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A B S T R A C T   

Process-base crop models (PBM) are important tools to describe how the agricultural system responds to envi-
ronmental conditions. Sugarcane represents a major world source of sugar and ethanol and its PBMs had different 
levels of complexity in terms of structure, i.e. how detailed their processes were described. Yet, literature has 
widely demonstrated that data assimilation techniques (DA) represent a valuable option for reducing model 
uncertainty, but the inconsistency between PBM and the assimilated variable can significantly affect the per-
formance of DA. Such limitation is strictly connected to model structure, and a hypothesis that arises from 
literature is that the use of more complex models would reduce model uncertainty after DA. We accessed the 
performance of using two different PBMs, one more detailed (DSSAT/SAMUCA, DS) and the other more general 
(WOFOST, WO), by assimilating leaf area index (LAI) retrieved from Landsat 7 ETM + and 8/OLI, using the 
Ensemble Kalman Filter (EnKF). Both PBMs were calibrated and evaluated with a robust database of 13 ex-
periments and evaluated against a sugarmill database to evaluate the EnKF performance, compared with sim-
ulations without DA (Open-loop, OP). Moreover, the processes involved in LAI simulations were analyzed to 
assess the EnKF performance. The DS had superior performance in the calibration and evaluation step with EF =
0.907, 0.878, 0.458 for stalk dry mass, stalk fresh yield (SFY), and LAI, while WO showed EF = 0.622, 0.610, 
0.417 for the same variables, respectively. The calibration step affected the OP plot simulation, with DS having 
higher accuracy (RMSE = 31.678 Mg ha− 1) and precision (R2 = 0.509), compared with WO (RMSE = 39.593 Mg 
ha− 1; R2 = 0.458). However, after DA, both PBM presented error inconsistency with EnKF, despite the decrease 
in RMSE (-44.73% and − 29.58%) and increase in R2 (22.15% and 36.50%) of DS and WO, respectively. The error 
inconsistency diverged from each PBM: the OP simulation of DS overestimated the Landsat LAI; after DA, 
simulated LAI decreased resulting in SFY underestimation (Bias = -11.469 Mg ha− 1); WO showed OP simulations 
for LAI closer to Landsat’s LAI values, despite the positive Bias in SFY estimation, and so EnKF slightly reduced 
the SFY overestimation (Bias = 22.944 Mg ha− 1). Thus, the better descriptions of DS in terms of structure did not 
inhibit the error inconsistency. We suggested that new studies are required to understand how the assimilated 
variables impact on the other state variables of the PBM.   

1. Introduction 

Process-based crop models (PBM) have been largely used for decision 
making and planning in agriculture, because of the capability of 
describing how the agricultural system responds to environmental 
conditions (Morell et al., 2016). The PBMs are capable of a variety of 
tasks, including yield forecasts in response to weather variables and the 
impacts of management changes. For that, the PBMs works mechanis-
tically and attempts to explain the genotype × environment × man-
agement interactions (Wang et al., 2019). These models consist of 

organized algorithms that describe physical and biological processes 
that occur in crop growth and development, and so mimic the in-
teractions among soil, plant, and atmosphere components (Jones et al., 
2017). Studies with PBMs are important for advancing the scientific 
knowledge on crop ecophysiology and management and, when applied 
as a decision tool, might be able to support government and private 
agencies, food security policies, and planning (Curnel et al., 2011). 

Sugarcane is a key crop because it represents a major world source of 
sugar and ethanol. Brazil has ca. 8.6 million ha planted with sugarcane, 
producing ca. 654 million metric tons (Mt) of harvested stalk fresh yield 
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(CONAB, 2022). Brazil is the world largest producing country, ac-
counting for ca. 38% of global sugarcane production and 50% of global 
sugar exports (Marin et al., 2019a). 

Different PBMs have been developed and evaluated for sugarcane 
across the world, and these models present different levels of complexity 
in terms of biophysical process representation in their code (Marin et al., 
2015). For example, SAMUCA model (Marin and Jones, 2014; Marin 
et al., 2017) considers physiological processes such as biomass parti-
tioning at phytomer level, canopy carbon assimilation using leaf 
assimilation rates, and carboxylation efficiency, and can simulate spe-
cific sugarcane traits like plant height, tiller population, sucrose accu-
mulation, and stalk moisture. Furthermore, SAMUCA was recently 
updated and evaluated considering the effect of the green cane trash 
blanket effect, arising from management practice in Brazil (Vianna et al., 
2020). On the other hand, the WOFOST (WO) (World Food Studies, de 
Wit et al., 2019) is a more generalist PBM, that can simulate different 
crops, with a reasonable description of photosynthesis, respiration, 
biomass portioning, and soil water balance. The WO was adapted for 
sugarcane simulation (Hu et al., 2019; Scarpare, 2011; van Heemst, 
1988), but without simulating specific traits of sugarcane growth and 
development. 

Nevertheless, the mechanist principles of PBMs are only approxi-
mations of reality and require a substantial amount of input data and 
parameters to characterize the soil–plant-atmosphere and the manage-
ment system, which are sometimes difficult to provide and may vary 
within the spatial and temporal domains (Manivasagam and Rozenstein, 
2020; Marin et al., 2017). One way to reduce the uncertainty of PBM 
simulations is to insert real-time information by using a data assimila-
tion algorithm (DA) (Huang et al., 2019). These DA methods can be 
classified into two groups: 1) the variational algorithms, which use all 
observations of a timestamp to update the model trajectory; 2) the 
sequential algorithms, which use only the corresponding time observa-
tion to estimate the new model state (Huang et al., 2019; Kang and 
Özdoğan, 2019). One sequential algorithm that has been widely used is 
the Ensemble Kalman Filter (EnKF) for crop yield estimation (Evensen, 
2003; Ines et al., 2013; Pan et al., 2019). The EnKF was tested and 
outperformed other DA methods for sugarcane simulations using 
DSSAT/SAMUCA and WOFOST (Fattori Junior et al., 2022; Hu et al., 
2019). Because EnKF is capable of counting with both model and 
observation error, due to the Bayesian approach and a Monte-Carlo 
realization of the PBM to estimate model error covariance (Wu et al., 
2021). Thus, EnKF method assumes the model and observation errors 
had random white noise, with zero means (Ines et al., 2013). 

