

# UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA

# LOQ4085- OPERAÇÕES UNITÁRIAS I

### Conteúdo

### Agitação e Mistura

- Introdução
- Agitação de líquidos
- Características e usos de impulsores
- Projeto de agitadores
- Cálculo da potência requerida para agitar fluidos Newtonianos

### Conteúdo

### Agitação e Mistura

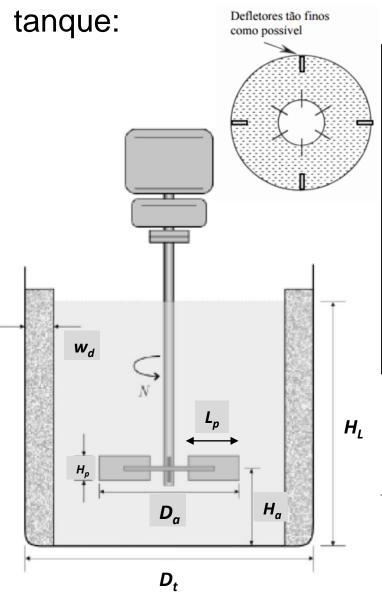
- Cálculo da potência requerida para agitar fluidos não Newtonianos
- Fatores de correção nos cálculos de agitadores

### Conteúdo

### Agitação e Mistura

- Projeto por semelhança ampliação escala
  - Semelhança geométrica
  - Semelhança dinâmica
- Igualdade de potência por unidade de volume
- Igualdade na velocidade periférica do agitador
  - Tempo de mistura
  - Igualdade na transferência de calor

- Método: semelhança de sistemas;
- Baseia-se na análise dimensional para obter os critérios de mudança de escala.
- Etapas:
- i) Seleção do tipo de impulsor;
- ii) Cálculo das dimensões geométricas;
- iii) Cálculo da frequência rotacional do impulsor;
- iv) Cálculo da potência requerida.


Semelhança geométrica, cinemática e dinâmica entre modelo e protótipo para realizar a mudança de escala.

Semelhança geométrica é essencial para garantir a semelhança cinemática e dinâmica.

- Semelhança geométrica existe se a relação entre as medidas nas duas escalas permanecem constantes.
- Semelhança dinâmica exige que a relação de velocidades e a relação de forças entre os vários pontos do sistema sejam iguais no modelo e protótipo.

Análise dimensional: fornece o número total de números adimensionais que relacionam as variáveis relevantes e que por sua vez influenciam a operação.

> Variáveis envolvidas na agitação de um líquido em um



 $D_a$  – diâmetro do agitador;

 $D_t$  – diâmetro do tanque;

 $H_a$  – altura do agitador desde a base do tanque;

 $H_{l}$  – altura líquido;

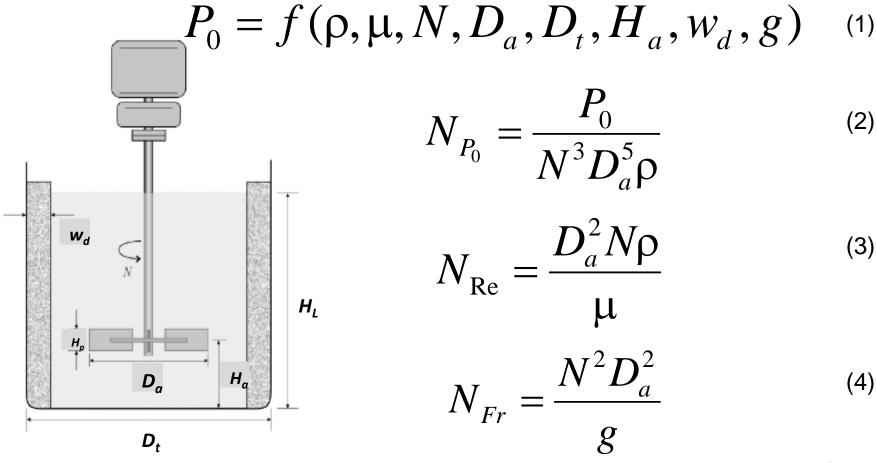
 $w_d$  – largura dos defletores;

 $H_p$  – altura das pás;

ρ – densidade do líquido;

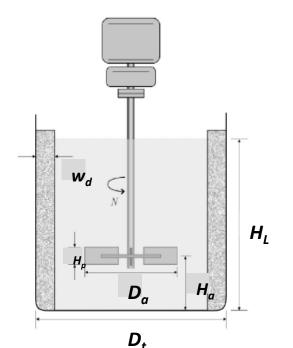
μ - viscosidade do líquido;

*N* – frequencia rotacional do impulsor;


g - aceleração da gravidade;

 $P_0$  – potência fornecida pelo motor.

$$P_0 = f(\rho, \mu, N, D_a, D_t, H_a, w_d, g)$$
 (1)


Fluido Newtoniano

Aplicando o método da análise dimensional, o número de variáveis pode ser reduzido ao números adimensionais de potência, de Reynolds e de Froude.



