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Abstract

Process-based crop models (PBCM) for sugarcane present many genotype parameters com-
pared to other crops, making it harder to calibrate. Global sensitivity analysis (GSA) has
thus become an important tool for understanding, calibrating and further developing
PBCMs. This work used a recently updated Agronomic Modular Simulator for Sugarcane
(SAMUCA) to simulate crop growth and development, conducted with two treatments:
with green cane trash blanket (GCTB) and under bare soil (BARE). Using the extended
Fourier Amplitude Sensitivity (eFAST) algorithm, GSA was performed on the 24 genotype
parameters of SAMUCA. The objective was to determine the sample size (SZ): how many
samplings are necessary to quantify the sensitivity indices. Additionally, we aimed to assess
the influence of parameter range variation and identify which genotype parameters explain
the highest variance in simulations of the SAMUCA model under BARE and GCTB condi-
tions. The results showed that SZ greatly affected the convergence and sensitivity indices,
and the SZ required here needed to be >2049 for the analysis to cover all variables. Two
sets of parameter ranges were used for analysis (the first used maximum and integer values
of each parameter reported in the literature; the second applied 25% perturbation to the pre-
viously calibrated values). The results indicated that the parameter range affected the para-
meters’ order of importance. Furthermore, we identified that at different phenological
stages of sugarcane development, distinct parameters were responsible for explaining the
most variance of the output. However, there was no difference among ratoons or interference
in the results of BARE or GCTB.

Introduction

In agriculture, process-based crop models (PBCM) represent the state of the art for simulating
crop growth and development (Jones et al., 2017; Marin et al., 2017). When properly cali-
brated, they are commonly used to simulate crop growth and development under different
conditions, thus being able to test hypothetical management, climate and soil scenarios
(Faivre et al., 2009). Scientists and decision-makers have used modelling as a tool to address
issues related to the sugar and bioenergy sectors, including climate change (Marin et al., 2013;
Singels et al., 2013; Jones et al., 2015), plant breeding (Hoffman et al., 2018), risk analysis
(Everingham et al., 2002) and crop forecast (Everingham et al., 2016).

Sugarcane is a crucial crop for world bioenergy (Raza et al., 2019), and several authors have
studied sugarcane modelling (Keating et al., 1999; Singels and Bezuidenhout, 2002;
Inman-Bamber and Smith, 2005; Thorburn et al., 2005; Marin and Jones, 2014; Valade
et al., 2014; Jones and Singels, 2018; Vianna et al., 2020). Singels (2013) presented a detailed
review of the main sugarcane models in the literature, highlighting sugarcane as one of the
crops with highest need to be represented in PBCM given its specific farming systems and
logistic requirements. To represent its physiological complexity, sugarcane PBCM have
many genotype parameters compared to other crops, such as maize and wheat. For instance,
the sugarcane models DSSAT/CASUPRO (Villegas et al., 2005) and DSSAT/CANEGRO
(Jones and Singels, 2008) have 42 and 22 cultivar coefficients, respectively, while DSSAT/
CERES-MAIZE (Jones et al., 1986) and DSSAT/CERES-WHEAT (Ritchie and Otter, 1985)
have only respectively six and seven parameters to be calibrated.

According to Sinclair and Seligman (1996), the development of different PBCM by more
research groups allows to improve the understanding of processes. In this sense, Marin and
Jones (2014) developed the Agronomic Modular Simulator for Sugarcane (SAMUCA) focus-
ing on the specific characteristics of sugarcane farming systems in Brazil. Recently, the
SAMUCA model was improved by reducing the uncertainties around the soil water balance,
heat flux and physiological mechanisms such as carbon partition, photosynthesis, tillering
and root growth (Vianna et al., 2020).
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As any other PBCM, SAMUCA represents a simplification of
the real system and requires several parameters whose determin-
ation is a problem for practical operational applications
(Makowski et al., 2002). Most parameters are acquired through
field observations, which are expensive and time-consuming,
and the acquisition of certain parameters is difficult.

Furthermore, for reliable simulations, accurate parameter esti-
mation is required (Guérif and Duke, 2000; Wallach et al., 2019a),
and so several parameter estimation algorithms have been devel-
oped, part of which are based on Bayesian approaches (He et al.,
2010, 2009; Sreelash et al., 2012; Marin et al., 2017; Sheng et al.,
2019; Zhang et al., 2020). To some extent, these methods solved
the problem of difficult-to-acquire parameters, and they are
quite efficient but applicable to a small number of parameters
only (Varella et al., 2010). Still, the inclusion of many parameters
in a PBCM raises a dilemma related to the difficulty in simultan-
eously estimating all unknown parameters and ensuring at the
same time that their biophysical meaning is coherent.

In practice, it is well known that only part of the parameters is
usually responsible for most of the model uncertainty, while most
of them have only minor influence (Varella et al., 2010; Li et al.,
2019; Zhang et al., 2020). The parameter sensitivity analysis (SA)
method can identify the most important parameters for a given
model output variable, which allows users to focus on the most
important model parameters during the calibration process.
Furthermore, based on the SA, the balance and robustness of
the model can be analysed for future improvement, model devel-
opment and applications (Fraedrich and Goldberg, 2000;
Confalonieri, 2010; Chu-Agor et al., 2011; Hirabayashi et al.,
2011).

The SA can be divided into two groups: the local sensitivity
analysis (LSA) and the global sensitivity analysis (GSA)
(Wallach et al., 2019b). The LSA consists of changing a single par-
ameter at a time, while the other parameters are kept at their ref-
erence values; in other words, this method is based on the local
derivatives of the model’s output concerning the variation of a
single parameter, which indicates how strong the output changes
around the reference parameter values (Saltelli et al., 1999). The
GSA allows you to evaluate the entire uncertainty range of para-
meters, considering changes in all parameters along with their
range, as well as the interactions among parameters (Saltelli
et al., 1999).

The GSA methods can also be classified into three groups:
screening, regression and variance; all of these follow the
Bayesian sampling principle (Wei, 2013). The most used screen-
ing method is the Morris method, which permits to define the
most important model parameters and it is often considered a
qualitative method (Morris, 1991; Dejonge et al., 2012).
Regression methods, such as the Partial Rank Correlation
Coefficient (PRCC), provide the correlation between the model’s
output and the selected parameters and they are mandatory when
the parameter and the model outputs have a monotonic relation-
ship (Marino et al., 2008; Krishnan and Aggarwal, 2018).
Methods based on variance are the most used one, and the
three mains are: Sobol (2001), Fourier Amplitude Sensitivity
Test (FAST) (Cukier et al., 1978) and the extended Fourier
Amplitude Sensitivity Test (eFAST) (Saltelli et al., 1999); they
provide what parameters cause the greater variability for the mod-
el’s output, and they usually demand a high computational cost.
To define which method is the most suitable, some properties
of model must be known (linearity, prior distribution of para-
meters and monotonic), furthermore considering the number of

parameters to be evaluated and the computational cost (Iooss
and Lemaître, 2015). In this sense, Sobol and eFAST are the meth-
ods most applicable to any type of PBCM, but while Sobol is very
computationally expensive, eFAST integrates the merits of FAST
and Sobol’s algorithms, representing a method with high effi-
ciency and precision, and the ability to adequately compute inter-
action effects among parameters (Iooss and Lemaître, 2015).