However, due to the difficulties in model mechanists and the PBM 
parameterization, the application of PBM frequently includes the Bias 
(Yo – Ye) (Kang and Özdoğan, 2019), which neglects the assumptions of 
EnkF that can lead to systematic errors. One example of this is the error 
inconsistency between leaf area index (LAI) and yield, which happens 
when PBM simulates LAI values higher than the assimilated, and the 
open-loop (OP) simulated yield has negative Bias for yield. In these 
cases, after DA, it is likely that simulations would result in even higher 
yield underestimation due to the further LAI reduction (Kang and 
Özdoğan, 2019). That was partly demonstrated by Nearing et al. (2012), 
who showed that EnKF did not improve wheat yield estimation because 
of the low correlation between assimilated LAI and crop yield. The 
absence of prior PBM calibration can also result in error inconsistency, 
because the use of a set of cultivar-specific parameters cannot describe 
specific traits of other cultivars, such as higher potential yield and 
canopy properties (Fattori Junior et al., 2022; Kang and Özdoğan, 2019; 
Huang et al., 2021). Moreover, model errors related to crop phenology 
generally resulted in lower accuracy for yield estimation with EnKF, 
because PBM with more general structures usually account for 
phenology phase to calculate crop development (e.g. biomass parti-
tioning). In this regard, considering the LAI assimilation, the error in 
phenology might lead to inconsistency in the magnitude and the peak of 
the simulated and observed LAI (Curnel et al., 2011; Kang and Özdoğan, 

2019). 
In contrast, several studies showed improvements in yield estimation 

after DA. For instance, Yu et al. (2020) used a variant of the EnKF, the 
Ensemble Smoother, to assimilate sugarcane plant height with an 
adapted version of WO, finding an expressive improvement for both LAI 
and yield estimations. Moreover, Fattori Junior et al. (2022) used the 
EnKF to assimilate LAI with DSSAT/SAMUCA (DS), finding a reasonable 
improvement in yield estimation compared to the OP simulation. Part of 
the improvement was due to a more detailed description of plant 
physiology and soil water process within the model, which can benefit 
the simulation with the EnKF (Ines et al., 2013). Yet, such benefit was 
also related to the accuracy of the model without DA, demonstrating that 
models with high accuracy before DA usually improves the performance 
gain due to EnKF (Fattori Junior et al., 2022; Kang and Özdoğan, 2019). 
Moreover, due to a more detailed description of the plant development 
and growth, it is possible to update variables related to the assimilated 
variable (e.g. LAI, leaf weight and specific leaf area), and this might 
reduce the sensitivity of EnKF to model Bias (Ines et al., 2013; Kang and 
Özdoğan, 2019). 

In this regard, Silvestro et al. (2017) compared two different PBMs 
[Aquacrop and Simple Algorithm for Yield (SAFY)] by assimilating LAI 
and canopy cover fraction for estimating wheat yield. They found the 
Aquacrop showing lower accuracy after DA due to a more detailed 
description of the crop physiology related to water stress. This, in turn, 
increased the difficulty of the model calibration, due to the larger 
number of parameters compared to SAFY. However, for each PBM, a 
different DA method was used, and so the results were not exclusively 
influenced by the different PBM structures. Therefore, it is still not clear 
how a more detailed description of the crop development could improve 
PBM simulation with DA methods and reduce the error inconsistency 
with EnKF. 

To our knowledge, this is the first study to investigate how the PBM 
structure affected the performance of EnKF. We then aimed to assimilate 
sugarcane LAI data in two types of PBMs with structures highly different 
in terms of crop processes descriptions for estimating stalk fresh yield 
(SFY) and to analyze how those processes and the prior calibration level 
affected the DA methods performance. To fill this knowledge gap, we 
calibrated both models with a robust experimental database collected 
across several producing regions of Brazil and developed a framework to 
assimilate LAI retrieved from Landsat 7 ETM + and 8/OLI into DS and 
WO models. We then used the EnKF and tested this framework using a 
large on-farm sugarmill dataset collected in the most important sugar-
cane producing region of Brazil. Moreover, we compared the PBMs in 
terms of their structures involved in the LAI calculation to understand 
the impact on DA performance. 

2. Material and methods 

2.1. Data for calibration & evaluation of OP simulations in controlled 
field experiments 

In total, we used a dataset of 13 experiments conducted in a diversity 
of environments and used the cultivar RB867515, for calibrating (ex-
periments 1–7) and evaluating (experiments 8–13) the PBMs (Table 1). 
All the experiments received adequate N, P, and K fertilization and 
regular weed and pest control and were planted using healthy cuttings 
with 13–15 buds m− 2. Row spacing varied from 1.4 m to 1.5 m. Ex-
periments 1–7 had tiller population (TILL), stalk height (SH), LAI, SFY, 
stalk dry mass (SDM), and sucrose content on a fresh cane basis (POL) 
obtained by regular sampling. Experiments 8–13, had at last two of these 
variables sampling during the crop season. A full description of these 
experiments can be found in Marin et al. (2015) and Vianna et al., 
(2020). 

Soil characteristics and management practices such as planting and 
harvesting dates, row spacing, mulch cover, and irrigation applications 
(mm d− 1) on each site were prescribed to the model as input 
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information. Also, for experiments 2, 4, and 6 (Table 1) a total of 12 Mg 
ha− 1 of green cane straw was considered for simulations. All other ex-
periments were conducted under bare soil conditions. Other details of 
the experimental data can be found in Table 1. 

2.2. Data for data assimilation evaluation 

To evaluate the DA with EnKF in our study area, data from 32 plots 
were collected from a sugarcane mill database located in São Paulo state 
in Brazil, between the years 2012 to 2015, with an average size of 
90,000 m2. All the plots were managed following the standard for the 
region and had only the same cultivar RB867515. Each plot was me-
chanically planted and harvested as a unit and received uniform man-
agement and inputs (e.g., fertilizer, pesticides). Only plots with plant- 
cane were used in this study to reduce the influence of management 
practices on the crop yield (Marin et al., 2019b, 2021). In that sugarcane 
mill, plots next to each other were planted and harvested together and 
then they are usually grouped in blocks in terms of management. We 
then followed the same approach and grouped the plot data into 7 blocks 
as described in Table 2. Therefore, all plots of a block had the same 
planting and harvest date and observed SFY. In this regard, the SFY was 
simulated for each plot, and to estimate the SFY for each block, the 
simulated SFY was weighed by area of each plot. The following data 
were collected from each plot: localization, size, planting date, harvest 
date, soil classification, and SFY at harvest. The weather data [maximum 
and minimum air temperature (◦C), rainfall (mm), solar radiation (MJ 
m− 2d− 1) and relative humidity (%)] were collected daily from a weather 
station installed close to the blocks. 