 $N_{PO}$ ,  $N_{Re}$ ,  $N_{Fr}$  – número de potência, Reynolds, Froude (adimensionais)

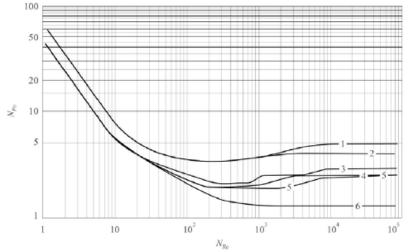
- Além dos números adimensionais, os números adimensionais geométricos (fatores de forma) são definidos:
  D
  H
  H
  H
  - $\frac{D_t}{D_a}, \frac{H_a}{D_a}, \frac{H_L}{D_a}e\frac{w_d}{D_a}$
- Calculados dividindo as outras dimensões por D<sub>a</sub>;
- Diâmetro D<sub>a</sub> do agitador é tomado como medida do tamanho do equipamento;
- D<sub>a</sub> empregado como variável na análise dimensional.



$$P_{0} = f(N_{Re}, N_{Fr}, \frac{D_{t}}{D_{a}}, \frac{H_{a}}{D_{a}}, \frac{H_{L}}{D_{a}}, \frac{w_{d}}{D_{a}})$$
 (5)

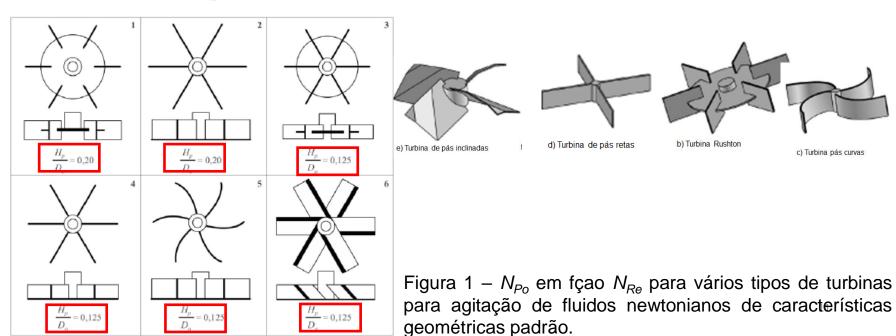
Número de Froude ( $N_{\rm Fr}$ ) deve ser considerado quando há formação de vórtice junto ao eixo. Fenômeno mais frequente para  $N_{\rm Re}$ >300 e para tanques sem defletores.

9


- Quando definido previamente: tipo de agitador, velocidade angular e as dimensões geométricas – cálculo da potência é mais simples.
- Projeto é baseado no conhecimento da energia dissipada pelo agitador para essas condições.
- $\triangleright$  Implica na determinação do  $N_{PO}$ .

#### Fatores de forma padrão mais utilizados:

$$\frac{D_t}{D_a} = 3, \frac{H_a}{D_a} = 1, \frac{H_L}{D_a} = 3, \frac{w_d}{D_t} = 0,1$$


$$\frac{D_a}{D_t} = \frac{1}{3}, \frac{H_a}{D_t} = \frac{1}{3}, \frac{H_L}{D_t} = 1, \frac{w_d}{D_t} = \frac{1}{12}, \frac{H_p}{D_a} = \frac{1}{5}$$
 McCabe et al., 2007

 $\triangleright$  EXPERIMENTALMENTE: curvas do  $N_{PO}$  em função do  $N_{Re}$  para diversos tipos de agitadores.



