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 COMPARING INDIVIDUAL MEANS IN THE
 ANALYSIS OF VARIANCE*

 JOHN W. TUKEY

 Princeton University

 The practitioner of the analysis of variance often wants to
 draw as many conclusions as are reasonable about the relation of
 the true means for individual "treatments," and a statement by
 the F-test (or the z-test) that they are not all alike leaves him
 thoroughly unsatisfied. The problem of breaking up the treatment
 means into distinguishable groups has not been discussed at much
 length, the solutions given in the various textbooks differ and,
 what is more important, seem solely based on intuition.

 After discussing the problem on a basis combining intuition
 with some hard, cold facts about the distributions of certain test
 quantities (or "statistics") a simple and definite procedure is
 proposed for dividing treatments into distinguishable groups, and
 for determining that the treatments within some of these groups
 are different, although there is not enough evidence to say "which
 is which." The procedure is illustrated on examples.

 2. DISCUSSION OF THE PROBLEM

 T ET US BEGIN by considering how the latest and most advanced sta-
 L tistical theory would approach this problem and then explain why

 such a solution seems impractical. To make things more precise, let us
 suppose as a fictitious example that seven varieties of buckwheat;

 Ay By CY D, E, F, and G have been tested for yield in each of 12 locations,
 and that our interest is in the average yield of the buckwheat varieties
 in a region of which the 12 locations are a respectable sample, and in
 years exactly like the one in which the experiment was made. We will
 then have a simple and straightforward analysis of variance into varie-
 ties, locations, 'and interaction. We shall be concerned with the seven
 observed variety means and with an unbiased estimate of their variance,
 which will be given by 1/12th of the interaction mean square, which is
 itself on 66 degrees of freedom. What can we say about the varieties
 under these conditions?

 We will wish to say, for example, that B and F yield better than
 A, C, and G, which yield better than D and E. Perhaps we might wish
 to add that A, C and G are not alike, although we do not know which one

 *Prepared in connection with research sponsored by the Office of Naval Research.
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 100 BIOMETRICS, JUNE 1949

 yields better. The most modern approach would require us to proceed
 as follows: Write down all the possible conclusions to, which we might
 come-the one illustrated above is one of the 120,904 similar possibilities
 for seven "treatments." Then for each combination of seven true mean
 yields we should decide how much it would "cost" us to make each of
 these 120,904 decisions. Making the usual assumptions about the
 distribution of fluctuations in yield, we would have begun to state a
 mathematically well-posed problem. We are unlikely to get this far in a
 practical problem in my lifetime! Then we find, to our horror, that there
 are many competing methods of decision, and that which one risks the
 least will depend on the true variety yields, which we will never know.
 The problem is not as hopeless as it sounds, for Wald has taken a large
 step forward, and shown that any decision method can be replaced by
 one derived from a priori probability considerations without increasing
 the risk under any set of true variety yields. This is a great simplifica-
 tion-but the mathematical complications of dealing with 120,904
 functions of seven variables are still awe-inspiring. If we were able to
 carry through this program-to set the risks intelligently, to carry out
 the mathematics, and to choose wisely among the admissible decision
 functions-we would surely do much better than we can hope to do now,
 but for the present we need to adopt a simpler procedure. (Note. The
 case of 3 or 4 means has been attacked within the scope of Wald's theory
 by Duncan [7] using a different philosophy which emphasizes con-
 clusions about pairs of means.)