2.3. Satellite image pre-processing 

For this study, we used remote sensing data to retrieve LAI as 
observed data for DA, for real applications with PBM this is the most 
used source of information. Furthermore, it can provide information 

during all crop seasons, and reduce the interference of low amounts of 
data. Thus, the LAI retrieved from Landsat 7 ETM + and 8/OLI were 
used as observed data to assimilate into WO and DS models. Both sensors 
had a spatial resolution of 30 m and a revisit frequency of 16-day. The 
surface reflectance data were obtained by the Google Earth Engine 
(GEE) (Gorelick et al., 2017), where the images were atmospheric cor-
rected. We used cloud/shadow masks available in eemont, a python 
package developed by Montero (2021). Also, to eliminate the border 
effect on plots we applied a buffer on the vector layer to extract pixel 
values. 

The LAI was obtained based on the normalized difference vegetation 
index (NDVI), calculated with the surface reflectance of Landsat 7 ETM 
+ and 8/OLI, following the relationship proposed by Xavier and Vet-
torazzi (2004). The relationship between LAI and NDVI was based on 

Table 1 
Description of experimental datasets used for model calibration and evaluation.  

Experiment 
Number 

Location Planting 
date 

Harvest 
date 

Planting Weather† Soil‡ Water 
treatment 

Reference 
Type 

1 Piracicaba/SP 22◦41′ S, 47◦38′W, 
560 m 

12/06/ 
2012 

10/15/ 
2013 

Plant 21.6 ◦C, 1230 
mm, CWa 

Typic Hapludox 
Typic 

Irrigated Vianna et al. 
(2020) 

2 10/15/ 
2013 

07/15/ 
2014 

1st 
Ratoon* 

Irrigated 

3 10/15/ 
2013 

07/15/ 
2014 

1st Ratoon Irrigated 

4 07/15/ 
2014 

06/08/ 
2015 

2nd 
Ratoon* 

Irrigated 

5 07/15/ 
2014 

06/08/ 
2015 

2nd 
Ratoon 

Irrigated 

6 06/08/ 
2015 

06/08/ 
2016 

3rd 
Ratoon* 

Irrigated 

7 06/08/ 
2015 

06/08/ 
2016 

3rd 
Ratoon 

Irrigated  

8 Aparecida do Taboado/MS 
20◦05S, 51◦18′W, 335 m 

07/01/ 
2006 

09/08/ 
2007 

Plant 23.5 ◦C, 1560 
mm, Aw 

Typic Hapludox 
Typic 

Rainfed Marin et al. 
(2015) 

9 Colina/SP 20◦25′S, 48◦19′W, 590 
m 

02/10/ 
2004 

06/15/ 
2005 

Plant 22.8 ◦C, 1363 
mm, Cwa 

Typic Hapludox 
Typic 

Rainfed 

10 Olimpia/SP 20◦26′S, 48◦32′W, 
500 m 

02/10/ 
2004 

06/15/ 
2005 

Plant 23.3 ◦C, 1349 
mm, Cwa 

Typic Hapludox 
Typic 

Rainfed 

11 Coruripe/AL 10◦07′S, 36◦10‘W, 
16 m 

08/16/ 
2005 

09/15/ 
2006 

Plant 21.6 ◦C, 1401 
mm, As 

Fragiudult Typic Rainfed 

12 União/PI, 4◦41′S, 42◦52‘W, 68 m 03/29/ 
2007 

06/16/ 
2008 

Plant 27 ◦C, 1500 mm, 
Aw 

Oxisol Irrigated 

13 União/PI, 4◦41′S, 42◦52‘W, 68 m 03/29/ 
2007 

06/16/ 
2008 

Plant 27 ◦C, 1500 mm, 
Aw 

Oxisol Rainfed 

† Respectively: mean annual temperature, annual total rainfall, Koeppen Classification. 
‡ U.S. Soil Taxonomy. 
* With mulch cover. 

Table 2 
Description of block datasets used for data assimilation evaluation.  

Blocks Planting 
date 

Harvest 
date 

Soil Classification¥ Number of 
plots 

1 07/15/ 
2012 

12/05/ 
2013 

Argissolo Vermelho 
(Ultisol) 

5 

2 08/15/ 
2013 

09/13/ 
2014 

Latossolo Vermelho (Typic 
Hapludox) 

4 

3 08/15/ 
2013 

09/07/ 
2014 

Latossolo Vermelho (Typic 
Hapludox) 

6 

4 08/15/ 
2013 

09/13/ 
2014 

Latossolo Vermelho (Typic 
Hapludox) 

2 

5 08/15/ 
2013 

09/18/ 
2014 

Latossolo Vermelho (Typic 
Hapludox) 

5 

6 09/15/ 
2014 

07/24/ 
2015 

Argissolo Vermelho 
(Ultisol) 

1 

7 09/15/ 
2014 

12/05/ 
2015 

Latossolo Vermelho (Typic 
Hapludox) 

9 

¥Soil Classification by Brazilian Soil Classification System (Embrapa, 1999) and 
their nearest U.S. Soil Taxonomy equivalent (in brackets). 
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different surface vegetations, but 68% of the data were from sugarcane 
vegetated surfaces. Thus, for different months of the year, a different 
equation was obtained (January, March, August, November), being all 
significant at 1% level (p < 0.01), R2 ranging between 0.54 and 0.74, 
and the standard error between 0.38 and 0.67. Therefore, for each plot, 
during the growing season (plant to harvest), an NDVI time series was 
obtained. Also, the NDVI time series were filtered by the Saviky-Golay 
method, to reduce the noise caused by the sensor error and atmo-
spheric perturbation (Kang and Özdoğan, 2019; Zhao et al., 2013), after 
that, the LAI time series were calculated for each plot. The LAI time 
series was used to represent the observation for the DA with EnKF. Based 
on the results of Xavier and Vettorazzi (2004) and Abebe et al., (2022a) 
for the LAI retrieved from remote sensing we considered an error of 
30%, for DA with EnKF. 

2.4. Brief description of DSSAT/SAMUCA 

The SAMUCA model is a PBM firstly developed by Marin and Jones 
(2014), which is capable to simulate the growth and development of 
sugarcane crop, implementing an algorithm to describe processes 
related to phenology, canopy development, tillering, biomass accumu-
lation, root growth, and water stress (Marin et al., 2017). Vianna et al. 
(2020) improved the SAMUCA model by including recent scientific 
findings on sugarcane growth at phytomer level, canopy assimilation, 
and tillering. In this new version, the model was adapted to operate the 
one-dimensional “tipping bucket” soil water balance and to incorporate 
the soil temperature to account for the trash blanket effect on sugarcane 
growth and water use. This presented a superior performance compared 
with the previous version and was comparable to other widely used 
PBMs for sugarcane. For this study, we used the SAMUCA model 
incorporated into the Decision Support System for Agrotechnology 
Transfer (DSSAT) platform version 4.8 (Jones et al., 2003; Hoogenboom 
et al., 2019; Vianna et al., 2020), namely DSSAT/SAMUCA (DS). 

