

with 102.5 Tg produced in 2020 (BRASIL, 2020).

Addressing the increasing demand for food, considering

the limitation for territorial expansion, is one of the main

agricultural challenges facing our times (Meyfroidt, 2018).

FAO (2009) projects an increase in population resulting in

an increase in food demand by more than 70% in 2050 in

comparison to 2009. Moreover, climate change imposes other

challenging aspects for maize cropping systems, such as the

rainfall irregularity (Carvalho et al., 2014) and thermal stress

from the higher air temperatures (Bassu et al., 2014; T. Souza

et al, 2019).
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Process-based crop models (PBCMs) have been a valu-

able tool for understanding climate change effects on crop

yields (Rosenzweig et al, 2013). They contain robust physical

and physiological bases organized in a set of algorithms for

numerical simulations representing crop growth and devel-

opment (Jones et al., 2017). Thus, PBCMs aim to simulate

crop dynamics in a specific environment, considering man-

agement differences, enabling analysis with practicality and

speed (Marin et al., 2014). Several PBCMs have been used to

simulate maize systems in Brazil, such as Aquacrop (Silvestre

et al., 2019; T. Souza et al., 2019), DSSAT-CERES-Maize

(J. Souza et al., 2020; Duarte & Sentelhas, 2020), and APSIM-

Maize (M. Santos et al., 2020). For studies on climate change

on large territorial areas, there is a need for PBCMs that inte-

grate crop physiology principles with biosphere–atmosphere

processes.

Due to the necessity to improve the representation of crop

growth and development in earth systems modelling, many

studies have adjusted characteristics in land surface models to

better represent the energy, CO2, and water fluxes effects in

crop growth and development in large-scale domains (Drew-

niak et al., 2013; Wu et al., 2016; Zhang et al., 2020). With the

aim to adapt a land surface model, with the capacity to incor-

porate different fluxes in the biosphere–atmosphere process

for crop growth simulation, a parameterization for crops was

added to the land surface model Joint UK Land Environment

Simulator (JULES) model (Best et al., 2011; Clark et al.,

2011) by Osborne et al. (2015), which is referred to as JULES-

crop. JULES-crop uses classical principles of crop phenology

and C allocation to simulate crop growth coupled with C,

water, energy, and momentum fluxes between the surface land

and atmosphere. It also enables the assessment of weather and

climate effects on food and water resources (Osborne et al.,

2015). JULES-crop obtained satisfactory simulations when

tested for irrigated maize in Nebraska (Williams et al., 2017).

The model also performed well for rainfed maize in the North

China Plain (Wolffe et al., 2021), but had mixed results when

evaluated against FAO country yields (Osborne et al., 2015;

Franke et al., 2020). In the study of Osborne et al. (2015),

the model was not calibrated against field observations,

where the parameter values were derived from the literature.

Despite Osborne et al. (2015), Franke et al. (2020) presented

some simulations for maize and compared with Brazilian

yield recorded in FAO database, the JULES-crop had not

yet been calibrated and evaluated for tropical environments

as in Brazil, covering its climatic, soil, and management

variability.

This paper has three major objectives: (a) to understand

the JULES-crop growth and development parameters using

a local sensitivity analysis for tropical conditions; (b) to cal-

ibrate the JULES-crop model using an experimental dataset

conducted across the main producing regions of Brazil using

the leave one-out cross validation method; and (c) to evalu-

Core Ideas
∙ JULES-crop was calibrated for maize in different

regions of Brazil, cultivars, and water management

conditions.

∙ The model well simulated the crop phenology, crop

height, leaf area index, and grain dry mass.

∙ Simulations for leaf dry mass and soil moisture in

rainfed conditions still need improvement.

ate the JULES-crop predictions for different cultivars, sowing

dates, and water regimes using the parameters calibrated from

the cross-validation method.