- Curvas típicas para agitadores do tipo turbinas,
- Relações entre altura das pás do impulsor  $(H_p)$  e o diâmetro agitador (Da);
- Tanques com 4 defletores;
- Configurações geométricas padrão.

c) Turbina pás curvas



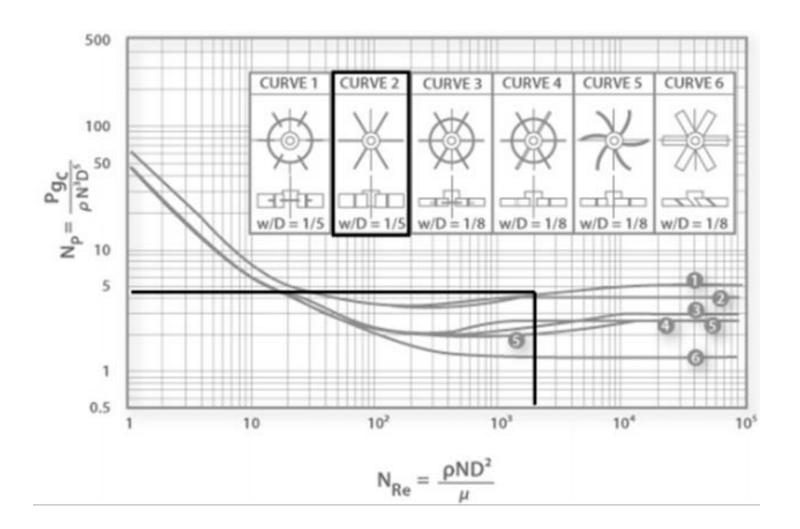
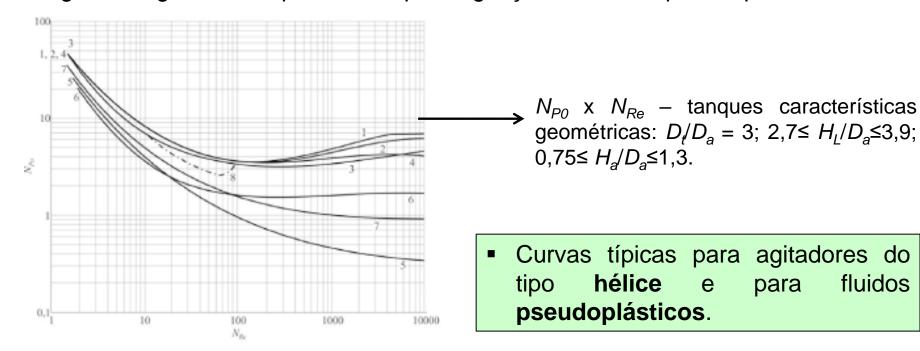





Figura 2. Agitador do tipo hélice e para agitação de fluidos pseudoplásticos





Tipo de rotor w√D, Tipo 1 Tipo 1 0.10 Tipo 1 0.04 Tipo 1 com láminas curvas 0.10 Hélice com 3 pás,  $s = D_a$ 0.10 0.10 Tipo 2 Hélice com 3 pás,  $s = 2D_a$ 0.10 Tipo 1 com fluido pseudoplástico 0.04