2.5. Brief description of WOFOST 

The WOFOST (WO) model was developed by Wageningen Univer-
sity, the Netherlands, and it was used in this study due to its extensive 
application and evaluation (Abebe et al., 2022a). The WO model is a 
mechanistic PBM, which simulates crop growth as a function of solar 
radiation, temperature and crop properties (Wang et al., 2013). The 
basis of the simulation is the physiological and ecological progress of 
crops which includes light interception, CO2 assimilation, respiration, 
transpiration, phenological development, dry matter accumulation, and 
partitioning to various organs (Ma et al., 2013). Recently, the WO model 
was incorporated within the Python Crop Simulation Environment 
(PCSE) (de Wit et al., 2019). In this study, we implemented DA with the 
WO model using PCSE, parametrized for sugarcane. The WO is not a 
simplistic crop model such as SAFY, but rather a generalist PBM that can 
be adapted for different crops. Thus, WO version used here was not able 
to simulate specific traits of sugarcane, such as tiller population, plant 
height, sucrose content, and stem moisture, which are important to 
define the sugarcane yield. We used the parameters collected and cali-
brated by Scarpare (2011), for a few Brazilian sugarcane cultivars, as 
standard for our study. 

2.6. Calibration process 

The models were calibrated for cultivar RB867515 using the exper-
iments (1–7) present in Table 1. The method used for calibration was the 
Generalized Likelihood Uncertainty Estimation (GLUE). We used the 
calibration process described by Marin et al. (2011), Li et al. (2018) and 
Pereira et al. (2021), following the following steps: (i) Develop prior 
parameter distributions; in this case, we assume a uniform distribution 
from a predefined range of variation of genotype parameters, as rec-
ommended by Marin et al. (2017), selecting the most sensitive 

parameters based on Pereira et al. (2021) for DS and Scarpare (2011) for 
WO (Appendix B - Table 1); (ii) Generate a random set of parameters 
values from prior parameter distributions based on the Monte Carlo 
method; for this study we used a sample of 3000 set of parameters; (iii) 
Run the model with different parameters sets; (iv) The calculus of each 
likelihood values for each observation (O) was used along with the 
corresponding simulated outputs to compute the likelihood values, 
L(θi|O), for each of the N generated parameter vector θi following Eq. 1: 

L(θi|O) =
∏M

J=1
1̅̅̅ ̅̅̅̅̅
2πσ2

o

√ exp
(
−

(O2 − f(θi) )
2

2σ2
O

)
, (i = 1, 2, 3,… N) (1) 

Lcomb(θi) =
∏K

k=1
Lk(θi|Ok) (2)  

where M is the number of observations replicates; f(θi) is the model 
output referring to θi; σ2

o is the variance model errors; K is the number of 
observations type; Lcomb(θi) is the combined likelihood value of ith 
parameter set θi. Then, the probability p(θi) of each parameter set was 
computed with the following Eq. (3): 

p(θi) =
L(θi|Y)

∑N
i=1L(θi|Y)

(3) 

(v) Construct posterior distribution and statistics. The pairs of pa-
rameters set and probabilities, (θi, pi), i = 1, ⋯N, were used to 
construct empirical posterior distributions and to compute the means 
and variance of selected parameters using the following equations: 

μ̂(θ) =
∑N

i=1
p(θi) θi (4)  

σ̂(θ) =
∑N

i=1
p(θi)(θi − μ̂) 2 (5)  

where μ̂(θ) and σ̂(θ) are the mean and the variance of the posterior 
distribution, thus, μ̂(θ) is the optimum set of parameters and was 
considered the calibrated genotype set of parameters and was used in 
the evaluation step. 

The measured data, during the crop season, collected between the 
experiments in Table 1 were SDM, SFY, LAI, SH, TILL, and POL. For DS 
all variables were used for performing the GLUE, for the WO model, we 
only used the SDM, SFY and LAI to calibrate the model, because the WO 
cannot simulate the other variables. The parameters result in the cali-
bration step were present in Table S1. 

2.7. Description of data assimilation procedure 

The sequential DA method, EnKF, was used in this study to assimilate 
LAI derived from Landsat 7 ETM + and 8/OLI. To evaluate the im-
provements of the EnKF in the model’s simulations, the results were 
compared to the simulation without DA, called open-loop (OP). The 
EnKF algorithm is described below. To implement the EnKF with DS, the 
model was adapted to read an input file with a new estimated vector of 
state variables at any time. Yet, when new LAI values were assimilated 
by DS, the leaf area and dry weight were also updated at phytomer and 
block level to ensure the consistency of canopy representation. The 
version of WOFOST used in this study, inserted in PCSE, is more flexible 
to be adapted with EnKF. As follows, the simulations can be paused at 
any time and update the new state variable. For both models, a Python 
script was developed to read a control file, with each block description, 
create the input file for model simulation, run the model and pause any 
time to perform the EnKF and estimate the new LAI values, and finally 
reinitialize the model and read the outputs. The WO model cannot 
simulate the SFY, and so we used the relation between SDM and SFY 
available in the experiments showed in Table 1 to transform the simu-
lated SDM in SFY during the crop cycle (Fig. 1). 
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2.8. Ensemble Kalman filter method 

The EnKF employs an analytic solution based on two related sources 
of information, in this case: PBMs outputs and plot observations. These 
are synthesized to provide a better estimation, with lower variance. For 
that, the EnKF assumes that the observed data can be related to the state 
variable xt (LAI in the case of this study) at time t as shown in Eq. (6): 

y = Hxt + ε (6)  

where y is the observations vector; H is the observation operator that 
relates to y; ε is a Gaussian random error vector with a mean of zero and 
observation error covariance R. Also, the forecast of xt at t = k is 
Gaussian with mean xf

t=k and error covariance Pf
t=k. Under these as-

sumptions, the estimated state and error covariance (P) are updated as: 

xa
t=k = xf

t− k +K
(
yt=k − Hxf

t=k

)
(7)  

Pa
t=k = (I − KH)Pf

t=k (8)  

where t is the time index; k is the time of the observed data; f represents 
the prior state (called forecast) and a is the posterior state (called 
analysis); I is the identity matrix and K represents the Kalman gain 
calculated by Eq. (9): 

K = Pf
t=kHT ( HPf

t=kHT + Rt=k
)− 1 (9) 

The EnKF forecast and analysis error covariance Pf come directly 
from an ensemble of the model simulations: 