The GSA has several aspects that can affect sensitivity indices
and their uncertainty, regardless of the method adopted. In gen-
eral, the most important uncertainty sources of GSA are: (i) sam-
ple size (SZ), (ii) range of parameters and (iii) complexity of the
model (Xu and Gertner, 2011; Gan et al., 2014; Song et al., 2015).
To our knowledge, there are no studies in the literature investigat-
ing effects in GSA caused by SZ and parameter range on eFAST
method in sugarcane models. In the case of parameter SZ, studies
that utilized the eFAST method were based on the evidence pre-
sented by Wang et al. (2013), where the recommended SZ is
greater than 1024. However, in studies that did not follow this rec-
ommendation, a very large SZ was adopted without clear criteria
(Tan et al., 2016). By adopting an SZ like that of Wang et al.
(2013), the model characteristics are ignored, as the SZ is influ-
enced by various factors such as the number of parameters, the
analysed output variable, and the methods used to estimate vari-
ables within the model. Additionally, choosing a very large SZ
requires excessively long computational time, which can render
the analysis infeasible in some cases.

The parameter range is another source of uncertainty in
PBCM when using Bayesian approaches for parameter estimation
(Makowski et al., 2006), consequently affecting the sensitivity
indices in a GSA. Depending on the range of parameters, it is pos-
sible to generate calibrations that do not represent the desired
genotype (He et al., 2010, 2009; Sexton et al., 2016; Marin
et al., 2017) or correctly quantify the uncertainty (Soetaert and
Petzoldt, 2010; Dzotsi et al., 2013; Gan et al., 2014; Zhang
et al., 2020; Pereira et al., 2021). Wang et al. (2013) compared a
range of parameters measured for maize and a relative range of
10% in relation to a reference calibration and found important
differences in the GSA results. Li et al. (2019) evaluated different
relative ranges, from 10 to 50%, in relation to a reference value
and concluded that the most important parameters for the 10%
range diverged from those obtained using the 50% range. Many
recent PBCM studies (Vazquez-Cruz et al., 2014; Tan et al.,
2016; Jin et al., 2018; Li et al., 2019) have adopted relative param-
eter ranges to apply a GSA, which can result in serious methodo-
logical errors. According to Homma and Saltelli (1996), the GSA
principle is to identify the parameters that cause the greatest
uncertainty in the model, and this is not possible when all para-
meters are disturbed to create relative parameters range. Finally,
there is still the model complexity, which is a source of consider-
able uncertainty and a complicated issue to be considered in the
GSA (Razavi and Gupta, 2015).

The SAMUCA crop model has been relatively little evaluated
compared to well-established models such as DSSAT/
CANEGRO and APSIM-Sugar (Thorburn et al., 2005; Marin
and Jones, 2014; Marin et al., 2015; Sexton et al., 2017). Pereira
et al. (2021) used the PRCC to perform a GSA to identify the
most important parameters for SAMUCA and then to explore
the model uncertainty. However, some issues remained unclear
due to the following limitations: (i) the GSA was performed
only for the end-of-season output values; (ii) the PRCC method
is limited when the parameter relation is not monotonic, and
only four out of the 24 genotype parameters are monotonic in
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SAMUCA, which means that some parameter responses might be
neglected during the GSA; (iii) authors did not consider the effect
of the range of parameters on GSA results. The first two limita-
tions may result in the omission of important parameters because
they affect certain variables at a different time of simulation
(Lamboni et al., 2009; Dejonge et al., 2012), and the third has
never been investigated for sugarcane crop models, and even for
other crops the range of parameter effect on GSA was little studied
(Wang et al., 2013).

Considering the aspects mentioned above, this paper aimed to:
(i) determine the optimal SZ for the eFAST method; (ii) investi-
gate whether there is a difference between the ranges of para-
meters used in GSA; (iii) identify which parameters are
responsible for the greatest uncertainty in the SAMUCA model.

Material and methods

SAMUCA crop model

The SAMUCA model is a process-based model that simulates the
growth and development of sugarcane. Originating from the argu-
ment of Sinclair and Seligman (Sinclair and Seligman, 1996),
which emphasizes the importance of research groups developing
their own models to incorporate region-specific processes, this
approach enhances the understanding of the uncertainties and
limitations of the model. Thus, the SAMUCA model was mainly
developed by Marin and Jones (2014) and Marin et al. (2017),
using a large database for different Brazilian production condi-
tions. Subsequently, Vianna et al. (2020) improved the model
structure by decreasing the uncertainty in the soil water balance
and including the effect of straw cover on sugarcane growth
and development, modifying routines of soil moisture and the
flow of water and heat from soil, compared to the previous ver-
sions. The most recent version is also included in the DSSAT plat-
form v.4.8 (https://dssat.net/).

The standalone version of SAMUCA model previously pre-
sented by Marin and Jones (2014) simulates fibre and sucrose bio-
mass partitioning at the internode level. The new version keeps
the same implementation; however, leaves and internodes are
grouped into phytomer units (Vianna et al., 2020). The phyto-
mers, which are associated with tillers that have emerged in the
simulation area. The root system is treated as a single set of organs
and develops as thermal age progresses. Plant development is cal-
culated separately for roots, tillers, leaves and internodes, consid-
ering the accumulation of thermal units. Soil temperature is used
for underground processes such as root development and the
development of tiller phytomers that have not yet emerged. Air
temperature, on the other hand, is used to calculate the develop-
ment of above-ground phytomers. The phytomer appearance rate
for each tiller is simulated based on the plastochron interval,
which is a measure of thermal time required for the development
of each phytomer. During the initial phase of sugarcane develop-
ment, the tiller appearance rate is calculated based on soil tem-
perature and the emergence interval of new tillers, known as
the tiller emergence rate. The senescence phase of tillering is trig-
gered when the amount of light transmitted through the canopy
reaches a specific threshold. In this phase, younger tillers grad-
ually senesce over thermal time until the number of tillers reaches
the expected final population, determined by the parameter pop-
mat. The leaf senescence rate is controlled by the parameter
maxgl, which defines the maximum number of leaves per tiller.
When the number of leaves on a tiller exceeds this value, the

oldest leaf is shed as it has completed its life cycle. Soil tempera-
ture is used to calculate thermal age and temperature-dependent
processes until the organ in question (such as below-ground inter-
nodes, roots and tillering) emerges at the soil surface. After emer-
gence, all new leaves use air temperature to calculate accumulated
thermal units and contribute to the formation of the crop canopy,
expressed by the leaf area index. As for internodes, the switch
from using soil temperature to air temperature for the develop-
ment of new internodes occurs when the stalk emerges at the
soil surface, controlled by the parameter n_lf_when_stk_emerg.
Internodes are considered ‘appeared’ at the top of the tiller after
a minimum number of leaves have emerged for their formation,
while older leaves are attached to already differentiated inter-
nodes, enclosed in leaf sheaths. At the apex of the tiller, a set of
developing leaves surrounds the apical meristem of the bud, at
the centre of the leaf whorl. These leaves will become visible at
the tip of the tiller and eventually develop into internodes.