2 MATERIALS AND METHODS

2.1 Brief model description

The model simulates crop development using a development

index (DVI) varying from−2 to 2. The value−2 represents the

time before the sowing, −1 represents the sowing date, 0 rep-

resents emergence, 1 represents the beginning of reproductive

stage and 2 represents the end of the simulated crop season

(usually harvest – see below). The DVI is used to simulate

the specific leaf area (SLA), C partitioning throughout crop

growth, senescence, and the harvest date. The DVI is based

on the accumulation of effective temperature (Teff), that is,

growing degree days (Williams et al., 2017; Osborne et al.,

2015), as follows in Equation 1:

𝑇eff =

⎧⎪⎪⎨⎪⎪⎩

0 for 𝑇 < 𝑇b
𝑇 − 𝑇b for 𝑇b ≤ 𝑇 ≤ 𝑇o

(𝑇o − 𝑇b)
(
1 − 𝑇−𝑇o

𝑇m−𝑇o

)
for 𝑇o < 𝑇 < 𝑇m

0 for 𝑇 ≥ 𝑇m

⎫⎪⎪⎬⎪⎪⎭
(1)

where To is optimal temperature for crop development; Tm

is maximum temperature for crop development, Tb is base

temperature for crop development (i.e., crop develops most

rapidly when the temperature is close the optimal tempera-

ture). Each temperature adopted in this study was based in

Birch et al. (1998) and Williams et al. (2017).

For crop growth simulation, the model partitions net pri-

mary productivity (NPPacc) to each plant structure and to a

stem reserve pools. This partitioning is controlled by user-

specified parameters. In the case of the stem, there is a par-

titioning for the structure and for the reserve; therefore, it also

depends on a remobilization adjustment. To define the crop
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partitioning factors for each C pool (π), Equation 2 was used:

π =
exp(α𝑖 + β𝑖DVI)∑
𝑗 exp(α𝑗 + β𝑗DVI)

(2)

where j = stem, leaf, harvest, and root. αi and βi are numerical

constants that are adjusted to observational data.
∑

𝑗 𝑝𝑗 = 1.

Carbon pools are initialized (to a value specified by the

user: initial_carbon_io) when DVI reaches threshold (ini-

tial_c_dvi_io). In the reproductive stage, a fraction of C allo-

cated in the stem is remobilized to reproductive structure as

panicle and grain. A similar process occurs for the leaf, to

simulate leaf senescence reducing leaf area index (LAI). This

occurs when DVI becomes greater than the parameter control-

ling the senescence phase (DVIsen = 0.4) (Equation 3):

sendvi = μ
(
DVI − DVIsen

)ν
(3)

where μ and ν allometric coefficients for calculation of senes-

cence.

Similar to C partitioning, the SLA is calculated as a func-

tion of DVI (Equation 4):

SLA = γ(DVI + 0.06)δ (4)

where the coefficients δ and γ were derived from allomet-

ric adjustments and the ratio between leaf dry mass and its C

fraction.

The green LAI is calculated using the leaf C and the SLA

(Equation 5):

LAI =
Cleaf
fc, leaf

SLA (5)

where Cleaf is the leaf carbon pool and fc,leaf is the carbon

fraction of the dry leaves.

Under normal circumstances, harvest is triggered when the

DVI reaches 2, but harvest can be triggered earlier in some

circumstances (such as low soil temperatures, extreme LAI

values, low plant C, very slow crop development; please see

Williams et al., 2017 for a more detailed description). In the

present study, none of our simulations triggered the early har-

vest procedure.

The Cstem pool is used to calculate the crop height (h)

(Equation 6):

ℎ = 𝑘

( Cstem
fc, stem

)λ
(6)

where k and λ are allometric parameters, and the fc,stem is

the carbon fraction in dry stem including reserve.

2.2 Database description

This study used a database with seven experiments con-

ducted across Brazil. Four of those field experiments were

conducted at the College of Agriculture “Luiz de Queiroz”

of the University of São Paulo, located in Piracicaba, Sao

Paulo State, Brazil (Southeast region, 22˚42′30″ S, 47˚38′30″

W; 546 m asl). Of these four experiments, one was carried

out for this study and the other three were carried out by

T. Souza et al. (2019). The remaining three experiments were

conducted in: (a) the environmental and agricultural center

of the University of Maranhão, located in Chapadinha, State

of Maranhão (Northeast, 43˚21′33″ S, 3˚44′26″ W; 93 m

asl); (b) the research and extension unit of State University

of São Paulo, located in Selviria, State of Mato Grosso do

Sul (Midwest region, 20˚22′11″ S, 51˚25′9″ W; 345 m asl);

and (c) the agronomic experimental station of University of

Rio Grande do Sul, located in Eldorado do Sul, State of

Rio Grande do Sul (South region, 30˚5′9″ S, 51˚37′5″ W;

18 m asl).