Pf HT = (Ne − 1)− 1
∑Ne

n=1

(
xf

n − xf )( Hxf
n − Hxf )T (10)  

where Ne is the number of ensemble members, n is a running index for 
an ensemble member, and xf are the ensemble mean calculated as: 

xf = N − 1
e

∑Ne

n=1
xf

n (11) 

In our study, we only used the LAI retrieved remote sensing as a state 
variable for DA methods. Thus, H can be taken as an identity matrix (H 
= 1), with that we can rewrite Eqs. (7), (9), and (10) as Eqs. (12), (13) 
and (14). 

xa
t=k = xf

t=k +K
(
yt=k − xf

t=k

)
(14)  

K = Pf
t=k

(
Pf

t=k + Rt=k
)− 1 (15)  

Pf = (Ne − 1)− 1
∑Ne

n=1

(
xf

n − xf )( xf
n − xf )T (16) 

In EnKF, the observed data were perturbed with the Monte Carlo 
approach to generate an ensemble, based on the data uncertainty rep-
resented by the variance. Because, the observations needed to be treated 
as random variables and it is commonly assumed that observation errors 
have a Gaussian distribution (Zhuo et al., 2019). The PBM uncertainties 
are accounted for by the model ensemble. There are two methods to 
generate the ensemble members (Zhuo et al., 2019): the first method 
adds a Gaussian perturbation to the PBM state variables output. The 
second, add a Gaussian perturbation to the model input parameters. In 
this study, we used the second method to generate the ensemble mem-
bers. Thus, to select the most sensitive parameters to LAI, for the DS we 
used the parameters selected by Fattori Junior et al. (2022), which were 
MAXGL (maximum number of green leaves a tiller can hold), MLA 
(maximum leaf area), PLASTOCHRON (thermal time required for the 
appearance of one new phytomer), INIT_LF_AREA (initial leaf area of 
first appeared leaf), and MID_TT_LF_GRO (thermal time where leaves 
can achieve half of its maximum biomass). For the WO we used the 
parameters that show higher influence in LAI, as reported by Hu et al. 
(2019) and Scarpare (2011). The parameters selected were TSUMEA 
(temperature from emergence to anthesis), RGRLAI (maximum relative 
increase in LAI), TBASE (lower threshold temperature for aging of 
leaves), EFF (light-use efficiency for real leaf) and CVL (efficiency of 
conversion into leaves). These parameters were then perturbed to 
generate an ensemble (40 members), with a gaussian distribution and an 
uncertainty level of 10% before the simulation started, as recommended 
by Ines et al. (2013) and Curnel et al. (2011) to optimize the time of the 
simulation and model accuracy. 

After generating the set of parameters, DS runs until the first 
observed LAI is available. At this point, we calculated in sequence K and 
the vector xa

t=k (Eqs. (14) and (15), that was considered the optimal 
estimation of LAI. This step also included a small inflation of 1.5 for LAI 
in ensemble members, in the case of their variability becoming too low 
(Ines et al., 2013). This step ensured that the observations were not 
systematically rejected during assimilation. After that, the estimated LAI 
is stored in an input file for the next simulations, and runs were re- 
initialized until the next observations became available. 

2.9. Data analysis 

The performance of the calibration step was evaluated using the 
following statistical indices: root mean squared error (RMSE), determi-
nation index (R2), Nash-Sutcliff model efficiency (EF), model Bias (Bias) 
and Willmot accuracy index (d) (Willmott et al., 2012). Secondly, for the 
evaluation step with sugarmill plots, we only compared the SFY at the 
end of the cycle, simulated and observed. Thus, we used the RMSE, R2 

and Bias to compare simulations and observations at block level, for the 
two models and two methods (OP and EnKF). 

3. Results 

3.1. Calibration results 

Considering the experiments used for calibration (Table 3), the DS 
outperformed WO, simulating SDM, SFY, and LAI, with an EF = 0.907, 
0.878, and 0.458 for DS and 0.622, 0.610 and 0.417 for WO, respec-
tively (Table 3). The accuracy of DS was higher than WO for SDM, SFY, 
and LAI; Regarding the LAI, WO had RMSE = 0.981 m2 m− 2 and DS, 
RMSE = 0.946 m2 m− 2. For SDM and SFY, WO had RMSE = 6.442 and 
30.349 Mg ha− 1 and, for DS, RMSE = 3.198 and 16.964 Mg ha− 1 

(Table 3). Furthermore, WO had good precision and accuracy for 
simulating SDM and SFY, with R2 > 0.87 and d > 0.90; LAI presented a 
lower precision and accuracy with R2 = 0.535 and d = 0.850 (Table 3). 

Fig. 1. The relationship between sugarcane stalk fresh yield and corresponding 
stalk dry mass of experiments in Table 1. 
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DS had similar performance results, with SDM and SFY showing R2 >

0.92 and d > 0.96, as well as for LAI, with R2 = 0.645 and d = 0.867 
(Table 3). The DS underestimated SDM, SFY, and LAI, with Bias =
-1.313 Mg ha− 1, − 9.837 Mg ha− 1, and − 0.456 m2 m− 2, respectively, 
while WO had positive Bias for SDM and SFY (5.358 Mg ha− 1, 24.845 
Mg ha− 1), and negative for LAI (-0.157 m2 m− 2) (Table 3). 

The sucrose content in the stalk (POL) is a variable only simulated by 
DS, for which the model had an acceptable precision (R2 = 0.767; d =
0.920; EF = 0.638) and accuracy (RMSE = 1.262 %[fresh]) (Table 3). 
The SH had a higher precision compared to LAI and TILL (R2 = 0.925; d 
= 0.853; EF = 0.618) and had RMSE = 0.530 m (Table 3). The TILL had 
lower performance compared to other variables, except for LAI (R2 =

0.667; d = 0.829; EF = 0.545; RMSE = 3.392 # m− 2) (Table 3). The SH 
and TILL presented a negative Bias (-0.331 m; − 1.551 # m− 2) and POL 
was the only variable in the calibration step that had a positive Bias 
(0.544 %[fresh]) (Table 3). 

The WO presented a lower accuracy for the experiments used for 
evaluation with RMSE = 4.399 Mg ha− 1, 24.416 Mg ha− 1, 1.243 m2 

m− 2, respectively for SDM, SFY and LAI when compared to DS (RMSE =
4.304, 22.284 Mg ha− 1, 0.607 m2 m− 2). Different from the results on 
calibration step, WO had a negative Bias for SDM (Bias = -0.034 Mg 
ha− 1), and DS positive for SDM and SFY (Bias = 0.657, 2.675 Mg ha− 1). 
Yet, both models had negative Bias for LAI, being − 0.101 m2 m− 2 and 
− 0.818 m2 m− 2 respectively for DS and WO (Table 3). The WO showed 
lower performance for simulating LAI (EF = -0.749, R2 = 0.252, d =
0.641), but it was satisfactory for SDM and SFY (EF > 0.81, R2 > 0.87, d 
> 0.95) (Table 3). The DS had good performance for simulating SDM 
and SFY (EF > 0.84, R2 > 0.91, d > 0.96), although lower for LAI (EF =
0.583, R2 = 0.635, d = 0.887) (Table 3). 