#### SIMILARIDADE COM DIAGRAMA DE MOODY

fluidos

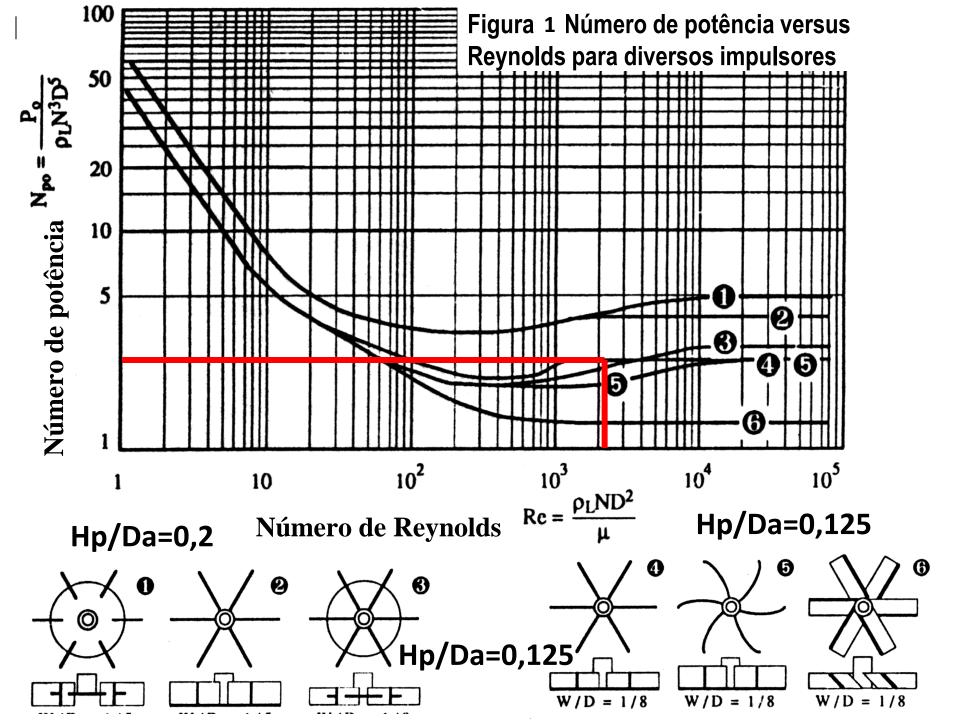
Figura 2

Número de potência (N<sub>R</sub>) em função do número de Reynolds (N<sub>R</sub>) para vários tipos de impulsores em tanques com as seguintes relações geométricas:  $D_r/D_a = 3$ ;  $2.7 \le H_r/D_a \le 3.9$ ;  $0.75 \le H_a/D_a \le 1.3$ .

- $\succ$  As curvas do  $N_{P0}$  em função do  $N_{Re}$  possuem similaridade com o diagrama de Moody
- > Para regime laminar (NRe < 10) a seguinte expressão é válida:

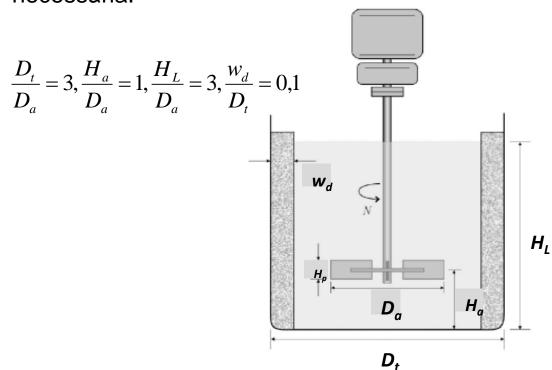
$$N_{P_0} = \frac{K_p}{N_{\text{Re}}} \tag{6}$$

 $K_p$  – constante adimensional; Região de turbulência:  $N_{P0} = K_p$ . Valores de  $K_p$  –constantes, dependem do tipo de agitador, das dimensões do tanque e do número de defletores.


#### Exemplo 1.

Para agitar um líquido newtoniano de propriedades conhecidas ( $\mu$  = 0,2 Pa.s,  $\rho$ =946 kg/m³), será empregado um impulsor de turbina de seis pás retas com  $\frac{H_p}{D_a}$  = 0,125, em um tanque que tem características geométricas padrão, com quatro defletores.

- O diâmetro do impulsor é de 0,51 m e a frequência rotacional será de 100 rpm. Determine:
- a) A potência adequada para o motor; sabendo que conjunto do motor e sistema de transmissão apresenta eficiência de 70%;
- b) As dimensões do tanque.

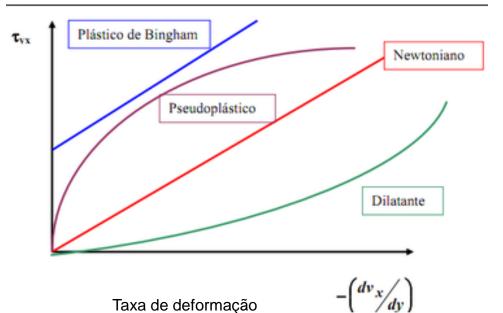

Relações números adimensionais geométricos – tanque padrão:

$$\frac{D_t}{D_a} = 3, \frac{H_a}{D_a} = 1, \frac{H_L}{D_a} = 3, \frac{w_d}{D_t} = 0,1$$



#### Exemplo 2.

Em uma empresa que utiliza óleo de palma (azeite de dendê,  $\rho$  = 919 kg/m³;  $\mu$  = 8,5 x 10<sup>-2</sup> Pa.s) como matéria-prima, é necessário agitar o material por algum tempo antes de sua utilização, uma vez que durante o armazenamento pode haver solidificação de algumas frações lipídicas. Para essa aplicação, recomenda-se usar um impulsor do tipo turbina com pás inclinadas operando em frequência rotacional de 140 rpm. Deseja-se projetar um tanque de agitação encamisado com capacidade para 2000 L de óleo e que deverá ser construído de acordo com as configurações geométricas padrão. Dimensione o tanque e determine a potência de agitação necessária.




- Agitação de fluidos newtonianos: propriedade reológica em evidência é a viscosidade do fluido, que é independente da taxa de cisalhamento.
- Agitação de fluidos não newtonianos: propriedades reológicas dependem da taxa de cisalhamento, que varia ao longo do tanque, a viscosidade aparente varia;
- Regiões próximas ao agitador zona de máximo cisalhamento queda da viscosidade aparente para fluido não newtoniano pseudoplástico;
- Regiões próximas ao agitador zona de máximo cisalhamento zona de viscosidade aparente máxima para fluido não newtoniano dilatante.