The climate in Piracicaba is classified by Köppen (Alvares

et al., 2013) as Cwa; in Selviria and Chapadinha, the climate

classification is Aw and in Eldorado do Sul, the climate clas-

sification is Cfa. All experiments received N, P, and K fertil-

ization recommended by Raij et al. (1996) and regular weed

control. Sowing and harvest dates as well as other details on

the experiments are available in Table 1.

In all experiments, detailed crop growth variables were

monitored, including leaf dry mass, stem dry mass, grain

dry mass, crop height, and LAI, as described by T. Souza

et al. (2019). Root dry mass were determined based on above-

ground/belowground maize crop ratio, according to Vilela and

Bull (1999) and Gondim et al. (2016). Soil parameters of each

experiment are described in Table 2. In Exp. 4, soil moisture

data was measured using a frequency domain reflectometry

(FDR) probe (Diviner 2000), calibrated for the local soil for

the 0-to-60-cm depth (Marin et al., 2020).

Hourly meteorological data was collected by a weather

station installed near to the experimental site of Piracicaba

and variables recorded and their respective model codes

are described in Table 3. For other locations, it was used

for the WATCH dataset based on ERA-Interim (WFDEI)

re-analysis data contemplating meteorological data from

1979 to 2016 (Weedon et al., 2018). JULES-crop requires

downward flux of longwave radiation, and diffuse radia-

tion, which was estimated based on the methods proposed

by Prata (1996). Moreover, the model required yearly aver-

ages of atmospheric CO2 concentration, which were obtained

from the National Oceanic and Atmospheric Administration

(NOAA, 2020).
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T A B L E 2 Soil physical parameters required by Joint UK Land Environment Simulator (JULES)-crop, with their respective definitions and

units for four Brazilian regions

Parameter Definition
Piracicaba
(Southeast)

Selviria
(Midwest)

Eldorado
(South)

Chapadinha
(Northeast)

b Brooks-Corey exponential for hydraulic soil

characteristics (dimensionless)

17.28 7.82 9.59 5.14

hcap Dry heat capacity, J m–3 k–1 1.27 × 106 1.26 × 106 1.26 × 106 1.37 × 106

sm_wilt Soil moisture at the point of permanent wilt,

m3 m–3

0.28 0.18 0.217 0.11

hcon Dry thermal conductivity, W m–1 k–1 1.394 0.25 0.239 0.251

sm_crit Soil moisture at the critical point, m3 m–3 0.358 0.29 0.322 0.24

satcon Saturation hydraulic conductivity, kg m–2

s–1

0.01 0.01 0.01 0.01

sathh Soil matrix suction at saturation, m 1.37 0.17 0.204 0.17

sm_sat Soil moisture at saturation, m3 m–3 0.463 0.43 0.433 0.42

albsoil Soil albedo (–) 0.133 0.133 0.133 0.133

T A B L E 3 Meteorological variables required by Joint UK Land

Environment Simulator (JULES)-crop and their respective definitions

and units

Parameter Definition
sw_down Downward flux of short-wave radiation, W m–2

lw_down Downward flux of long-wave radiation, W m–2

Precip Rainfall, kg m–2 s–1

T Air temperature, ˚C

Wind Wind speed, m s–1

Pstar Air pressure, Pa

Q Specific humidity, kg kg–1

diff_rad Diffuse radiation, W m–2

2.3 Local sensitivity analysis

JULES-crop has 130 parameters in its structure used for sim-

ulating maize growth and development, mass and energy

fluxes. We use a sensitivity analysis to detect the most impor-

tant parameters to focus on, when calibrating JULES-crop for

different cultivars in different sites across Brazil. The local

sensitivity analysis followed the methods described by Wal-

lach et al. (2018), where the reference crop parameters were

those provided by Williams et al. (2017) but using specific

weather and soil data (Tables 1–3). Then, a ±3% disturbance

was applied to each parameter with the aim to facilitate the

understanding of sensitivity parameters, and a heat map was

developed based on the average absolute difference. The out-

put variables considered in the sensitivity analysis were: LAI

(croplai, m2 m–2), crop height (cropcanht, m), crop devel-

opment index (cropdvi, dimensionless), in addition to the C

content in leaf yield (cropleafc, kg m–2), roots (croprootc,

kg m–2), and stem (cropstemc, kg m–2), as well as the crop

harvest part (cropharvc, kg m–2) and net primary production

(npp, kg m–2), representing the crop C fixation capacity.