3.2. Data assimilation evaluation 

The DS OP simulations had a higher accuracy for final SFY (RMSE =
31.678 Mg ha− 1) compared to WO (RMSE = 39.593 Mg ha− 1) and higher 
precision (R2 = 0.509 and 0.458 for DS and WO, respectively) (Table 4). 
Both models had a positive Bias for OP simulations, 25.406 Mg ha− 1 for 
DS and 31.282 Mg ha− 1 for WO (Table 4). 

When DA based on EnKF using LAI was performed, the DS had RMSE 
= 17.508 Mg ha− 1, which represented a decrease of − 44.73 % compared 
to the OP method (Table 4). The WO had lower accuracy compared to DS 
(RMSE = 27.880 Mg ha− 1), and it represented a decrease of − 29.58% 
compared with OP methods (Table 4). The precision also improved after 
DA, as DS showed R2 = 0.622, an increase of 22.15% compared to OP. 

The WO had an even higher increase in precision (36.50%), with R2 =

0.625, which was higher than DS (Table 4). The DS with EnKF had Bias 
= -11.469 Mg ha− 1, while WO showed a positive Bias = 22.944 Mg ha− 1 

after DA with EnKF (Table 4). 
After DA, DS simulated lower values of SFY, with mean = 83.232 Mg 

ha− 1, compared to SFY simulated by WO (mean = 117.645 Mg ha− 1, 
Table 4). Further, after DA, DS had some blocks with SFY simulated 
lower than the values observed, different from WO, that had a lower 
accuracy reduction and any SFY simulated lower than observed ones 
(Fig. 2). In this regard, the WO improved the simulations of 5 blocks out 
of 8, while DS improved 4 blocks out of 8. For WO, however, the blocks 
without improvements in accuracy were those that already had high 
accuracy before DA. (Fig. 2). 

During the crop cycle, the DS showed higher LAI values for OP 
simulations compared to WOFOST and Landsat LAI, in general for all 
plots, as shown for two selected plots in Fig. 3. Higher differences be-
tween DS and Landsat LAI were observed in the early phases of crop 
development when the LAI increases following a linear relationship 
(Fig. 3 a and i). The LAI simulated by DS had a peak in the early stage of 
development and, after that, LAI decreased and stabilized at a lower 
level. This was different from what Landsat LAI showed, for which the 
peak period occurred at later stages of development (Fig. 3 a and i). For 
WO, LAI profiles also had a peak period in an earlier stage compared to 
Landsat LAI, but the values were closer to the observed ones along the 
crop season (Fig. 3 c and k). 

Therefore, two types of error inconsistency occurred in the simula-
tions, for each PBM. For DS, first, the plots with lower SFY, simulated by 
OP, (Fig. 3 m) had LAI values higher than the Landsat LAI (Fig. 3 j). 

Table 3 
Statistical indexes of performance of the DSSAT/SAMUCA and WOFOST models in simulating sugarcane crop components across experiments.  

Model Type Variables Bias RMSE EF R2 d X Y 

DSSAT/SAMUCA Calibration SDM  − 1.313  3.198  0.907  0.926  0.974  12.587  11.274 
SFY  − 9.837  16.964  0.878  0.932  0.964  69.267  59.43 
LAI  − 0.456  0.946  0.458  0.645  0.867  3.214  2.759 
POL  0.544  1.262  0.683  0.761  0.92  8.942  9.485 
SH  − 0.331  0.53  0.618  0.925  0.853  1.204  0.873 
TILL  − 1.551  3.392  0.545  0.667  0.829  14.544  12.993 

Evaluation SDM  0.657  4.304  0.903  0.951  0.98  19.443  20.1 
SFY  2.675  22.284  0.843  0.915  0.968  84.907  87.582 
LAI  − 0.101  0.607  0.583  0.635  0.887  2.595  2.494 
POL  − 0.533  1.144  0.547  0.733  0.901  13.232  12.699 
SH  − 1.608  3.585  0.517  0.666  0.812  14.03  12.422 
TILL  0.43  0.495  0.673  0.924  0.925  0.963  1.393 

WOFOST Calibration SDM  5.358  6.442  0.622  0.887  0.911  12.587  17.944 
SFY  24.845  30.349  0.61  0.872  0.903  69.267  94.112 
LAI  − 0.157  0.981  0.417  0.535  0.85  3.214  3.058 

Evaluation SDM  − 0.034  4.399  0.899  0.899  0.972  19.443  19.409 
SFY  12.736  24.416  0.811  0.871  0.953  84.907  97.642 
LAI  − 0.818  1.243  − 0.749  0.252  0.641  2.595  1.777 

RMSE: Root mean squared error; EF: Modeling efficiency; R2: Determination index; d: accuracy index of Wilmot; X: Mean observations; Y: Mean simulations; Bias = Y – 
X; SDM: Stalk dry mass (Mg ha− 1); SFY: Stalk fresh yield (Mg ha− 1); LAI: Leaf area index (m2 m− 2); POL: sucrose content on a fresh cane basis (% [fresh]); SH: Stalk 
height (m); TILL: Tiller population (# m− 2). 

Table 4 
Statistical indexes of performance of DSSAT/SAMUCA and WOFOST without 
data assimilation, open-loop method (OP), and with data assimilation using the 
Ensemble Kalman Filter (EnKF).  

Model Method Bias RMSE R2 X Y 

DSSAT/ 
SAMUCA 

OP  25.406  31.678  0.509*  94.701  120.107  

EnKF  − 11.469  17.508  0.622*  94.701  83.232 
WOFOST OP  31.282  39.593  0.458*  94.701  125.983  

EnKF  22.944  27.880  0.625*  94.701  117.645 

RMSE: Root mean squared error; R2: Determination index; X: Mean observa-
tions; Y: Mean simulations; Bias = Y - X. 
*p < 0.01. 
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However, the OP simulations resulted in SFY lower than the observed 
(Fig. 3 m). Thus, after DA, the negative Bias for SFY was even increased 
(Fig. 3 n). Second, a mismatch between the LAI’s peak period was 
observed for all plots (Fig. 3 a and i), which mainly reduced the per-
formance of LAI assimilated in blocks with low SFY (Fig. 3 j and n). For 
WO, the OP simulated LAI was closer to the Landsat LAI (Fig. 3 c and k), 
but SFY had positive Bias mainly for plots with high observed SFY (Fig. 3 
g). Thus, after DA, the high Bias in SFY was slightly lowered (Fig. 3 h). 
Moreover, the WO simulations had a mismatch between OP LAI and 
Landsat LAI, with higher values in the early development phases and 
lower at the end of the crop cycle, mainly for plots with higher SFY 
simulations (Fig. 3 c and k). 