Data and management

The crop growth simulation scenario was based on a field experi-
ment conducted in the College of Agriculture ‘Luiz de Queiroz’,
Piracicaba, São Paulo (Lat: 22°41′55′′S, Lon: 47°38′34′′W, Alt:
540 m). The sugarcane cultivar was the RB86-7515, a widely
used genotype in Brazil (ca. 30% of Brazil’s planted area). It
was planted on 16 October 2012, with a row spacing of 1.4 m
and depth of 0.2 m. The BARE treatment was conducted over
four consecutive years, while the GCTB treatment commenced
in the first ratoon (October 2013) and was carried out for 3
years. Agricultural practices were adopted to represent high
yield farming systems and to ensure the crop was free from
pests, diseases and nutritional stress. The climate is characterized
by hot and humid summers with dry winters (Cwa-Koppen clas-
sification), and the soil classified as Typic Hapludox. The experi-
ment was irrigated by a centre-pivot, based on monitoring the soil
moisture by Frequency Domain Reflectometry (FDR) and the
evapotranspiration by Bowen Ratio Method (BRM) in both treat-
ments (Table 1).

As the eFAST method requires a high computational time, we
divided our study into two steps. In the first step (STp1), we simu-
lated the first ratoon of sugarcane with GCTB and BARE, testing
different SZ and two sets of parameter ranges (Table 2). The main
objective of STp1 was to define what minimum SZ is needed to
obtain a reliable GSA and then apply them to the second step
(STp2) of the study. In STp1 we ran the GSA using end-of-season
values as reference of the variables: stalk dry mass (SDM), stalk
fresh mass (SFM), leaf area index (LAI), sucrose concentration
in the fresh matter (POL) and tiller population (TIL). In the
STp2, after determining the SZ where the standard deviation of
the sensitivity indices tends to zero and there is no risk of altering
the parameter importance order, we performed a long simulation
considering the different ratoons and ran the GSA in function of
the daily values simulated in the whole season of each variable
(SDM, SFM, POL, LAI and TIL).

Sensitivity analysis

Extended Fourier Amplitude Sensitivity Test
The eFAST is an algorithm that combines two GSA methods: the
FAST and the Sobol (Saltelli et al., 1999, 2010), which in turn, use
the model output variance principle. While FAST can scan the
entire parameter space and obtain quantitative sensitivity
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measures in terms of the main sensitivity index (Si) of each par-
ameter to output variance, the Sobol calculates the total sensitivity
index (STi) and provides an indication of the overall effect of a
given parameter, considering all possible interactions of that par-
ameter with others (Sobol, 2001). The eFAST is based on the
decomposition of the model’s output variance, determining
which fraction of the variance explained by each parameter.
This variation is quantified using the statistical notion of variance
(analogous to ANOVA):

s2 =
∑N
i=1

(yi − �y)2

(N − 1)
(1)

where N is number of models runs, yi is ith model output and
�y sample mean. Partitioning of variance in eFAST works by vary-
ing different parameters at different frequencies, encoding the
identity of parameters in the frequency of their variation. In
recent years, due to these advantageous properties, eFAST has
become more popular in hydrological, ecological and agronomy
modelling (Varella et al., 2010; Reusser et al., 2011; Xing et al.,
2017; Li et al., 2019). We implemented the eFAST method for
the SAMUCA model in the sensitivity R-package available at:
https://cran.r-project.org/web/packages/sensitivity/index.html.

The main sensitivity index (Si) of a given parameter (i) is cal-
culated as the variance at a particular parameter’s unique fre-
quency (and harmonics of that frequency) divided by total
variance (VARt). First, variance (VARi) is calculated from the
Fourier coefficients at the frequency of interest ( j):

VARi = 2(A2
j + B2

j ) (2)

Aj =
∫p

−p

f (s)cos( js) ds (3)

Bj =
∫p

−p

f (s)sin( js) ds (4)

Si = VARi

VARt
(5)

where s is a scalar variable within the range −∞ < s < +∞; Aj

and Bj are the Fourier coefficients (or Fourier amplitude) over
the domain of integer frequencies j ∈{−∞, …,− 1, 0, 1, …,
∞}. Si represents the fraction of the output variance of the
model explained by the input variation of a given parameter.
STi is calculated as the remaining variance after the complemen-
tary set contribution is removed. Thus, to estimate STi for the
given parameter i, the eFAST algorithm first calculates the sensi-
tivity indices except for parameter i using the identification
frequencies.

STi = VARt − VAR−i

VARt
(6)

where VAR−i is the sum of all the variance terms that do not
include the parameters i.

Si and STi must vary between 0 and 1, and effects are greater
the indices reach values closer to 1, whereas values close to 0 indi-
cate negligible effects. STi considers both Si and the interactions
between the parameters, such interactions be evaluated by the dif-
ference between the STi and the Si. The two sensitivity indices Si
and STi are equal if the effect of the parameter i on the model out-
put is independent of the values of the other parameters: in this
case, there is no interaction between this parameter and the
others, and the model is additive into parameter i. We considered
only the parameters that had Si > 0.05 and STi > 0.1 as significant
and relevant in the GSA analysis, as suggested by Dejonge et al.
(2012) and Xing et al. (2017). This allowed us to identify the para-
meters that individually explain at least 5% of the model’s vari-
ance through the Si index. Additionally, using the STi index, we
could identify the parameter that, when combined with others,
explains more than 10% of the variance, indicating that the con-
tribution of the other parameters explains at least an additional
5% of the variance.

Table 1. Description of seasons, planting and harvesting dates, duration of the season in days, treatments and variable measurements of the field experiment in
Piracicaba, Brazil

Cropping measure Planting Harvest Duration of the season Measurements Treatments

Plant cane 10/16/2012 10/15/2013 364 SDM, SFM, TIL, LAI and POL BARE

1st Ratoon 10/15/2013 07/15/2014 273 SDM, SFM, TIL, LAI and POL BARE and GCTB

2nd Ratoon 07/15/2014 06/08/2015 328 SDM, SFM, TIL, LAI and POL BARE and GCTB

3rd Ratoon 06/08/2015 06/08/2016 365 SDM, SFM, TIL, LAI and POL BARE and GCTB

Green cane trash blanket (GCTB), stalk dry mass (SDM; t/ha) and stalk fresh mass (SFM; t/ha) of leaf area index (LAI; m2/m2), sucrose concentration in fresh matter (POL; %) and tiller
population (TIL; #/m2).

Table 2. Description of the processes performed in the first step (STp1) and the second step (STp2); the simulated season, the sample size (SZ) evaluated, soil cover
type, number of repetitions (NR) and parameter range set (PRS)

Step Season SZ Treatments NR PRS

STp 1 1st Ratoon 65, 129, 257, 513, 1025, 2049, 4097 BARE and GCTB 10 PRS1 PRS2

STp 2 Plant cane to 3rd ratoon 2049 BARE and GCTB 1 PRS1 PRS2

The details about the SZ are presented in the section on sample size, and the details about PRS1 and PRS2 are provided in Table 3.
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Sample size
The SZ refers to the number of samples generated within the
range of each parameter. In other words, for a given parameter
x, SZ samples are generated while respecting the limits of vari-
ation for that parameter. This SZ is a key factor in determining
the number of model evaluations (Ne), where the number of eva-
luations is obtained by multiplying the number of evaluated para-
meters (Np) by the SZ (Ne = Np × SZ). In some cases, a large
number of model evaluations are required, which can restrict
the method’s use. Therefore, the relationship between SZ and
the convergence of the sensitivity measure is of utmost import-
ance. The SZ is determined by the sampling frequency and the
exploration curve, as described by Saltelli et al. (1999). To inves-
tigate the influence of SZ on the convergence of sensitivity indi-
ces, an SA was performed with different SZ. Seven SZ cases
were used: 65, 129, 257, 513, 1025, 2049 and 4097, as proposed
by Wang et al. (2013). For each SZ, we conducted ten repetitions
considering the 1st ratoon for the BARE and GCTB treatments.
We employed two criteria to determine the SZ. The first criterion
involved calculating the sum of Si values and checking if this sum
converged to 1. If it did not meet this criterion, the SZ would be
discarded. The second criterion involved calculating the mean
and standard deviation of Si values based on the ten repetitions.
In this way, we identified the smallest SZ where the standard devi-
ation of Si was sufficiently small and the sum of Si approached 1,
classifying it as the most suitable for the variable analysis.
Additionally, the smallest SZ value that simultaneously met
these two criteria for all variables was defined as the most appro-
priate for the SAMUCA model. In this analysis, we considered
two ranges of parameter variation, which will be described in
the next item (Parameters range set).