2.4 Calibration procedure and statistical
analysis

We organized the calibration process in two steps, one being

for cultivars used in the summer season (Table 1), and the

second for off-season maize cultivars, which corresponds to

the P4285YH cultivar (Table 1). The JULES-crop calibration

procedure was based on Williams et al. (2017), where the

main allometric functions of the model were adjusted to field

data. Considering that a limited number of sites were available

to split data for calibration and validation, the leave-one-out

cross-validation method (Marin et al., 2011; Wallach et al.,

2018) was used to simultaneously include all the variability

of conditions and measurements in assessing the calibration

performance. The leave-one-out cross-validation was applied

separately for summer and off-season cultivars, because of

the genetic differences between these two groups of culti-

vars. The procedure of the leave-one-out cross-validation had

a factorial design in which each run missed one treatment

each time. Consequently, five combinations were performed

for summer season cultivar and two for off-season cultivar,

similar to that used by Marin et al. (2011). As related in the

Section 2.3, to determine which parameters were adjusted,

a targeted sensitivity analysis was performed to determine

the dependency of simulated variables on changes in key

parameters. After the selection of the most sensitivity param-

eters, the calibration procedure was based on direct adjust-

ment in relation to observed on field experiments, using the

eye-fitting calibration method (Wallach et al., 2018). We did

not adjust other parameters considered to be well-known,
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F I G U R E 1 Heatmap of the local sensitivity analysis of the Joint UK Land Environment Simulator (JULES)-crop parameters for the Exp. 1

(Piracicaba, SP). Greater sensitivity is expressed by values closer to 1 and clearer colors

such as the base temperature (t_base_io), optimum temper-

ature (t_opt_io), and others related in the supplemental mate-

rial. JULES-crop predictions were evaluated using the fol-

lowing outputs: LAI; crop height; soil moisture; leaf, stem,

and grain dry mass. For quantifying the model performance,

we compared the observed data with simulations of LAI;

soil moisture; crop height; leaf, stem, and grain dry mass,

using the average RMSE and mean absolute error (MAE)

(Loague & Green, 1991), the index of agreement (d) (Will-

mott et al., 2012) and the Nash–Sutcliffe efficiency index (EF)

(Nash-Stucliffe, 1970), as measures of goodness-of-fit (Marin

et al., 2011; Wallach et al, 2018), calculating overall statisti-

cal indices for both groups of summer and off-season culti-

vars. All other model parameters were kept at the values from

Williams et al. (2017).

3 RESULTS AND DISCUSSION

3.1 JULES-crop local sensitivity analyses

Based on the targeted local sensitivity analysis, we verified

that 52 parameters were sensitive to the environmental condi-

tions observed in Exp. 1 (Southeast; Table 1). Twenty-eight

are associated with the model functionality to simulate C4

vegetation (Supplemental Table S1) and 24 are associated

with the specific crop parametrization of JULES-crop (Sup-

plemental Table S2), based on the output variables described

in Section 2.3: LAI, crop height, crop development index, the

C content in leaf, stem, root, harvest part, and net primary

productivity. The local sensitivity analysis revealed a greater

sensitivity of JULES-crop to partitioning-related parame-

ters (alpha1_io, alpha2_io, alpha3_io, beta1_io, beta2_io,

beta3_io), and to the parameter related to the crop specific leaf

area (gamma_io) (Figure 1). These parameters vary accord-

ing to the DVI, a model variable used for calculating plant C

pools during different crop phenological phases. Out of these

parameters, alpha3_io has the strongest influence on the frac-

tion of NPP partitioned to leaves and therefore is the strongest

influence on LAI and NPP variables (Figure 1; Supplemental

Figure S1).