 At a low and practical level, what do we wish to do? We wish to
 separate the varieties into distinguishable groups, as often as we can
 without too frequently separating varieties which should stay together.
 Our criterion of "not too frequently" is a rough one, and may frequently
 be expressed by saying "at the 5% level" or "at the 17o level." The
 meaning of these words deserves a little discussion. To the writer they
 do not mean, "so that an entirely nonexistent effect will be called real
 once in twenty times, or once in a hundred times", but rather that
 "with the same sort of protection against false positives that I usually
 have when I make tests of significance on hypotheses suggested by the
 results tested, successive tests of hypotheses, tests of regression on
 selected variables, etc." For these reasons, working "at the 5%0 level"
 may involve the successive use of tests, each of which yields false posi-
 tives five times in a hundred, but, when used together, will yield seven,
 eight or nine false positives in a hundred. It is such a primitive and
 rough standard that we wish to combine with a primitively and roughly
 outlined desire to detect effects which are really there. From these
 primitive desires we are to seek a method.
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 COMPARING INDIVIDUAL MEANS 101

 3. THE STIGMATA OF DIFFERENCE

 When the real differences between variety means are large, how do we
 realize this fact? Three vague criteria come naturally to mind:

 (1) There is an unduly wide gap between adjacent variety means

 when arranged in order of size,
 (2) One variety mean struggles too much from the grand mean,

 (3) The variety means taken together are too variable.

 It is these three criteria we are going to apply in order to break up an
 observed set of means. We need, then quantitative tests for detecting
 (1) excessive gaps, (2) stragglers, (3) excess variability. These must be
 used when the variance of an individual observed mean is not known

 exactly, but rather when it is estimated from some other line of an

 analysis of variance table. The tests which we use must therefore be

 Studentized tests. Exact tests for (2) and (3) are available, but for the
 present we shall confine ourselves to an approximate and conservative

 test for (1).

 If there are only two variety means, the largest gap between adjacent
 means is the same as the absolute value of the difference of the means.

 If ml > m2 , and s' is the estimated variance of a single mean, then

 MIl - M
 s821/2

 has one-half of a t-distribution and assuming normality, exceeds 2.447
 only 5% of the time when the two true means are equal and sm is based
 on 6 degrees of freedom. There are good reasons based on experimental
 sampling (Section 9) and numerical integration (Section 8) to believe

 that the one-sided 5%, 2%, 1% points of

 largest gap between adjacent means

 s82 1/2

 are smaller than the corresponding two-sided percentage points of t.
 If this is true we will be conservative to use this ratio and the two-sided

 percentage points of t as a test of excessive gapping. The reasons are
 discussed in a later section.

 The exact test of

 mI-m
 SM

 where ml is the largest mean and -m is the grand mean has been discussed
 for the case of normality by K. R. Nair [4] in a very recent number of
 Biometrika. Simple and satisfactory empirical approximation to the
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 102 BIOMETRICS, JUNE 1949

 upper percentage points (between 10% and 0.1%) can be obtained by
 treating

 (in1 - )1?log0k

 3(4+1) ~(l>3 means)
 or

 3(4 + ) (3 means)

 as unit normal deviates, where Sm 1s based on n degrees of freedom. The
 adequacy of this approximation-which avoids the use of multiple entry
 tables-is also discussed in Section 6.

 The exact test of excessive spread in general will of course be the
 familiar F-test (or z-test).

 We propose to use these tests successively, and in the following order
 and manner. First, apply the gap test to break up the means into one
 or more broad groups. Second, apply the straggler test within these

 groups to further break off stragglers within groups. Third, apply the

 Fitest to these new subgroups to detect excess variability. It is hard
 to see how to find the frequency of false positives with the whole system
 analytically, but the writer conjectures that, if the same level, such as
 5%, is used in all three tests, the frequency of false positives will be

 between 1.2 and 1.6 times the level used (i.e., between 6%7 and 8%7
 when a 5% level is used). This is about where the frequency of false
 positives stands for many repeated and result-guided tests of significance
 now in actual practice.