Parameters range set
The GSA is affected by the uncertainty range of the parameters
(Wang et al., 2013), so we investigated this factor for the GSA of
the SAMUCA model by constructing two ranges of genotype para-
meters. The first parameter range set (PRS1) was constructed based
on the literature, containing the maximum and minimum values of
each genotype parameter, regardless of the sugarcane cultivar
(Pereira et al., 2021). For the second parameter range set (PRS2),
we considered the studies of Wang et al. (2013) and Jin et al.
(2018), and concluded that the order of importance of the para-
meters converges to above 10% disturbance. Thus, in order not
to use an excessively small disturbance that would cause inconsist-
ency in the GSA results, and to avoid an excessively large disturb-
ance to generate parameter values outside their genotype reality, we
choose to cause a ±25% perturbation in the values calibrated by
Vianna et al. (2020). In Table 3, we present the description of
the parameters and their respective values for PRS1 and PRS2.

Results

Sample size

Figures 1 and 2 presented the Si values for the main parameter
obtained from the PRS1 intervals (Fig. 1) and PRS2 intervals
(Fig. 2), in relation to different SZ in the BARE and GCTB treat-
ments. We observed a dispersion for small SZ. The SZ of 65 and
127 showed high variability both in the sensitivity indices and in
the order of the main parameters explaining the model variance.
For the lowest SZ evaluated (65 and 127), it was not possible to
obtain sensitivity indices and accurately quantify the order of

parameter importance due to the divergence of the sensitivity
indices’ sum, Si and STi from 1. In these cases, the eFAST method
was unable to quantify the sensitivity indices for the PRS1
(Table 4) and PRS2 (Table 5) sets.

We noticed that the SZ varied according to the analysed vari-
able; however, we did not observe any effect of the GCTB or
BARE treatments on the SZ (Tables 4 and 5). Tables 4 and 5 pre-
sent the order of significant parameters for each SZ, considering
different parameter sets and treatments. For the SDM variable,
the required SZ for the PRS1 set was 1025 (Table 4), which was
smaller than the 2049 obtained for the PRS2 set (Table 5). In the
case of the SFM, POL and LAI variables, the same SZ were
found for both the PRS1 and PRS2 sets: 1025 for SFM and 513
for POL and LAI (Tables 4 and 5). The TIL variable achieved
the sensitivity indices with the smallest SZ in both parameter
sets. For the PRS1 set, the SZ was 257 (Table 4), while for the
PRS2 set, it was 513 (Table 5). We observed a divergence among
the variables, and the minimum SZ required to calculate the sensi-
tivity indices using the eFAST method varied depending on the
variable. Consequently, the lowest SZ at which it was possible to
calculate the sensitivity indices for all variables was 2049
(Tables 4 and 5).

Crop features

We consider two key points to evaluate; (i) the order of importance
of the parameters and (ii) the values of Si and STi in both param-
eter ranges (PRS1 and PRS2). We noticed that GCTB affected the
order of the main parameter only in PRS2, while Si and STi values
were slightly affected between GCTB and BARE treatments.

In PRS1, the results between BARE and GCTB were similar
since the main parameter for all variables was maintained regard-
less of the presence or absence of GCTB (Fig. 3). For example, the
main parameter for SDM and SFM was the plastochron, and it
was responsible for explaining 29 and 31.6% of the variance in
the BARE and GCTB treatments, respectively; for SFM the
explained variance was 27.9 and 30.4% for BARE and GCTB,
respectively (Tables 6 and 7). The GCTB only influenced the
order of importance of the parameters of the variable SDM. In
the BARE treatment the parameter n_lf_when_stk_emerg was
the 6th parameter (explaining 5.4% of the variance) and in the
treatment with GCTB it was the 3rd (explaining 12.7% of the
variance) (Tables 6 and 7). Furthermore, in the SFM variable,
the plastochron parameter appears to have greater relevance in
the presence of GCTB compared to BARE, as the percentage
explained only by it increased, decreasing the values of the para-
meters mid_tt_it_growth and max_it_dw (Tables 6 and 7).

In PRS2, the presence of GCTB affected the results regarding
the analysis of the variables SDM, SFM and LAI, while there
was no influence of GCTB on TIL and POL (Fig. 3). The main
parameter for SDM in the BARE treatment was popmat (explain-
ing 33.9% of the variance; Table 6), while in the GCTB treatment,
the main parameter was plastochron (explaining 29.0% of the
variance; Table 7). Similarly, in the SFM variable, the main par-
ameter was popmat in the BARE treatment (explaining 26.6%
of the variance; Table 6) and plastochron in the GCTB treatment
(explaining 30.5% of the variance; Table 7). In relation to LAI, the
presence of GCTB led to the inclusion of the parameter mla
among the significant parameters, going from three parameters
in BARE (maxgl, popmat and mid_tt_lf_growth; Table 6) to
four parameters in the GCTB treatment (maxgl, popmat, mid_
tt_lf_growth and mla; Table 7).
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Table 3. Description of parameters, calibrated values for genotype RB867515 (μ) by Vianna et al. (2020), first set of parameters (PRS1) extracted from Pereira et al. (2021), based on the literature, and second set of
parameters (PRS2) with ±25% perturbation relative to μ; CV is the coefficient of variation with respect to μ; Max and Min values are range used for random parameters uniform distribution

Parameters Description μ

PRS1 PRS2

Min Max CV (%) Min Max CV (%)

amax Assimilation rate at light saturation point (μmol/m2/s) 44.9 41.3 60.7 22 33.7 56.1 25

chudec Heat units for start of tiller abortion (°C/d) 1600 1200 1800 19 1200 2000 25

chumat Heat units for population establishment (°C/d) 1600 1500 2850 42 1200 2000 25

chupeak Heat units for population peak (°C/d) 1400 404 1950 55 1050 1750 25

chustk Heat units for start culm elongation (°C/d) 650 400 1050 50 488 813 25

eff Carboxylation efficiency (μmol/m2/s/μmol/m2/s) 0.069 0.04 0.08 29 0.05 0.09 25

end_tt_it_growth Thermal time for completion of internode growth (°C/d) 1200 800 1400 25 900 1500 25

end_tt_lf_growth Thermal time for completion of leaf growth (°C/d) 1300 1100 1500 15 975 1625 25

init_lf_area Initial leaf area of first appeared leaf (cm2) 15 10 30 67 11 19 25

max_ini_la Initial leaf area of leaves appeared after top parts formation (cm2) 120 80 180 42 90 150 25

max_it_dw Maximum dry biomass of internodes (g) 28 18 35 30 21 35 25

maxdgl Maximum number of developed green leaf a tiller can hold (#/tiller) 6 6 12 50 5 8 25