Para fluidos dilatantes, o aumento da viscosidade aparente em fç do aumento da taxa de cisalhamento, faz com que seja difícil atingir regime turbulento (Re quase

Tensão de cisalhamento

sempre inferior a 10.000).



2 métodos principais para calcular a potência requerida para agitar fluidos não Newtonianos

- 1º Método: fluidos de comportamento não newtoniano que obedecem a Lei de Potência.
- 2º Método: sem restrições quanto ao comportamento reológico do fluido.

- 1º Método: fluidos de comportamento não newtoniano que obedecem a Lei de Potência;
- > Fluidos com comportamento reológico descrito pelo modelo de lei de potência (equação Ostawald-de Waele):

$$\sigma = K \gamma^n$$

Lei de Potência (Modelo de Ostawald-de-Waele): um dos modelos mais utilizados para descrever o comportamento de fluidos não Newtonianos em amplas faixas de taxa de cisalhamento.

K – índice de consistência (Pa. s<sup>n</sup>) **e n é o índice de comportamento de escoamento** (adimensional), γ é tensão de cisalhamento.

Fluidos que seguem a lei da potência são subdivididos:

- a) Pseudoplásticos (n<1)
- b) Dilatantes (n>1)
- c) n = 1 Modelo de Potência se reduz ao Modelo Newtoniano, portanto K é viscosidade do fluido (μ).

Primeiro método – base em números adimensionais, foi proposto para fluidos pseudoplásticos, sendo válido apenas para regime laminar.

$$N_{P_0} = 160 \left[ \left( \frac{D_a^2 N^{2-n} \rho}{K} \right) \left( \frac{H_L}{H_a} \right)^n \left( \frac{D_a}{D_a + D_t} \right) \right]^{-1} 50^{n-1}$$
 (7)

K- é o índice de consistência do fluido (Pa/s<sup>n</sup>);

n – é o índice de fluxo ou índice de comportamento (adimensional).

- Correlação (eq. 7) proposta a partir de dados experimentais para fluidos pseudoplásticos e 4 diferentes tipos de agitadores;
- Válida para número de Reynolds modificado, N'<sub>Re</sub>, menor que 10, definido por:

$$N_{\text{Re}}' = \frac{D_a^2 N^{2-n} \rho}{K} \tag{8}$$

21

- Segundo método: é o mais utilizado;
- baseia-se no cálculo da taxa de cisalhamento efetiva (dv/dr)<sub>ef</sub> existente no tanque, de modo que a viscosidade efetiva (μ<sub>ef</sub>) correspondente à (dv/dr)<sub>ef</sub> seja igual à viscosidade de um fluido newtoniano em um sistema com mesmo consumo de energia, sob condições idênticas em regime laminar.
- Viscosidade efetiva é dada por:  $\mu_{ef} = K \left(\frac{dv}{dr}\right)_{ef}^{n-1}$  (9)  $\mu_{ef} \text{viscosidade efetiva (Pa.s)}$
- Assume-se que a taxa de cisalhamento efetiva obedece a uma relação linear em função da frequencia rotacional do impulsor:

$$\left(\frac{dv}{dr}\right)_{ef} = K_s N \tag{10}$$

 $K_s$  – constante empírica (adimensional).

Proposta válida para vários sistemas de agitação em regime laminar.

Valor de Ks deve ser determinado experimentalmente.

# Valores de K<sub>s</sub> para diversos tipos de impulsores usados na agitação de fluidos pseudoplásticos (n<1)

Tabela 5.4 Valores de  $K_s$  para diversos tipos de impulsores usados na agitação de fluidos pseudoplásticos ( $n < \eta$ )