 4. DETAILED PROCEDURE ILLUSTRATED BY EXAMPLES

 The two examples we ae going to use are those discussed by
 Newman [5] in connection with the use of the Studentized range. The
 advantages of continuing with the same examples may compensate for
 disadvantages of lack of simplicity, and in the case of the first example,
 lack of appropriateness. This first example is a 6 X 6 Latin square
 with potatoes, cited by Fisher [1] in Article 36 of The Design of Experi-
 ments. As first presented this example is stated to be six fertilizer treat-
 ments in a Latin Square, and Newman seems to have based his example
 on this discussion. Later on in the book (Article 64), Fisher points

This content downloaded from 
�����������200.144.62.89 on Sun, 07 Apr 2024 22:51:33 +00:00������������ 

All use subject to https://about.jstor.org/terms



 COMPARING INDIVIDUAL MEANS 103

 out that these treatments were a 2 X 3 factorial design in nitrogen and
 phosphorus, so that there were specific individual degrees of freedom

 whose analysis was planned when the experiment was designed. These
 were not 6 treatments all on an equal footing, and overall analysis is not
 appropriate, but we shall proceed to analyze them as if they were six
 treatments about which there is no advance information. The six means

 were (A) 345.0, (B) 426.5, (C) 477.8, (D) 405.2, (E) -520.2, (F) 601.8,
 and the estimated standard deviation of a mean was sm = 15.95.

 Step 1. Choose a level of significance. For this example we shall choose

 5%.
 Step 2. Calculate the difference which would have been significant if
 there were but two varieties.

 The two-sided 5% point of t on 20 degrees of freedom is 2.086. For
 this example, then, this least significant difference is 2.086 (21/2)15.95 =
 47.0.

 Step 3. Arrange the means in order and consider any gap longer than
 the value found in Step 2 as a group boundary.

 Arranged in order, the means are 345.0, 405.2, 426.5, 477.8, 520.2,
 601.8 and the differences 405.2 - 345.0 = 60.2, 477.8 - 426.5 = 51.3,
 and 601.8 - 520.2 =, 81.6 exceed 45.7, so that we have divided the
 varieties into four groups: 345.0 (A) by itself, 405.2 (D) and 426.5 (B)
 together, 477.8 (C) and 520.2 (E) together, and 601.8 (F) by itself.

 If no group contains more than two means, the process terminates.
 The first example having terminated, we must pass to another to illus-

 trate the continuance of the process. Snedecor [6] gives as Example
 11.28 on p. 274 (of the 4th edition) the results of a 7 X 7 Latin Square

 with potatoes. The means were (A) 341.9, (B) 363.1, (C) 360.5, (D)
 360.4, (E) 379.9, (F) 386.3, (G) 387.1 and sm on 30 degrees of freedom
 was 9.52. Choosing the 5% level, for which t on 30 degrees of freedom
 is 2.042, we find t(2'/2)5m = 27.5. In order, the means are 341.9, 360.4,
 360.6, 363.1, 379.9, 386.3, and 387.1 No difference between adjacent
 means exceed 27.5, so that there is only one group at the end of Step 3.

 Step 4. In each group of 3 or more means find the grand mean, the most
 straggling mean and the difference of these two divided by sm . Convert
 these ratios into approximate unit normal deviates by finding

 m- m 6
 _ . ( logl3 k

 Sm . ~~~~(ki > 3 means ini the group~),
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 104 BIOMETRICS, JUNE 1949

 In -i 1

 5m - 2 (3 means in the group).

 Separate of any straggling mean for which this is significant at the
 chosen two-sided significance level for the normal.

 For the Snedecor example we find -m = 368.5, and the most straggling

 mean is m = 341.9. The ratio is 26.6/9.51 = 2.80. Further log10 7 =
 .845 and we are to consider

 2.80 _ 845

 l 1) = y1 (2.80 - 1.01) = 2.10.

 Since the two-sided 5% level for the unit normal is well known to be
 1.96, we must separate 341.9 (A).

 Step 5. If Step 4 changed any group, repeat the process until no further

 means are separated in the old groups. The means separated off from
 one side of a group form a subgroup. If there are any subgroups of
 three or more when no more means are being separated from groups,
 apply the same process (Steps 4 and 5) to the subgroups.