maxgl Maximum number of green leaf a tiller can hold (#/tiller) 11 10 12 9 8 14 25

mid_tt_it_growth Thermal time where internodes can achieve half of its maximum biomass (°C/d) 400 380 600 28 300 500 25

mid_tt_lf_growth Thermal time where leaves can achieve half of its maximum biomass (°C/d) 700 400 800 29 525 875 25

mla Maximum leaf area (cm2) 600 450 800 29 450 750 25

n_lf_it_from Number of leaves appeared before internode formation (#/tiller) 3 2 6 67 2 4 25

n_lf_stk_em Number of leaves appeared before stalks emerges at soil surface (#/tiller) 4 3 8 63 3 5 25

phyllochron Phyllochron interval for leaf appearance (°C/d) 132 107 169 23 99 165 25

plastochron Thermal time required for the appearance of phytometer (°C/d) 132 107 169 23 99 165 25

popmat Number of tillers on maturation (tiller/m2) 9.5 8 12 21 7 12 25

poppeak Maximum number of tillers (tiller/m2) 27 17 30 24 20 34 25

sla Specific leaf area (cm2/g) 120 100 121 9 90 150 25

tillochron Thermal time required for emergence of new tiller (°C/d) 69 48.1 134.8 63 52 86 25
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Effects of parameter range

For SDM, considering the SZ of 2049, we observed a reduction in
the number of significant parameters between PRS1 and PRS2. In
PRS1 there were six significant parameters ( plastochron, max_
it_dw, n_lf_it_form, eff, popmat and n_lf_when_stk_emerg),
which together were responsible for explaining 81.6% (Table 6)
and 82.2% (Table 7) of the variance in the BARE and GCTB treat-
ments, respectively. In the case of PRS2, only four parameters
(popmat, plastochron, max_it_dw and eff) were significant,
responsible for explaining 70% (Table 6) and 70.1% (Table 7) of
the variance in the BARE and GCTB treatments, respectively.

Among the output variables analysed, SFM was the one with
the highest number of significant parameters, from six to seven
parameters. In PRS1 there were six significant parameters in the
BARE treatment ( plastochron, mid_tt_it_growth, max_it_dw,
end_tt_it_growth, eff and n_lf_it_form), which explained 96.8%
(Table 6) of the variance, while in the GCTB treatment there
were seven parameters ( plastochron, max_it_dw, mid_tt_it_,
n_lf_when_stk_emerg, end_tt_it_growth, eff and n_lf_it_form),
which explain 93.3% of the variance (Table 7). In the case of
PRS2, there were six significant parameters in both treatments,
responsible for explaining around 93.1% (Table 6) and 95%
(Table 7) of the variance in the BARE and GCTB treatment,
respectively. Two results should be highlighted: (i) in the BARE
treatment, popmat was not a significant parameter in PRS1,
while in PRS2 it was the most important parameter (Table 6);
(ii) on the other hand, in the GCTB treatment, popmat remained

irrelevant in PRS1 and was the second most important parameter
in PRS2; the most important parameter was plastochron (Table 7).

In the case of the POL, there was no change in the group of
significant parameters or in their order, with the parameters
mid_tt_it_growth and end_tt_it_growth being the only significant
ones, regardless of the treatment and the PRS1 and PRS2 set
(Tables 6 and 7). However, we noticed that mid_tt_it_growth in
PRS1 explained 65.8% (Table 6) and 64.2% (Table 7) of the vari-
ance, while in PRS2 it was 39.2% (Tables 6 and 7). For the TIL
variable, there was no difference between PRS1 and PRS2, being
popmat responsible for explaining 99.8% of the variance regard-
less of treatment.

The variable LAI in PRS1 presented only two significant of
treatment (BARE or GCTB); the two main parameters were pop-
mat and mla (Tables 6 and 7). However, in PRS2 the number
of significant parameters increased, to 3 (maxgl, popmat and
mid_tt_lf_growth; Table 6) in BARE and to 4 (maxgl, popmat,
mid_tt_lf_growth and mla; Table 7). The biggest discrepancy is
in the variance explained by the significant parameters, where
in PRS1 they were 33.9% (Table 6) and 34.6% (Table 7), and in
PRS2 they were 55.2% (Table 6) and 60% (Table 7).

Time-dependent effects on global sensitivity analysis

Having defined the appropriate SZ (2049), we performed an ana-
lysis considering a temporal variation in the different stages of the
sugarcane crop season (plant cane to 3rd ratoon). We observed

Figure 1. Evolution of sensitivity index of the most important parameter for BARE and GCTB with increasing SZ for variables mass stalk dry (a) and fresh (b),
sucrose content (c), tiller population (d) and leaf area index (e), for PRS1; red line is the average of the ten simulations for each SZ and in blue we have the
max and min Si of each SZ.
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that the GSA over time provided two important results: (i) the
influence of the sugarcane season did not affect the order of
importance of parameters. The order of parameters was not chan-
ged compared to ratoons; for example, for SDM we noticed that
the same parameters have the same degree of importance in all
ratoons (Fig. 4). The same pattern was repeated for all variables
and their respective parameters and (ii) at different times of
sugarcane growth, there were different parameters responsible
for explaining the greater variance of the model.

For the variable SDM, during the different growth phases,
there was a change in the order of the main parameter. For
example, during the crop establishment and development phase,
the plastochron parameter was responsible for explaining more
than 50% of the SDM variance, becoming the main parameter
in this period when using the PRS2 set. On the other hand, at
the end of the maturation phase, the plastochron was the second
most important parameter, behind the popmat with the PRS2 set
(Fig. 4 – PRS2 BARE and GCTB). In PRS1, during the emergence
phase until mid-establishment, the main parameter was n_lf_it_
form, later the plastochron became the main parameter until the
end of the growth phase (Fig. 4 – PRS1 BARE and GCTB).
Furthermore, in short periods and isolated in the growth phase,
the parameters n_lf_it_form, end_tt_lf_growth and n_lf_when_stk_
emerg were significant using the PRS2 set (Fig. 4 – PRS2 BARE and
GCTB); these three parameters were not reported in Tables 6 and 7
as they were not significant at the end of the growth phase. This
pattern was not observed in PRS1 (Fig. 4 – PRS1 BARE and
GCTB), that is, all significant parameters presented in Tables 6
and 7 appeared in the analysis throughout the growth phases.

For SFM, plastochron had a greater impact on the simulation
regardless of the parameter set (PRS1 and PRS2) or treatment
(Fig. 5 – BARE and GCTB). Among the sets of parameters, PRS1
and PRS2, there was the inclusion of the popmat parameter in
PRS1 in the BARE treatment; however, its influence was minimal
(5%). For PRS2, the popmat remained relevant during most parts
of the growth phase, but in our view not enough to havemore impact
on the SFM simulations. The parameter end_tt_lf_growth showed
significance at specific moments during the tillering phase for the
PRS2 set, in both the BARE and GCTB treatments (Fig. 5 – BARE
and GCTB), a situation not observed in the PRS1 set. Furthermore,
even within the PRS2 set, its relevance was more pronounced in
the GCTB treatment, as it was evident in all three ratoons.