The fact that the leaf-related partition parameters are more

sensitive than the others may be related to the difference in

C allocation for this structure. According to Nabinger and

Pontes (2002), the balance between photosynthesis and res-

piration generates a quantity of C in which part is fixed and

another part is available for constituting plant biomass in the

formation of roots, reserves, stems, or leaves. However, the

distribution of this balance in species of the Poaceae family

is uneven to meet the internal demand of the plant, with the

formation of leaves mainly in vegetative stage, when more C

will be allocated due to the need for the plant to have a leaf

area to intercept solar radiation, in comparison to the C allo-

cation for stem being more constant during the cycle than in

the leaves. The JULES-crop algorithm for crop growth uses

the LAI to calculate the canopy radiation interception, which

affects the NPP. Because NPP affects the leaf C, and thus LAI

(as described in Section 2.2), this creates a feedback loop.

Hence, compared with other parameters, changes in the alpha

and beta coefficients related to leaves tend to have a greater

effect on estimating the output variables.

Two sensitive parameters in the analysis were the base and

optimum temperatures (t_base_io and t_opt_io, Figure 1).

The JULES-crop simulation is based on the DVI, that is,

the crop development calculated by an effective temperature,

calculated using the base and optimum temperature (Clark

et al., 2011; Osborne et al., 2015). Other crop models have

also presented temperature parameters for the crop develop-

ment calculation, such as CERES-Maize (Jones et al., 2003).

CERES-Maize demonstrates high sensitivity to these temper-

ature parameters, manifested in growth and development out-

puts, as well as grain dry mass and LAI (Bhusal et al., 2009).

However, given that the base and optimum temperatures do

not vary significantly in different cultivars (Birch et al., 1998)

this study focused on calibrating the C partitioning param-

eters. Another sensitive parameter observed was related to
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T A B L E 4 Crop parameters adjusted for summer-season and

off-season maize cultivars considered in this study in comparison with

a set of parameters previously published by Williams et al. (2017)

Parameter
Williams
et al. (2017)

Summer
season Off-season

α1 - root 13.5 12.2 12.2

α2 - stem 12.1 10.4 9.9

α3 - leaf 13.1 11.3 11.1

β1 - root –15 –9.6 –9.1

β2 - stalk –12.1 –7.4 –6.3

β3 - leaf –14.1 –8.3 –7.8

γ (gamma_io) 17.6 14.1 14.2

δ (delta_io) –0.33 –0.33 –0.39

λ (allo2_io) 0.38 0.52 0.52

k (allo_1_io) 3.6 2.5 2.5

initial amount of C in crops (Figure 1), as this experiment did

not measure the C presented near emergence, the value was

adopted based on Williams et al. (2017), adjusted to the value

used by Osborne et al. (2015), both studies for maize.

3.2 JULES-crop calibration

Compared with the parameter values reported by Williams

et al. (2017) when assessing maize cultivars in Nebraska,

we found greater differences for cultivar P4285YH, which is

commonly used for off-season crops after soybean [Glycine
max (L.) Merr.] crop in tropical-producing regions of Brazil

(Table 4). As climatic conditions in Brazil offer a wide range

of viable sowing dates for maize production, there is a large

availability of cultivars with distinct C allocation (Liang et al.,

2020; Peng et al., 2018), making it necessary to calibrate

off-season cultivars separately from in-season ones. Cultivars

used in the summer season generally show similar patterns of

growth and development, which explains the use of the same

parameter values to represent this group of cultivars (Table 4).