|                                                      | Nº DE DEFLETORES                                                                   |              |                                               |             |                |
|------------------------------------------------------|------------------------------------------------------------------------------------|--------------|-----------------------------------------------|-------------|----------------|
|                                                      | $\left(\frac{w_d}{}\right)$                                                        |              | $\left(\underline{\boldsymbol{D}_{t}}\right)$ |             |                |
| IMPULSOR                                             | $\left(\frac{w_d}{D_t}\right)$                                                     | $D_a$ [m]    | $\left(\overline{D_a}\right)$                 | n [-]       | $K_s[-]$       |
| Turbina                                              |                                                                                    |              |                                               |             |                |
| com seis pás planas                                  | 4 (0,1)                                                                            | 0,051-0,20   | 1,3 – 5,5                                     | 0.05 - 1.5  | $11,5 \pm 1,5$ |
| com seis pás planas                                  | Sem defletores                                                                     | 0,051 - 0,20 | 1,3-5,5                                       | 0.18 - 0.54 | $11,5\pm1,4$   |
| duas com seis pás planas, separadas de $D_{\rm c}/2$ | 4 (0,1)                                                                            | =            | 3,5                                           | 0,14-0,72   | $11,5\pm1,4$   |
| duas com seis pás planas, separadas de $D_r/2$       | 4 (0,1) ou sem defletores                                                          | -            | 1,02 – 1,18                                   | 0,14-0,72   | 11,5 ± 1,4     |
| com seis pás inclinadas a 45°                        | 4 (0,1) ou sem defletores                                                          | 0,10-0,20    | 1,33 – 3,0                                    | 0,21 - 0,26 | $13 \pm 2$     |
| com seis pás inclinadas a 45°                        | 4 (0,1) ou sem defletores                                                          | 0,10-0,20    | 1,33 – 3,0                                    | 1,0 - 1,42  | 13 ± 2         |
| Hélice marinha                                       |                                                                                    |              |                                               |             |                |
| com três pás (impulsão descendente)                  | Sem defletores, eixo vertical ou eixo inclinado a 10°, instalado a $D_i/6$         | 0,127        | 2,2 - 4,8                                     | 0,16 – 0,4  | $10\pm0.9$     |
| com três pás (impulsão ascendente)                   | Sem defletores, eixo vertical ou eixo inclinado a $10^\circ$ , instalado a $D_i/6$ | 0,127        | 2,2 - 4,8                                     | 0,16 – 0,4  | $10\pm0.9$     |
| com três pás (impulsão descendente)                  | Sem defletores, eixo inclinado a $10^{\circ}$ , instalado a $D_t/6$                | 0,305        | 1,9 – 2,0                                     | 0,16 - 0,4  | 10 ± 0,9       |
| com três pás (impulsão descendente)                  | Sem defletores, cixo vertical                                                      | 0,305        | 1,9 - 2,0                                     | 0.16 - 0.4  | $10\pm0.9$     |
| de passo quadrado com três pás                       | 4 (0,1)                                                                            | 0,152        | 1,67                                          | 0.16 - 0.6  | 10             |
| de passo duplo com três pás (impulsão descendente)   | Sem defletores, eixo inclinado a $10^{\circ}$ , instalado a $D_{\rm t}/6$          |              | 1,4 – 3,0                                     | 0,16 - 0,4  | $10 \pm 0.9$   |
| de passo duplo com três pás (impulsão descendente)   | Sem defletores, eixo vertical                                                      |              | 1,4 – 3,0                                     | 0,16 - 0,4  | $10\pm0.9$     |
| de passo quadrado com quatro pás                     | 4 (0,1)                                                                            | 0,12         | 2,13                                          | 0.05 - 0.61 | 10             |
| eás de duas folhas                                   | 4 (0,1)                                                                            | 0.09 - 0.13  | 2-3                                           | 0,16 – 1,68 | 10             |
| incora                                               | Sem defletores                                                                     | 0,28         | 1,02                                          | 0,34 – 1,0  | 11 ± 5         |
| mpulsores cônicos                                    | Sem defletores ou 4 (0,08)                                                         | 0,10 - 0,15  | 1,92 – 2,88                                   | 0,34 – 1,0  | 11 ± 5         |

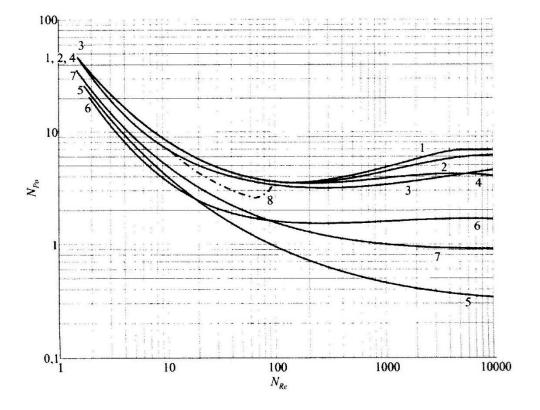
- Selecionado o sistema de agitação e a definição da frequência rotacional de operação do impulsor (N);
- > A potência de agitação necessária pode ser calculada seguindo:
- i) Calcula-se a taxa de cisalhamento efetiva (eq. 10);  $\left(\frac{dv}{dr}\right)_{ef} = K_s N$
- i) Determina-se a viscosidade efetiva (eq. 9) e com esse valor obtém-se Reynolds (eq. 3);  $\mu_{ef} = K \left(\frac{dv}{dr}\right)_{c}^{n-1}$
- i) Avalia-se o  $N_{P0}$  a partir das correlações ou diagramas apropriados para o impulsor considerado ou, alternativamente, aplica-se a equação (6) em que  $K_p$  é uma constante e depende do tipo de agitador e da geometria do sistema.