For the variable POL, we had the inclusion of several para-
meters depending on the of the analysed growth phase (Fig. 6).
In this case, in PRS1, in addition to mid_tt_it_growth and end_
tt_it_growth, there was the inclusion of plastochron, n_lf_when_stk_
emerg and n_lf_it_form (Fig. 6 – PRS1 BARE and GCTB). In PRS2,
the parameters plastochron, n_lf_when_stk_emerg, n_lf_it_form
and end_tt_lf_growth were included (Fig. 6 – PRS2 BARE and
GCTB). For PRS1, the parameter end_tt_it_growth was not signifi-
cant in the 1st ratoon (Fig. 6 – PRS1 BARE and GCTB), evidencing
a combination of the range of parameters with the weather condi-
tions for that season. Yet, for PRS2, end_tt_lf_growth was signifi-
cant, while in PRS1 the same was not observed.

The TIL variable had two main parameters, from the begin-
ning to the middle of the season, that was tillochron and from
the middle to the end of the season popmat (Fig. 7). In the first
half of the season, the tillochron influence was around 90%,

Figure 2. Evolution of sensitivity index of the most important parameter for BARE and GCTB with increasing SZ for variables mass stalk dry (a) and fresh (b),
sucrose content (c), tiller population (d) and leaf area index (e), for PRS2; red line is the average of the ten simulations for each SZ and in blue we have the
max and min Si of each SZ.
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Table 4. Order of importance of the genotype parameters for the PRS1 interval, considering the main sensitivity index (Si) and treatment bare soil (BARE) and green cane trash blanket (GCTB)

SZ

Variable Rank

257 513 1025 2049 4097

BARE GCTB BARE GCTB BARE GCTB BARE GCTB BARE GCTB

SDM (t/ha) 1 – – – – – – plastochron plastochron plastochron plastochron

2 – – – – – – max_it_dw max_it_dw max_it_dw max_it_dw

3 – – – – – – n_lf_it_form n_lf_when_stk_emerg n_lf_it_form n_lf_when_stk_emerg

4 – – – – – – eff n_lf_it_form eff n_lf_it_form

5 – – – – – – popmat eff popmat eff

6 – – – – – – n_lf_when_stk_emerg popmat n_lf_when_stk_emerg popmat

SFM (t/ha) 1 – – – – plastochron plastochron plastochron plastochron plastochron plastochron

2 – – – – mid_tt_it_growth max_it_dw mid_tt_it_growth max_it_dw mid_tt_it_growth max_it_dw

3 – – – – max_it_dw mid_tt_it_growth max_it_dw mid_tt_it_growth max_it_dw mid_tt_it_growth

4 – – – – end_tt_it_growth n_lf_when_stk_emerg end_tt_it_growth n_lf_when_stk_emerg end_tt_it_growth n_lf_when_stk_emerg

5 – – – – eff end_tt_it_growth eff end_tt_it_growth eff end_tt_it_growth

6 – – – – n_lf_it_form eff n_lf_it_form eff n_lf_it_form eff

7 – – – – n_lf_it_form n_lf_it_form n_lf_it_form

POL (%[fresh]) 1 – – mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth

2 – – end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth

TIL (#/m2) 1 popmat popmat popmat popmat popmat popmat popmat popmat popmat popmat

LAI (m2/m2) 1 – – popmat popmat popmat popmat popmat popmat popmat popmat

2 – – mla mla mla mla mla mla mla mla

It was not possible to define an order of importance for the parameters for the sample size (SZ) values that do not appear in the table; stalk dry mass (SDM), stalk fresh mass (SFM), leaf area index (LAI), sucrose concentration in the fresh matter (POL)
and tiller population (TIL).
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Table 5. Order of importance of the genotype parameters for the PRS2 interval, considering the main sensitivity index (Si) and treatment bare soil (BARE) and green cane trash blanket (GCTB)

SZ

Variable Rank

513 1025 2049 4097

BARE GCTB BARE GCTB BARE GCTB BARE GCTB

SDM (t/ha) 1 – – popmat popmat popmat popmat popmat popmat

2 – – plastochron plastochron plastochron plastochron plastochron plastochron

3 – – max_it_dw max_it_dw max_it_dw max_it_dw max_it_dw max_it_dw

4 – – eff eff eff eff eff eff

SFM (t/ha) 1 – – popmat plastochron popmat plastochron popmat plastochron

2 – – plastochron popmat plastochron popmat plastochron popmat

3 – – max_it_dw max_it_dw max_it_dw max_it_dw max_it_dw max_it_dw

4 – – mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth

5 – – eff end_tt_it_growth eff end_tt_it_growth eff end_tt_it_growth

6 – – end_tt_it_growth eff end_tt_it_growth eff end_tt_it_growth eff

POL (%
[fresh])

1 mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth

2 end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth end_tt_it_growth

TIL (#/m2) 1 popmat popmat popmat popmat popmat popmat popmat popmat

LAI (m2/m2) 1 maxgl maxgl maxgl maxgl maxgl maxgl maxgl maxgl

2 popmat popmat popmat popmat popmat popmat popmat popmat

3 mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth mid_tt_it_growth

4 mla mla mla mla

It was not possible to define an order of importance for the parameters for the sample size (SZ) values that do not appear in the table; stalk dry mass (SDM), stalk fresh mass (SFM), leaf area index (LAI), sucrose concentration in the fresh matter (POL)
and tiller population (TIL).
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Figure 3. Main sensitivity index (Si) and total sensitivity index (STi) of the first parameter range set apply to bare soil (PRS1-BARE) and green cane trash blanket
(PRS1-GCTB) treatments, as well as for the second parameter range set applying to bare soil (PRS2-BARE) and green cane trash blanket (PRS2-GCTB) treatments;
the sensitivity analysis was calculated for the end-of-season value of each output variable.

Table 6. Relative value of the model output variance (σ2) explained individually by each parameter, and the variance sum (
∑s 2

) the parameters; we only
considered the parameters that presented Si > 0.05 and the sample size (SZ) of 2049 in treatment bare soil (BARE) to first set of parameters (PRS1) and second
set of parameters (PRS2); stalk dry mass (SDM), stalk fresh mass (SFM), leaf area index (LAI), sucrose concentration in the fresh matter (POL) and tiller
population (TIL)

Variable

PRS1 PRS2

Parameters σ2 Rank
∑s 2

Parameters σ2 Rank
∑s 2

SDM (t/ha) plastochron 29.0% 1° 29.0% popmat 33.9% 1° 33.9%

max_it_dw 17.2% 2° 46.2% plastochron 16.7% 2° 50.6%

n_lf_it_form 10.6% 3° 56.8% max_it_dw 9.8% 3° 60.4%

eff 10.5% 4° 67.3% eff 9.6% 4° 70.0%

popmat 8.9% 5° 76.2% – – – –

n_lf_when_stk_emerg 5.4% 6° 81.6% – – – –

SFM (t/ha) plastochron 27.9% 1° 27.9% popmat 26.6% 1° 26.6%

mid_tt_it_growth 21.1% 2° 49.0% plastochron 21.3% 2° 47.9%

max_it_dw 18.9% 3° 67.9% max_it_dw 14.2% 3° 62.1%

end_tt_it_growth 12.7% 4° 80.6% mid_tt_it_growth 11.9% 4° 74.0%

eff 9.0% 5° 89.6% eff 10.6% 5° 84.6%

n_lf_it_form 7.1% 6° 96.8% end_tt_it_growth 8.5% 6° 93.1%

POL (%[fresh]) mid_tt_it_growth 65.8% 1° 65.8% mid_tt_it_growth 39.2% 1° 39.2%

end_tt_it_growth 20.1% 2° 85.9% end_tt_it_growth 29.8% 2° 69.1%

TIL (#/m2) popmat 99.8% 1° 99.8% popmat 99.8% 1° 99.8%

LAI (m/m2) popmat 18.8% 1° 18.8% maxgl 28.3% 1° 28.3%

mla 15.1% 2° 33.9% popmat 17.5% 2° 45.8%

– – – – mid_tt_lf_growth 9.4% 3° 55.2%

– – – – – – – –
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while in the second half the popmat explained more than 90% of
the variance. In the transition period between these two phases of
the crop season, that takes place between the end of the establish-
ment and half of the development of the crop, we observed that
there was a punctual influence of some other parameters, such
as mla and plastochron. However, during this transition, there
were strong indications of the effect of climate on GSA, as these
two parameters (mla and plastochron) were not in all ratoons.
To corroborate this result, we did not observe relevant influences
of the parameter range (PRS1 or PRS2) and the evaluated treat-
ment (BARE or GCTB).