Nevertheless, WO after DA showed higher accuracy for the plots with 
lower observed SFY, because the simulated LAI had better agreement 
with the Landsat LAI, and closer SFY simulated values with observed 
ones (Fig. 3 l and p). For DS, the simulations after DA had higher ac-
curacy for block with high SFY (Fig. 3 e and f). 

The higher decrease in DS SFY estimation followed a higher decrease 
in LAI values, after DA, along crop cycle, compared to WO (Fig. 3). In 
summary, the OP simulations of LAI presented a mean value (1.347 m2 

m− 2), which was close to the Landsat LAI (1.350 m2 m− 2), while DS 
showed mean LAI = 2.485 m2 m− 2, which was 84% higher than mean 
Landsat LAI (Fig. 4). Thus, despite WO having higher mean SFY OP 
simulations (125.983 Mg ha− 1), the simulated LAI values were lower 
than DS, which present lower average SFY OP simulations (120.208 Mg 
ha− 1) (Table 4). 

4. Discussion 

In this study, the models DS and WO were calibrated for cultivar 

RB867515 and had the SFY simulations, using the EnKF, compared with 
the same plot database by assimilating LAI retrieved from Landsat 7 
ETM + and 8 OLI. In the calibration step, the DS had better performance 
for calibration and evaluation, despite the higher number of observed 
variables used for GLUE. Thus, it seems that simulating different plant 
variables resulted in a lower uncertainty, despite the higher complexity 
and interactions. For example, SDM is partly derived from the TILL and 
SH, and adding these relationships to the model and using this observed 
variable for calibration, we found better simulations for SDM and SFY. 
Furthermore, these results may also be due to a more detailed descrip-
tion of the soil–water balance and soil layers of DS, which is different 
from the WO that considers only one soil layer. 

One important part of the lower performance of WO came from the 
ratoon experiments (2–7, Table 1), as the model overestimated the SDM, 
SFY, and LAI for them. This can be related to some parameters of WO, 
such as initial total crop dry weight (TDWI); degree-days from emer-
gence to anthesis (TSUM1); and initial rooting depth (RDI), that were 
not retrieved from these experiments. Therefore, the parameters 
retrieved from Scarpare (2011) might not represent the conditions of 
these experiments, because they were derived from different environ-
ments and genotypes. Moreover, despite both PBMs having the same 
database for calibration and the same weather database, the uncertainty 
in PBM structure and the difference in soil and genotype parameters 
affected the performance of the simulations (Marin et al., 2015). 

The calibration performance affected the sugarmill plots simulations, 
with DS showing higher performance for OP simulations than WO 
(Table 3 and 4). However, OP simulations with DS had lower accuracy, 
compared to the results of Fattori Junior et al. (2022), which use the 
same PBM for simulating different experiments with EnKF and LAI 
retrieved from experimental observations. Moreover, comparing the 

Fig. 2. Comparison of observed and simulated stalk 
fresh yield (SFY) (a, b) with open-loop simulations 
(OP) and (c, d) with Ensemble Kalman filter (EnKF), 
using (a, c) DSSAT/SAMUCA and (b, d) WOFOST. The 
dashed black line represents the 1:1 adjustment, 
whereas the red dashed line is the regression between 
observed SFY and simulated SFY. The statistical in-
dexes of the plots can be found in Table 4. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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results of WO with other studies, the OP simulations presented lower 
accuracy, with higher RMSE than studies with the same model (Abebe 
et al., 2022a; Hu et al., 2019). The lower accuracy of both PBMs can be a 
result of management adopted in sugarmill plots that were more sus-
ceptible to reducing factors (diseases, weeds, pests, soil compaction and 
failures), which decreased the SFY and were not simulated by the PBMs 
(Dias and Sentelhas et al., 2017; Gasparotto et al., 2022). 

Nevertheless, the use of EnKF reduced the RMSE and increased R2 for 
both models (Table 4), showing the potential of using LAI retrieved from 
Landsat 7 ETM + and 8 OLI for reducing model uncertainty (Abebe et al., 
2022a; Huang et al., 2015; Kang and Özdoğan, 2019). It showed, also, 
the potential for using DA methods to correct the model simulation 
when reduction factors were present (Hu et al., 2019). Yet, matters to 
highlight that despite both models having the same assimilated variable 

and used the same database for calibration, the results after DA were 
considerably different, which indicates that the PBM structure highly 
affected the performance of SFY estimation after DA (Silvestro et al., 
2017). 

In this regard, the light interception mechanics and the distribution 
over the canopy are similar between both PBMs. Both account for solar 
radiation being fractionated between direct and diffuse proportions 
(Vianna et al., 2020; de Wit et al., 2019), and the leaf area is a result of 
total living leaves and the specific leaf area. Therefore, the difference 
between models was the mechanism used to calculate the living leaf 
biomass and the values used for specific leaf area. For DS, the leaf 
biomass was calculated by phytomer and the total leaf biomass per area 
was a result of the number of phytomers with living leaves, leaf biomass 
of each phytomer, and the number of stalks (Vianna et al., 2020). 
Moreover, the senescence rate of leaves was related to the process of 
shading leaves, the maximum number of leaves, leaves age, and tiller 
age, in conditions without water stress. Further, the specific leaf area 
was considered a fixed parameter during the crop simulation. The WO, 
in turn, does not simulate the sugarcane number of tillers and phy-
tomers, and the leaf biomass was calculated by leaves age (de Wit et al., 
2019), which also affects the calculus of LAI, leaf area, and leaf senes-
cence. The relation between leaf area and stalk mass was only related to 
partitioning factors, over the crop development stage. Different from DS, 
the specific leaf area changes during the crop development stages, 
following the input values. 