 The old group in the Snedecor example now contains 6 means, and its
 grand mean has increased to m = 372.9. The most straggling mean is

 387.1 for which (387.1 - 372.9)/9.51 = 1.49. The approximate unit
 normal deviate is 60/51 (1.49 - 0.93) = 0.66, which is far from signifi-
 cance. Step 5 has produced no further effect.

 Step 6. Calculate the sum of squares of deviations from the group mean
 and the corresponding mean square for each group of or subgroup S or
 more resulting from Step 5. Using s', as the denominator, calculate
 the variance ratios and apply the F-test.

 In the Snedecor example, we have one group of six, for which the sum
 of squares of deviations is 829 and the mean square 166. The denomi-
 nator is (9.51)2 = 90.4 and the F-ratio 1.83 on 4 and 30 degrees of free-

 dom, which is near the 12% point. Thus there is no overall evidence of
 difference in yield for these six varieties.

 If varieties (B) 363.1, (C) 360.6, and (D) 360.4 had been known in
 advance to be different as a class from varieties (E) 379.9, (F) 386.3, and
 (G) 387.1, it would be fair to introduce a single degree of freedom for this
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 COMPARING INDIVIDUAL MEANS 105

 comparison, giving an analysis of variance (in terms of means) like this.

 Degrees of Mean

 Freedom Square

 BCD vs EFG 1 794
 Varieties within classes 4 35
 Error 30 90.4

 From this we could conclude that BCD and EFG were different, even at
 the 1% level. There is no valid basis for this particular conclusion unless
 the classes are uniquely known in advance of the experiment. (There

 are 20 ways to split six varieties into two classes of three varieties each,
 so that the apparent significance of the most significant split would be
 expected to be at a percentage level near 1/20th of the percentage level

 of the whole group. The actual figures are, approximately, 0.6% and
 12% and their agreement with the 1-to-20 ratio is unusually close.)

 In the Fisher example, the proposed procedure gave the following

 result: Variety A (345.0) is significantly lower than varieties D (405.2)

 and B (426.5), these in turn are significantly lower than C (477.8) and E

 (520.2), and in turn these are significantly lower than F (601.8). All
 significance statements are statistical, and are at the 5% level or better.

 In the Snedecor example, the proposed procedure gave the following
 result: Variety A (341.9) was significantly lower than some of the varieties C

 (360.1), D (360.4), B (363.1), E (379.9), F (386.3), and G (387.1) at the
 5% level or better, the group of 6 varieties showed no overall evidence of
 internal differences at the 5% level.

 These conclusions should be compared with those of Newman, who

 used the Studentized range to conclude in the first case that even taking
 ADB and CEF as two groups, neither was homogeneous. This is con-

 sistent with the result of the present analysis, but far less detailed. For
 the Snedecor example, Newman found that if either A or F and G
 together were made a separate group, the remainder seemed homogene-
 ous. This is again consistent, but less detailed, since the present process

 finds definite reason to suppose that it is A which is inhomogeneous.
 (How much stronger is the evidence we have against A than against F
 and G is another matter.)

 The writer feels that the proposed procedure is direct, reasonably

 simple, involves no new tables, and is ready to be used in practice and
 thereby put to the ultimate test.
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 106 BIOMETRICS, JUNE 1949

 5. THE DISTRIBUTION OF THE MAXIMUM GAP

 We are interested in the following problem:

 "Let a sample of k values (in our case means) be drawn from a normal

 distribution, of which we know only an independent estimate s of its

 standard deviation, based on n degrees of freedom. What is the distribu-
 tion of

 largest gap between ordered observed values 2"
 S

 The methods of Hartley, reviewed in detail by Nair [4], would allow us

 to solve this problem for finite n if we knew the answer for infinite n,

 that is for the case where we know a-, the standard deviation of the
 normal population.