The LAI variable, contrary to what was seen in sections ‘Crop
features’ and ‘Effects of parameter range’, with a maximum
number of significant parameters of four at the end of growth
(Tables 6 and 7), was influenced by 15 parameters at different
growth phases (Fig. 8). However, the high number of parameters
can be attributed to isolated events. These events occurred at spe-
cific moments during the growth phase but did not follow a con-
sistent pattern or a sequential period of influence. In PRS1, we
observed that tillochron, plastochron, mla and init_leaf_area para-
meters had greater relevance, as they explained, individually, more
than 40% of the variance of LAI at different moments of emer-
gence phase and of establishment phase (Fig. 8 – PRS1 BARE
and GCTB). In the establishment and maturity stages, the vari-
ance of the LAI limited to the mla and popmat parameters with
the PRS1 set and, in our view, the mla parameter was the most

important parameter as it was significant in all growth phases
(Fig. 8 – PRS1 BARE and GCTB). We arrived at this result
because the mla parameter explains between 20 and 50% of the
LAI variance throughout the entire growth phase, while the pop-
mat parameter contributes approximately 10–30% of the variance
and has influence over a shorter time interval. Thus, even though
the variance explained by popmat and mla may be similar at the
end of the cycle, the impact of mla is greater and more consistent
throughout the entire growth phase. In PRS2, the emergence and
establishment phases were dominated by plastochron and mla,
and in the development and maturation phases, the parameters
maxgl, popmat and mid_tt_lf_growth were responsible for
explaining most of the variance (Fig. 8 – PRS2 BARE and
GCTB). In our view, considering the PRS2 set, the most import-
ant parameter was maxgl because it explained more than 30% of
the variance in almost all growth phases. On the other hand, pop-
mat and mid_tt_lf_growth explained 10–20% of the variance, and
over a shorter period compared to maxgl. This result showed the
uncertainty present in the range of the chosen parameters, since
maxgl was not significant at growth phases in the PRS1 set
(Fig. 8 – PRS1 BARE and GCTB).

Discussion

The SZ can vary depending on the variable of interest. For
example, the variable POL required a minimum size of 513 for

Table 7. Relative value of the model output variance (σ2) explained individually by each parameter, and the variance sum (
∑s 2

) of the parameters; we only
considered the parameters that presented Si >0.05 and the sample size (SZ) of 2049 in treatment green cane trash blanket (GCTB) to first set of parameters
(PRS1) and second set of parameters (PRS2); stalk dry mass (SDM), stalk fresh mass (SFM), leaf area index (LAI), sucrose concentration in the fresh matter
(POL) and tiller population (TIL)

Variable

PRS1 PRS2

Parameters σ2 Rank
∑s 2

Parameters σ2 Rank
∑s 2

SDM (t/ha) plastochron 31.6% 1° 31.6% popmat 29.0% 1° 29.0%

max_it_dw 14.0% 2° 45.5% plastochron 23.6% 2° 52.6%

n_lf_when_stk_emerg 12.7% 3° 58.3% max_it_dw 9.5% 3° 62.1%

n_lf_it_form 10.4% 4° 68.7% eff 8.0% 4° 70.1%

eff 8.0% 5° 76.7% – – – –

popmat 5.5% 6° 82.2% – – – –

SFM (t/ha) plastochron 30.4% 1° 30.4% plastochron 30.5% 1° 30.5%

max_it_dw 15.9% 2° 46.3% popmat 21.8% 2° 52.3%

mid_tt_it_growth 15.9% 3° 62.2% max_it_dw 13.3% 3° 65.6%

n_lf_when_stk_emerg 8.7% 4° 70.9% mid_tt_it_growth 12.3% 4° 77.9%

end_tt_it_growth 8.2% 5° 79.1% end_tt_it_growth 8.8% 5° 86.7%

eff 7.2% 6° 86.2% eff 8.3% 6° 95.0%

n_lf_it_form 7.1% 7° 93.3% – – – –

POL (%[fresh]) mid_tt_it_growth 64.2% 1° 64.2% mid_tt_it_growth 39.2% 1° 39.2%

end_tt_it_growth 16.7% 2° 80.9% end_tt_it_growth 29.3% 2° 68.5%

TIL (#/m2) popmat 99.8% 1° 99.8% popmat 99.8% 1° 99.8%

LAI (m2/m2) popmat 19.8% 1° 19.8% maxgl 29.6% 1° 29.6%

mla 14.8% 2° 34.6% popmat 15.8% 2° 45.5%

– – – – mid_tt_it_growth 9.5% 3° 55.0%

– – – – mla 5.0% 4° 60.0%
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convergence (Tables 4 and 5), while the variables SDM and SFM
required an SZ of at least 2049 (Tables 4 and 5). Additionally, we
observed that for the TIL variable, the SZ was 257 for PRS1 and
513 for PRS2 (Tables 4 and 5). This difference implies that com-
putational time can be reduced depending on the output variable.

Therefore, the high computational cost, which is one of the major
limitations of GSA (Jeuffroy et al., 2006; Marino et al., 2008;
Gilardelli et al., 2018), can be optimized through previous studies
exploring the SZ. Thus, the most suitable SZ for conducting SA in
the SAMUCA model was 2049, as it encompasses all the analysed

Figure 4. Main sensitivity index (Si) and total sensitivity index (STi) calculated for first parameter set (PRS1) and second parameter set (PRS2) for bare soil (BARE)
and green cane trash blanket (GCTB) treatments across plant cane, 1st, 2nd and 3rd ratoons for stalk dry mass (SDM). The red dashed line separates the stages
from plant cane to the 3rd ratoons; ‘days after planting’ represents the time in days from plant cane to the end of 3rd ratoons.

Figure 5. Main sensitivity index (Si) and total sensitivity index (STi) calculated for first parameter set (PRS1) and second parameter set (PRS2) for bare soil (BARE)
and green cane trash blanket (GCTB) treatments across plant cane, 1st, 2nd and 3rd ratoons for stalk fresh mass (SFM). The red dashed line separates the stages
from plant cane to the 3rd ratoons; ‘days after planting’ represents the time in days from plant cane to the end of 3rd ratoons.
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variables. This result is in line with the findings reported by Wang
et al. (2013), where an SZ of 2049 yielded the most stable sensi-
tivity indices.