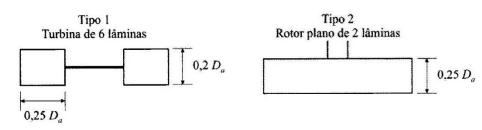
$$N_{P_0} = \frac{K_p}{N_{\text{Re}}}$$
 (6)  $N_{\text{Re}} = \frac{D_a^2 N \rho}{\mu_{ef}}$  (3.1)

24

#### Exemplo 3.

Em uma indústria de geleias, suco de amora concentrado (56 ºBrix) deve ser mantido, sob agitação, a 22ºC. Nessas condições, o suco apresenta densidade de 1277 kg/m³ e os seguintes parâmetros reológicos: k = 26,4 Pa.sʰ e n = 0,62. O tanque de agitação é equipado com um agitador tipo turbina, com 6 pás retas, correspondente ao impulsor Tipo 1, com diâmetro igual a 20 cm e quatro defletores com largura igual a 10 cm. A frequência rotacional do impulsor é de 110 rpm e a capacidade do tanque deve ser adequada para armazenar 215 kg de suco. Determine: a) diâmetro e altura do tanque; b) a potência necessária para a agitação aplicando os 2 métodos descritos anteriormente.


$$N_{P_0} = 160 \left[ \left( \frac{D_a^2 N^{2-n} \rho}{K} \right) \left( \frac{H_L}{H_a} \right)^n \left( \frac{D_a}{D_a + D_t} \right) \right]^{-1} 50^{n-1}$$


$$N_{Re}' = \frac{D_a^2 N^{2-n} \rho}{K} \qquad N_{Re} = \frac{D_a^2 N \rho}{\mu_{ef}}$$

$$\mu_{ef} = K \left( \frac{dv}{dr} \right)_{ef}^{n-1} \qquad \left( \frac{dv}{dr} \right)_{ef} = K_s N$$

Ks = 11,5 Tabela (impulsor tipo turbina 6 pás)

### Exemplo 3.





| Tipo de rotor                    | $w_d/D_t$ | Curva |
|----------------------------------|-----------|-------|
| Tipo 1                           | 0,17      | 1     |
| Tipo 1                           | 0,10      | 2     |
| Tipo 1                           | 0,04      | 3     |
| Tipo 1 com lâminas curvas        | 0,10      | 4     |
| Hélice com 3 pás, $s = D_a$      | 0,10      | 5     |
| Tipo 2                           | 0,10      | 6     |
| Hélice com 3 pás, $s = 2D_a$     | 0,10      | 7     |
| Tipo I com fluido pseudoplástico | 0,04      | 8     |

- Agitadores para fluidos de alta viscosidade aparente fita helicoidal (FH) e fita helicoidal com parafuso (FHP) são amplamente utilizados.
- $\succ$  Tabela: valores de  $K_s$  para esses tipos de impulsor e sua dependência em função do índice de fluxo (n).

Tabela 5.5 Valores de K₅ para impulsores do tipo fita helicoidal (FH) e fita helicoidal e parafuso (FHP)

| IMPULSOR | $\left(\frac{D_t}{D_a}\right)$ | n                | <b>K</b> <sub>8</sub><br>66,06 |  |
|----------|--------------------------------|------------------|--------------------------------|--|
| FH       | 1,02 – 1,12                    | 0,4 - 1          |                                |  |
| FH       | 1,10-1,11                      | 0,35 - 1         | 27                             |  |
| FHP      | 1,03                           | 0,35 - 1         | 24,58                          |  |
| FH       | 1,053                          | 0,5 - 1          | 36,73                          |  |
| FH       | 1,056                          | 0,27 - 1         | 30                             |  |
| FH       | 1,04 - 1,19                    | 0,5 - 1          | 27,6                           |  |
| FHP      | 1,056 - 1,118                  | 0,26 – 1         | 30,6                           |  |
| FH       | 1,11 - 1,37                    | 0,17 - 0,65      | 79,85                          |  |
| FH       | 1,05 – 1,33                    | 0,35 - 0,75      | 24,68                          |  |
| FH       | 1,05 - 1,33                    | 1-               | 26,8                           |  |
| FH       | 1,11                           | 0,18 - 1 17 - 40 |                                |  |

Fonte: Brito-De La Fuente et al. (1997).