 The problem of the distribution of the largest gap in a'sample of k

 values from a unit normal distribution can easily be attacked by experi-
 mental sampling (see Section 9). The fact' that the random normal
 deviates of Mahalanobis [3] are printed in blocks of five leads one to

 study k = 5 and k = 10 first. The first 1000 blocks of five in that table
 were used (skipping block 768, which was marked as an error in the copy
 available to the author).

 The results are shown below:

 TABLE 1

 UPPER PERCENTAGE POINTS OF THE LARGEST GAP IN AN
 ORDERED SAMPLE OF k FROM A UNIT NORMAL

 k =5 k = 10

 % k = 2 sample of sample of
 theory 1000 cases 500 cases

 10 2.33 1.86 <1.50

 5 2.77 2.13 1.68
 2 3.29 2.49 1.95
 1 3.64 2.77 2.42

 The theoretical values for k = 21/2 are values of t(2"2) and are accurate,
 the others are as found by experimental sampling and may deviate from
 accuracy by perhaps 1 or 2 in the first decimal. - They are sufficiently
 accurate, however, to indicate that the upper percentage point decreases
 as k increases. Thus if we use the values for k = 2 we will make a
 conservative test. This is true for n = oa, and by the nature of Hartley's
 expansion it will continue to hold for all reasonable values of n.

This content downloaded from 
�����������200.144.62.89 on Sun, 07 Apr 2024 22:51:33 +00:00������������ 

All use subject to https://about.jstor.org/terms



 COMPARING INDIVIDUAL MEANS 107

 TABLE 2

 QUALITY OF APPROXIMATION OF PERCENTAGE POINTS FOR THE STRAGGLER TEST

 Normal percentage point

 minus accurate Occurs for Cases

 percentage point

 0.15 to 0.20 3 means, n < 15 6

 (5%, 3 or 4 means, n < 24

 0.10to 0.15 1%,4meansn < 11 33

 t1%, 3 means, n < 30

 r5%, 5 means n < 24
 0.05 to 0. 10 5%, 3 or 4 means, n < 60 21

 1%, 4 means, n < 11
 1%, 3 means, n < 120

 -0. 05 to +0.05 otherwise 154

 010%, all cases
 -0.10 to -0.05 5%, 9 means, n = 10, 11 20

 1%, 8 or 9 means, n = 20

 The discussion in Section 2 suggests, of course, that it would be cor-

 rect and wise to find accurately the percentage points of the largest gap
 for various values of k and then use the appropriate values of k. This is

 not being suggested for the present, because:

 (1) the necessary table does not exist,
 (2) it would complicate the procedure,

 (3) there are problems in choosing the appropriate value of k,
 (4) the simpler proposed procedure has not yet been used enough to

 show its characteristics.

 6. THE STUDENTIZED EXTREME DEVIATE

 In his recent paper, Nair [3] has given the following upper percentage

 points for 3 to 9 samples: (A) the 10%, 5%, 2.5%, 1%, 0.5% points
 for n = c, (B) the 5% points for n from 10 to 20 and 24, 30, 40, 60, 120,
 c, (C) the 1% points for the same values of n. The accuracy of our
 rough approximation is most easily considered by transforming them
 into percentage points for the approximate unit normal deviates-these

 are what should be used for accuracy,-and comparing these with the
 percentage points of the normal-these are what we propose to use.
 Such a comparison has the following results, (Table 2).
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 108 BIOMETRICS, JUNE 1949

 Thus for about two-thirds of the cases tabulated by Nair, the error is less
 than 0.05, and is surely negligible in practice.