As far as we know, Wang et al. (2013) is the main study that
used the eFAST method in a PBCM and evaluated different SZ,

being considered the main reference source for other GSA studies.
Another study, conducted by Ma et al. (2017), also determined
the most suitable SZ for their model and found lower values com-
pared to those observed by Wang et al. (2013) and obtained in
our study. This highlights the uniqueness of GSA, where the

Figure 6. The main sensitivity index (Si) and total sensitivity index (STi) calculated for first parameter set (PRS1) and second parameter set (PRS2) for bare soil
(BARE) and green cane trash blanket (GCTB) treatments across plant cane, 1st, 2nd and 3rd ratoons for sucrose content (POL). The red dashed line separates the
stages from plant cane to the 3rd ratoons; ‘days after planting’ represents the time in days from plant cane to the end of 3rd ratoons.

Figure 7. The main sensitivity index (Si) and total sensitivity index (STi) calculated for first parameter set (PRS1) and second parameter set (PRS2) for bare soil
(BARE) and green cane trash blanket (GCTB) treatments across plant cane, 1st, 2nd and 3rd ratoons for tiller population (TIL). The red dashed line separates the
stages from plant cane to the 3rd ratoons; ‘days after planting’ represents the time in days from plant cane to the end of 3rd ratoons.
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adopted boundary conditions and the analysed model have an
impact on the convergence of sensitivity indices. Our study has
two distinct characteristics compared to the works of Ma et al.
(2017) and Wang et al. (2013): we evaluated the impact of SZ
on different variables and considered two sets of parameter
ranges. We observed that, in addition to the output variable, the
SZ differed depending on the applied parameter sets (PRS1 and
PRS2; Tables 4 and 5). Although there are several studies (Xu
and Gertner, 2011; Gan et al., 2014; Song et al., 2015) that con-
sider the effect of SZ and parameter range on sensitivity indices,
there are currently no available studies on PBCM that consider
the relationship between SZ in different analysis variables and
the parameter range. Therefore, we can state that the SZ in
GSA may vary depending on (i) the analysed output variable
and (ii) the parameter ranges.

As in many studies on the influence of the environment on
sensitivity indices (Dejonge et al., 2012; Sexton et al., 2017;
Zhang et al., 2020), there was an effect of GCTB on SAMUCA
sensitivity indices, but it was not sufficient to change the
order of importance of the parameters and it did not influence
the parameter range (PRS1 and PRS2) (Figs 4–8). For example,
the SFM had the plastochron parameter as the main parameter
in PRS1 in both treatments (BARE and GCTB), and in PRS2,
the main parameter was plastochorn in BARE treatment and
popmat in GCTB treatment. To consider that a GCTB was suf-
ficient to change the order of importance of the parameters, an
alteration between the parameters should be observed in both
sets of parameters (PRS1 and PRS2; Tables 6 and 7). In the
case of GCTB, it has a direct influence on the soil heat flux
and on the soil water dynamics (Pereira et al., 2021; Vianna
et al., 2020), which would hypothetically refer to the lower effect
of GCTB on GSA for the variables LAI, POL, SDM, SFM and
TIL; if we would evaluate soil temperature or evapotranspir-
ation, we would possibly have observed a greater impact of

GCTB, as it is directly related to these variables. We assume
this based on the results of Dejonge et al. (2012), who identified
the radiation use efficiency as the most important parameter for
yield, both for irrigated and rainfed treatments. However, for
crop evapotranspiration, in the irrigated environment, the
main parameters were related to the crop, while in the rainfed
environment the main parameters were related to the soil
(Dejonge et al., 2012). Thus, the effect of management on the
SA is dependent on the variable of interest and did not affect
all simulation variables in our study.

The range of parameters was the main source of uncertainty
for the SA, changing the order of parameters for the variables
SDM, SFM and LAI. Li et al. (2019) have already identified
that parameter range affected the order and variance explained
by each parameter. Many studies have applied parameter ranges
with relative values from GSA studies in different PBCM
(Vazquez-Cruz et al., 2014; Tan et al., 2016; Jin et al., 2018;
Li et al., 2019), which, in our view, may not be the most appro-
priate approach, based on the influence of the parameter range.
According to Santelli et al. (1999), the principle of the GSA is to
quantify the model uncertainty based on perturbations on the
environmental variables. In this sense, the use of relative values
in the parameter ranges without experimental foundations may
not represent well the influence of the parameters of a PBCM.
For example, for the variable LAI, mla and maxgl were observed
as the main parameters in PRS1 and PRS2, respectively. The CV
of these parameters was 29% (mla) and 9% (maxgl), in PRS1,
and 25% for both parameters in PRS2; for this configuration
of PRS1, maxgl was not significant, but it was the most import-
ant parameter in PRS2. Yet, this can be related to the correlation
that exists between the parameters, neglected in many Bayesians
and PBCM applications (Marin et al., 2017; Pereira et al., 2021),
which demonstrated that any uncertainty analysis using relative
values seems to be inadequate.

Figure 8. The main sensitivity index (Si) and total sensitivity index (STi) calculated for first parameter set (PRS1) and second parameter set (PRS2) for bare soil
(BARE) and green cane trash blanket (GCTB) treatments across plant cane, 1st, 2nd and 3rd ratoons for leaf area index (LAI). The red dashed line separates the
stages from plant cane to the 3rd ratoons; ‘days after planting’ represents the time in days from plant cane to the end of 3rd ratoons.
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In SA, it is necessary to use a time interval for one evaluation,
as changes in the order of importance of main parameters
occurred during the growth of the crop. For example, considering
our final SFM yield value, the parameters popmat and plastochron
accounted for between 21.8 and 30.4% of the variation, respect-
ively (Table 7). However, the popmat is less relevant than the plas-
tochron, as the plastochron influenced a longer period of the
season, being responsible for explaining up to 60% of the variance
in the first 150 days of each ratoon in the PRS2 set (Fig. 5, BARE
and GCTB). For the TIL variable, this was even more evident,
having distinct parameters and explaining over 90% of the vari-
ation in different times. In addition, the occurrence of significant
different parameters between ratoon years indicated a possible
influence of climate variation (Fig. 7). Several GSA studies have
demonstrated the impact of seasonality on sensitivity indices,
regardless of the method employed (Vazquez-Cruz et al., 2014;
Tan et al., 2016; Sexton et al., 2017; Xing et al., 2017; Li et al.,
2019; Attia et al., 2021). In our study, we conducted GSA using
a daily time interval from plant cane to the 3rd ratoon and
observed that the ranking of parameter importance between
ratoons remained consistent (Figs 4–8). Over a short span of 4
years, we did not detect any impact of climate variability on the
sensitivity indices. However, there is evidence that climate vari-
ability influenced the sensitivity index, as noted by Anderson
et al., 2014; Attia et al., 2021; Gilardelli et al., 2018; Sexton
et al., 2017. Therefore, for sugarcane models, it is crucial to
incorporate time intervals in GSA, and future studies should con-
sider the influence of climate in GSA.

Conclusion

The results showed that the SZ and parameter range were import-
ant for GSA, and that an SZ of at least 2049 was required for the
sensitivity indices to converge regardless of the variable. However,
some variables needed smaller sizes, such as the case of TIL that
predicted an SZ of 257. The range of parameters must be carefully
investigated, and we demonstrate that the use of relative values
without biophysical basis to determine the parameter ranges is
inappropriate for the uncertainty analysis, and measured thresh-
olds should always be used, even if from different genotypes, to
determine the model’s response across the full range of para-
meters. We did not identify the influence of GCTB and the differ-
ent ratoons on the order of importance of the parameters, they
only slightly affected the values (Si and STi) of the sensitivity
indices.
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