The C partition parameters were derived using the observed

data as a reference (Figures 2 and 3). In comparison to off-

season cultivars, most parts of observed partitioning fractions

for the summer season cultivars were shifted to higher DVI

(Figure 2a) points, with the exception of the Pionner 3230 cul-

tivar (South, Exp. 5) when DVI was between 0.5 and 1 and 1.5

and 2, so we also calibrated SLA for the two periods of crop

production separately (Figure 2a, colored lines). Once again,

this effectively mimicked the shifted pattern in DVI. The crop

height measurements (Figure 2b) were taken only during the

off-season experiment (T. Souza et al., 2019), so we adopted

the same crop height parameters values (Table 4) for the sum-

mer season experiment. For the crop height parameter, the

comparison used was in relation to stem dry mass as reported

by Williams et al. (2017) and Osborne et al. (2015). Some pat-

F I G U R E 2 Calibrations for (a) specific leaf area and (b) crop

height derived for different maize experiments conducted in four

Brazilian regions. Off-season maize observations are those from

cultivar P4285YH

terns of C partitioning (Figure 3) and SLA (Figure 2a) indicate

some water and thermal stress effect in grain dry mass yield

(Figure 3d), specifically in the cultivars DKB363 (Midwest,

Exp. 7), AG1051 (Northeast, Exp. 6), and LG36790 (South-

east, Exp. 4), inducing the C allocation for different structures

as a strategy to supply the atmospheric water demand. In the

DKB363 (Midwest, Exp. 7), AG1051 (Northeast, Exp. 6), and

LG36790 (Southeast, Exp. 4), both under rainfed conditions,

the flowering occurred when the air temperature exceeded

the 33˚C, which was above the optimum temperature of

28˚C and influencing the C allocation in view of the nega-

tive effects on the crop (Johkan et al., 2011). We verify that

in Exp. 6 and 7 (Northeast and Midwest) the root C partition-

ing is extended after the flowering stage (DVI > 1) result-

ing in less C in the grain (Figure 3a,d). Such ecophysiological

strategy was also observed by Pedreira et al. (2001) and Duan

et al. (2019) in Poaceae species, with a greater proportion of

C allocated to the root system in relation to the aboveground

parts as an effect of deepening the root system towards water

and nutrients. Although crop models based on fixed C parti-

tioning, such as JULES-crop, can simulate the water stress in

biomass gain (aboveground), it cannot simulate the effect of

altered water regimes and soil nutrients on root architecture.

We also observed a greater fraction of C partitioned to

leaves (Figure 3c) in the knee-high stage of the off-season cul-

tivar (for DVI < 0.5) than in the summer season one, with a C

partitioning around 50% allocated to leaves in the off-season

cultivar in comparison to the summer cultivars, for which the

C partitioning ranged from 30 to 45% for DKB363 (Southeast,

Exp. 1) and Pionner 3230 (South, Exp. 5), respectively. Liang

et al. (2020) observed, in two maize cultivars, a decrease of C

fixation and high %C retained in leaves at low light intercept-

ing leaves. Given that our off-season experiment reached the

knee-high stage during the winter, and thus under low levels

of solar radiation, we speculate that it could have been a con-

tributing factor for a high level of C retained in leaves in our
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F I G U R E 3 Carbon partitioning fractions for the (a) root, (b) stalk, (c) leaf, and (d) grain C pools, derived for different maize experiments

conducted in four Brazilian regions. Off-season maize observations use cultivar P4285YH

dataset. Yet, the leaf senescence algorithm used in JULES-

crop might also be the cause of uncertainties in estimates,

as our experiments did not measure the dead and live leaves

along the crop cycle. The senescence algorithm was already

targeted by Williams et al. (2017) in order to improve its per-

formance, but further work is still needed.

Comparing off-season and summer season cultivars, we

found differences in the stem height and mass (Figure 3b),

these being greater in some summer cultivars than in the off-

season, with C allocation to stems ranging from 20 to 40%, at

the end of the season (DVI > 1.5) in cultivars specifically in

DKB363 (Southeast, Exp. 1) and LG36790 (Midwest, Exp.

7). However, in the tasseling stage (DVI = 1) occurred the

greater stem C allocation for off-season cultivar (Figure 3b),

reaching 48% of the C distributed for the stem. Although our

results contrast with off-season and Williams et al. (2017),

similar C allocation rates at the end of the season were also

observed by Vasconcellos et al. (1998) in maize experiments

in the Southeast of Brazil using three season cultivars (BR106,

AG519, and BR201). The sensitivity analysis in Section 3.1

summarizes the importance of modifying the C allocation to

calibrate JULES-crop for different cultivars and sowing dates.