Alguns autores estudaram o consumo de potência para agitação de fluidos pseudoplásticos e fluidos newtonianos com impulsores FH e FHP instalados em tanques com as relações geométricas:

$$\frac{D_t}{D_a} = 1,135, \frac{w_f}{D_a} = 0,108 \, a \, 0,135, \frac{w_p}{w_f} = 1,17 \, a \, 1,25, \frac{H_L}{D_a} = 2,07, \frac{s}{D_a} = 0,5 \, ou \, 1$$

wf, wp e s – largura da fita, largura do parafuso e o passo do impulsor, respectivamente (m).

s - O movimento rotatório dá ao fluido um movimento helicoidal, uma rotação completa move o fluido longitudinalmente a uma distância fixa, dependendo do ângulo das lâminas do propulsor.

A razão entre esta distância e o diâmetro do propulsor é chamada passo (s)

Longitudinal

do agitador.

Passo ou "pich" – distância entre as linhas de fluxo.

➤ Regime laminar (N<sub>Re</sub>≤100) foi determinada a correlação para cálculo do N<sub>po</sub> agitadores FH e FHP:

$$N_{P0} = 173,1 N_{Re}^{-1} \left(\frac{s}{D_a}\right)^{-0.72} \left(\frac{w_f}{D_a}\right)^{0.14}$$
 (11)

Equação (11) deve ser empregada para o cálculo N<sub>Po</sub>.

 $\triangleright$  Para fluidos pseudoplásticos a constante  $K_s$  é determinada por:

$$K_s = 38,27 \left(\frac{w_f}{D_a}\right)^{-0.024} \left(\frac{s}{D_a}\right)^{-0.135} (0.814)^{\frac{1}{n}}$$
 (12)

#### Exercício 4.

Concentrado de polpa de tomate (25 ºBrix) será aquecido de 35 ºC até 45°C em um tanque encamisado de 300 L, acoplado com agitador de fita helicoidal com parafuso, operando a frequencia angular de 0,85s<sup>-1</sup>, com as seguintes relações geométricas:

$$\frac{D_t}{D_a} = 1,135, \frac{H_L}{D_a} = 1, \frac{w_f}{D_a} = 0,108, \frac{w_p}{w_f} = 1,25, \frac{s}{D_a} = 1$$

Nessas condições, o concentrado de polpa de tomate apresenta comportamento reológico pseudoplástico: K=31,3 Pa.s<sup>n</sup> e n=0,35 a 20°C; e K=22,1 Pa.s<sup>n</sup> e n=0,35 a 50°C e densidade igual a 1000 kg/m<sup>3</sup>. Calcular o consumo de potência.

OBS: verificar como a viscosidade efetiva varia com a temperatura, caso não varie muito, considerar o maior valor.

## Fatores de correção nos cálculos de agitadores

São 2 os casos em que os fatores de correção são utilizados:

- a) Quando o sistema de agitação tem mais de 1 impulsor no tanque;
- b) Quando as dimensões do sistema de agitação são diferentes ou não se encaixam nas configurações geométricas do tipo padrão.

## Fatores de correção nos cálculos de agitadores

#### a) Sistemas com mais de 1 impulsor

- ➤ Conservar a proporção (suposição): HL≈Dt
- $\succ$  Para cada impulsor adicional, a potência total  $P_{oT}(W)$  é:

$$P_{oT} = P_o n_i \tag{13}$$

 $ightharpoonup P_o$  - Potência de cada impulsor (W),  $n_i$  - número de impulsores.

# Fatores de correção nos cálculos de agitadores

# b) Sistema que não seguem as configurações geométricas padrão

> Aplicar fator de correção f' no cálculo do número de potência:

$$f' = \sqrt{\frac{\left(D_t/D_a\right)_{\text{Re}\,al}\left(H_L/D_a\right)_{\text{Re}\,al}}{\left(D_t/D_a\right)_{Padrão}\left(H_L/D_a\right)_{Padrão}}} \tag{14}$$

Padrão

$$\frac{D_t}{D_a} = 3, \frac{H_a}{D_a} = 1, \frac{H_L}{D_a} = 3, \frac{w_d}{D_t} = 0, 1 \quad \frac{D_t}{D_a} = 3; 2, 7 \le H_L/D_a \le 3, 9; 0, 75 \le \frac{H_a}{D_a} \le 1, 3$$