Therefore, the DS had a more complex structure for LAI simulations, 
which was affected by the number of stalks and phytomers, which 
represent a better approximation of the sugarcane development (Lou 
et al., 2013; Zhou and Shoko, 2011). This mechanism might explain part 
of the better accuracy and precision of DS for calibration and evaluation 
steps (Table 3), because enough information (LAI and TIL) was provided 
for calibration (Vianna et al., 2020). This also may explain part of the 

Fig. 3. Comparison between simulated (dark blue lines) and observed (green circles) leaf area index (LAI) retrieved from Landsat and stalk fresh yield (SFY) for one 
of the plot of block 1 and 3, with open-loop (OP) and Ensemble Kalman filter (EnKF) method, using the DSSAT/SAMUCA (DS) and WOFOST (WO). Greys lines are the 
ensemble simulations, blue lines are the ensemble mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 4. Box-plot of sugarcane leaf area index (LAI, m2 m− 2) distribution 
retrieved from Landsat 7 ETM + and 8 OLI, and open-loop simulations with 
DSSAT/SAMUCA and WOFOST model. 
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better performance of DS in OP simulations, for the sugarmill blocks 
simulations (Table 4). 

Furthermore, the ensemble state used to describe the possibility of 
real states in crop growth simulations also influenced on DA perfor-
mance. Both models had five parameters perturbed to generate the 
initial ensemble, however, these parameters diverged from each model, 
which led to a large difference in the background error, and then 
influencing the performance of EnKF. The DS parameters perturbed 
were tightly linked to LAI, differently from WO, which had two of the 
five parameters more generalist (EFF and TSUMEA). However, back-
ground error generated by the DS parameters could not inhibit filter 
divergences. For block 3, the DS model showed filter divergences after 
assimilating several low values of remote sensed LAI, between 300 and 
400 days after planting (Fig. 3j). Since the model errors became lower, 
the assimilation higher LAI values made low contribution to the LAI 
analysis, leading to an LAI and SFY underestimation. For WO in the same 
period, the DA resulted in LAI values close to the remote sensed LAI 
(Fig. 3i), showing that background error was higher than DS. Yet, such 
filter divergence was also influenced by the higher errors in Landsat LAI. 

The DA performance had a close relationship with the OP perfor-
mance (Fattori Junior et al., 2022), and after DA, the DS had also higher 
accuracy compared to WO. However, the DS underestimated the SFY 
(Table 4), because the changes in LAI values after DA had a direct 
relationship with SFY simulation. In this regard, when OP simulations 
had LAI and yield (SFY) both with positive Bias, but the Bias in SFY was 
slightly lower, after DA the SFY significantly reduced, resulting in large 
errors (Kang and Özdoğan, 2019). However, when both LAI and SFY had 
high Bias, after DA, the accuracy was notably improved. For WO, the 
resulted LAI from OP and the Landsat LAI had close values, thus when 
the model had high positive Bias for SFY estimation, the SFY after DA 
was only slightly improved (Kang and Özdoğan, 2019); however, the 
Bias for LAI was close to zero, the DA was not able to improve the SFY 
estimations. 

Therefore, our results emphasize that the structure of DS and WO 
could not reduce the sensitivity of EnKF of both PBM and assimilated 
variable Bias. This disagrees with the hypothesis that updating state 
variables related to LAI reduces the sensitivity of EnKF to model Bias 
(Ines et al., 2013; Kang and Özdoğan, 2019). The target variable to be 
improved was the SFY, but the variable assimilated was LAI, and be-
tween LAI and SFY there are several complex relationships affected by 
many other factors (Nearing et al., 2012). Also, the LAI of sugarcane has 
a considerable variation among genotype and environment (Lou et al., 
2013; Marin et al., 2011), which reflects in the relationship between LAI 
and other variables important to define the SFY, such as SH and TILL (Yu 
et al., 2020; Zhou and Shoko, 2011). Thus, by only assimilating LAI and 
updating the related variables was not sufficient for inhibiting the error 
inconsistency. So, the correlation between LAI and variables such as 
TILL and SH should be better explored and improved when the LAI is 
assimilated into the PBM. Further, using one or more assimilated vari-
ables would reduce the impact of Biased variables (Yu et al., 2022, Pan 
et al., 2019), and might lower the EnKF sensitivity. Further studies 
should then explore this considering different model structures. 

In terms of practicalities, the WO model was easily coupled with 
EnKF due to object-oriented construction in Python. Thus, multiple 
simulations can be initialized and paused at any time during the simu-
lation runs, to perform the DA. Different from the DS, the structure of 
DSSAT platforms did not allow for a pause in the simulations during the 
model run. Therefore, to perform the DA, the models need to be reini-
tialized at each observation, increasing the time of simulations, despite 
the FORTRAN language being faster. One option to overcome this was 
found by Ines et al. (2013), who used a modified version of CSM-Maize 
model outside the DSSAT plataform, thus allowing EnKF to control the 
simulation ensemble with independent crop model runs to improve the 
speed and applicability with EnKF. 

Although the EnKF techniques employed in this study showed 
improved performance of SFY simulations for both models, we 

emphasized some limitations of our study. The LAI time series retrieved 
from Landsat 7 ETM + and 8/OLI, used the relationship of Xavier and 
Vettorazzi (2004), which in turn used data from surface vegetation cover 
that was partly retrieved from other crops and may not well represent 
the sugarcane LAI. In this regard, during the DA process, we assumed a 
relatively high LAI error for generating the ensembles, and this may 
interfere with DA performance. 

Therefore, further studies should explore the differences between 
PBMs with LAI observations retrieved from more sophisticated models 
such as biophysics models (Pan et al., 2019) and the Gaussian process 
(Abebe et al., 2022b). Finally, in this study we used the standard version 
of EnKF, but other studies developed different variations of the EnKF to 
overcome some limitations of the method (Jamal and Linker, 2020; Wu 
et al., 2021), and so these can be tested in future researchers to compare 
the interference in more PBMs. 

5. Conclusion 

Both evaluated PBM had satisfactory performance in the calibration 
and evaluation step, but the DS had better performance, as shown by the 
OP simulations results in terms of accuracy (RMSE) and precision (R2), 
compared to WO. The DS had a more detailed process description of the 
relationship between LAI and other crop related variables in its struc-
ture, which improved OP simulations. After DA, both PBMs showed 
error inconsistency, and both were improved in terms of accuracy and 
precision. The error inconsistency however diverged from each PBM: the 
OP simulation of DS overestimated the Landsat LAI; after DA, simulated 
LAI decreased resulting in SFY underestimation; WO showed OP simu-
lations for LAI closer to Landsat’s LAI values, despite the positive Bias in 
SFY estimation, and so EnKF slightly reduced the SFY overestimation. 
The EnKF performance was also influenced by the genotype parameters 
used to generate the ensemble simulations, resulting in different back-
grounds error for each model. Thus, the better descriptions of DS in 
terms of structure did not inhibit the error inconsistency, which con-
tradicts the hypothesis initially raised in the literature. This study 
emphasized that the relations among LAI and other crop variables 
should be more deeply considered in the DA process, for a more com-
plete benefit of DA in the quality of simulations. 
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