3.3 Evaluation of the JULES-crop
calibration

JULES-crop simulated maize development and growth, as

well as plant structures and C pools during the crop cycle
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T A B L E 5 Statistical indexes of performances of the calibrated

Joint UK Land Environment Simulator (JULES)-crop model in

simulating leaf, stalk, and grain dry mass, leaf area index (LAI), canopy

height, and soil moisture in four Brazilian regions, Brazil

Variable R2 d-index RMSE EF
Mg ha–1 m2 m–2, m, or cm3 cm–3

Summer season
Stem dry mass .92 .86 1.12 .54

LAI .96 .91 0.59 .73

Leaf dry mass .89 .75 1.13 .39

Grain dry mass .94 .93 1.31 .61

Soil moisture .78 .81 0.01 .44

Off-season
Leaf dry mass .89 .71 0.46 .63

Stem dry mass .93 .91 0.98 .71

LAI .95 .98 0.34 .71

Grain dry mass .96 .94 1.03 .89

Crop height .96 .98 0.18 .88

Note. EF, efficiency.

(Table 5; Figures 4 and 5) satisfactorily, in two different con-

ditions (irrigated and rainfed) in different regions of Brazil.

Using the same dataset collected for an off-season culti-

var, T. Souza et al. (2019) calibrated the DSSAT-CERES

Maize and found EF = .70 for LAI in irrigated condi-

tions, which is similar to this study (EF = .71 in off-

season cultivar and EF = .73 in summer cultivar). JULES-

crop showed higher efficiency for simulating crop height

in both treatments: EF = .70 and .68 for irrigated and

rainfed conditions found by T. Souza et al. (2019) in compari-

son to .88 found in this study (Table 5). Thus, LAI and canopy

height were better simulated compared with other variables

(Table 5; Figures 4, and 5b,c); moreover, it is important to

highlight the grain dry mass simulation in summer cultivars

(EF = .61 for summer experiment and EF = .89 for off-season

experiment) observed in Table 5 and Figure 4d. Important to

mention despite the difference between the harvest C parti-

tioning for both seasons and observed data (Figure 3d) the

model simulated grain yield with accuracy and efficiency,

such as high observation plots along the bottom line (Table 5;

Figures 3d, 4d, and 5d). The difference can be explained

because JULES-crop remobilizes C from the leaf pool to the

harvest pool to simulate the leaf senescence (Osborne et al.,

2015; Williams et al., 2017), while the observed field data

shown in Figure 3d are only from grain biomass gain. In gen-

eral, JULES-crop presented higher levels of EF for some vari-

ables, and the model showed low efficiency in leaf dry mass

and soil moisture.

Soil moisture presented the second lowest value of effi-

ciency in this study (EF = .44 and R2 = .78, Table 5).

However, this is a higher value compared with the model

CropSPAC, as observed by Duan et al. (2019) that demon-

strate a R2 = .78 and EF = .26. JULES-crop also obtained

a better statistical index than M. Santos et al. (2020), who

evaluated the APSIM-Maize model in the Brazilian Northeast

for simulating the soil moisture and observed RMSE ranging

from 0.02 to 0.08 cm3 cm–3 for several sowing times treat-

ments, compared with the RMSE of 0.01 cm3 cm–3 found

in this study. Furthermore, they found an average d-index

of .58 while this study obtained d-index = .81. Inaccura-

cies for soil moisture simulations are common in crop models

that use water balance based on texture and retention curves

components, which usually overestimate simulated soil mois-

ture, mainly because of the difficulty to estimate the surface

runoff and deep drainage (Ghiberto et al., 2011). In addi-

tion, the soil moisture temporal variability of rainfed con-

dition for DKB363 cultivar (Southeast, Exp. 4), conducted

under hot and wet season, was very challenging to the model

as it was marked by days with heavy rainfall followed by dry

spells in which moisture was severely reduced. Nonetheless,

it is difficult to directly compare our results with the afore-

mentioned studies as they do not consider the same set of

observations.

Another variable that presented low efficiency was the leaf

dry mass (Table 5; Figures 4f and 5f). This can be explained

by the calibration difficulties in the senescence period. As

the experiments used in this study did not separate senesced

and green leaves, the alternative was to use the parameter

values obtained by Williams et al. (2017). Certainly, if all

experiments were standardized accounting the senesced and

green leaves separation, the uncertainty of calibration would

be reduced as the senescence period would be better simu-

lated in comparison with observed data. Important to mention

that cultivars LG36790 (Southeast, Exp. 4), AG1051 (North-

east, Exp. 6), and DKB393 (Midwest, Exp. 7) were conducted

under rainfed conditions, and DKB363 (Southeast, Exp. 1)

and Pionner 3230 (South, Exp. 5) under irrigation. The rain-

fed cultivars showed different C allocation for leaves com-

pared with irrigated scenarios as they might show distinct

response in terms of leaves biomass gain rates and shortening

the senescence in rainfed scenarios due to water limitations

(Da Silva et al., 2012), because these type of responses are

not yet captured by JULES-crop. This, in part, may be due to

the use of the DVIsen value from Williams et al. (2017), which

was initially derived for irrigated maize and might explain the

lower EF values observed for rainfed summer maize. Another

interesting aspect for the leaf dry mass low EF for summer

season (Table 5) might be the canopy structure differences

among cultivars due to the genetic diversity, in addition to the

high sensitivity demonstrated in the leaf C partitioning and

allocation in JULES-crop. One of the pieces of evidence is

the higher efficiency in the off-season calibration in compar-

ison to the summer experiments (EF = .63 for off-season and

EF = .39 for summer calibration).



PRUDENTE JUNIOR ET AL. 1689

F I G U R E 4 Comparison between observed and simulated variables by Joint UK Land Environment Simulator (JULES)-crop for (a) soil

moisture, (b) crop height, (c) leaf area index (LAI), (d) grain dry mass, (e) stem dry mass, (f) leaf dry mass of different maize cultivars in different

regions of Brazil. Irr-Irrigated, rf-rainfed, obs-observed, sim-simulated. Off-season maize observations use cultivar P4285YH

Crop models are being developed to make large-scale sim-

ulations. For example, Peng et al. (2018) combined two maize

models (CLM4.5 and APSIM) with the aim to implement the

maize growth simulation in a large-scale model, using a C

allocation procedure for improving performance. The authors

observed an important improvement for irrigated and rain-

fed treatments by joining CLM4.5 and APSIM and using

databases from Nebraska (Verma et al., 2005; Suyker et al.,

2004, 2005). JULES-crop could be a useful large-scale crop

model with improvements such as realizing the JULES-crop

calibration in different variations of nutrients as mentioned by

the AgMIP-GGCMI group (Elliot et al., 2015; Muller et al.,

2019) given that the JULES-crop is in development.

The leave-one-out cross validation method was able to

generate a calibration with high efficiency in LAI (Table 5;

Figures 4 and 5c), crop height (Table 5; Figures 4 and 5c), and

grain dry mass (Table 5; Figures 4 and 5d). High efficiency in

grain dry mass is important for the use of a large-scale crop

model for crop forecasting systems in maize crop in Brazil.

This method was used by Marin et al. (2011) to calibrate the

few sugarcane cultivars in Brazil, posteriorly used by Marin

et al. (2014) and Pagani et al. (2017). The leave-one-out cross

validation method was a valuable technique for permitting the

use of data not specifically collected for modeling studies, and

to include both calibration and evaluation steps dealing with

small datasets.
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F I G U R E 5 Relationship between simulated and observed values for (a) soil moisture, (b) crop height, (c) leaf area index (LAI), (d) grain dry

mass, (e) stem dry mass, (f) leaf dry mass of maize for different regions of Brazil

4 CONCLUSION

The JULES-crop sensitivity analysis allowed us to identify

which were the main parameters that should be considered

during the calibration process. Mainly, they were those

related to C partitioning and the parameters associated to the

crop specific leaf area. The JULES-crop well simulated the C

partitioning and allometric relationships for different maize

cultivars in Brazil under irrigated and rainfed regimes, for

summer and off-season sowing dates. The JULES-crop per-

formance for simulating the development of maize crop in the

field experiments was satisfactory, particularly for crop height
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(EF = .89), LAI (EF = .73 and .71, respectively, for summer

and off-season experiments) grain dry mass (EF = .61 and

EF = .89, respectively, for summer and off-season experi-

ments). However, it demonstrated a low efficiency simulating

the leaf dry mass (EF = .39) and soil moisture (EF = .44).

The leave-one-out cross validation method was useful for

calibrating different cultivar groups in different regions of

Brazil with different experimental designs. The JULES-crop

is a potential large-scale crop model, and its ability to evaluate

climate scenarios and for forecasting maize yield in Brazil

can be investigated in future studies, with improvement

possibilities in fertilization rates and in rainfed scenarios.
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