 In doubtful cases, a more precise approximate test may be made as
 follows. Let

 w = m r -M (m an extreme mean)
 Sm

 Then treat

 (k 1)/2 10(w - 1.2))

 as a unit normal deviate and multiply the tail area by k if only one kind of
 straggler (high or low) could be considered, and by 2k otherwise. Thus
 if -m = 52, m = 43, s 4, k 13, n = 28

 143 -521 9

 W2 4

 (13\ 12( _ 10(1.05)2 1.041(2.25 - 0.13) = 2.20

 Now the probability of a unit normal deviate = 2.14 is 0.01390 (from
 any normal table, e.g. Fisher and Yates [2] Table IX where 98.610%
 corresponds to a probit of 7.1200). Multiplying by 11 gives 15.3% as
 the approximate significance, if only low means are of interest, while the
 level is 30.6% when either high or low means are involved.

 This approximation is discussed by Nair [4] for the case n =, where
 it is due to McKay. Nair shows that it is very good indeed. The effec-
 tiveness of the term in n-1 may be tested by calculating the true per-
 centage points for w - 3n-'(w - 1.2) from Nair's tables.

 TABLE 3

 UPPER PERCENTAGE POINTS FOR w - 10/3n (w - 1.2)

 5% points 1% points

 n k = 3 5 7 9 k = 3 5 7 9

 10 1.75 2.06 2.24 2.35 2.24 2.57 2.73 2.85
 15 1.76 2.08 2.26 2.39 2.27 2.62 2.81 2.93
 20 1.76 2.08 2.27 2.39 2.25 2.62 2.82 2.92
 30 1.75 2.09 2.27 2.40 2.25 2.61 2.82 2.93
 co 1.74 2.08 2.27 2.39 2.22 2.57 2.76 2.88
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 COMPARING INDIVIDUAL MEANS 109

 The errors involved in the use of the values at the bottom of the columns

 of Table 3 instead of those above them can hardly ever be of practical
 importance.

 The previous approximation is recommended for routine work since

 it involves less computation and no changing of significance levels. Both

 approximations are only good for upper percentage points in the signifi-

 cance test range. The latter approximation should meet all practical
 needs.

 The writer would rarely bother with the more precise approximation

 except possibly for the cases where the error of the rough test is between

 -0.10 and -0.05. The original experimental values are likely to be

 somewhat non-normal with large tails. An accurate allowance for this

 would be hard to compute, but it would increase the accurate percentage
 point slightly, more for smaller n. The rough approximation tends to
 compensate for this fact in most cases.

 7. THE DISTRIBUTION OF LONG GAPS IN A SAMPLE OF k FORM
 ANY POPULATION

 While we could concern ourselves with the distribution of the longest

 gap, the next longest gap, and so on, it seems theoretically better and
 practically simpler to do something somewhat different. We are going

 to calculate the expected number of gaps longer than a length G, which
 we denote by Pi . For the sort of test considered above, there is much
 reason to use Pi . For pi is the fraction of gaps per sample which will be
 falsely judged significant. If it is as bad to find two false gaps in a sam-
 ple as to find one false gap in each of two samples, then we should

 consider p'
 Now we shall take the definition of a gap starting at y to be that y is

 the left hand of the gap. If y is the left-hand end of a gap of length at

 least G, we have the following table of elementary probabilities:

 Event Probability

 One observation must fall between y and y + dy k dF(y)

 k - 1 observations must fall between and y
 or between y + G and + - {F(y) + 1 - F(y + G) }k-1

 Not all k - 1 observations can fall between-

 and y (F(y))k-
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 110 BIOMETRICS, JUNE 1949

 hence

 Pi = k . {(F(y) + 1 - F(y + G)k1- (F(y))k1} dF(y)
 co

 8. THE SYMMETRICAL CASE

 If the distribution of x is symmetrical about zero, we may count only
 the gaps with centers to the left of the origin and then double. The

 expression for Pi follows from:

 Event Probability

 One observation must fall between y and y + dy k dF(y)

 k - 1 observations must fall between - o and y

 or y + G and + o (F(y) + 1 - F(y + G))k-1

 Not all k - 1 observations can fall between -o

 and y or -y and + o -(2F(y))k-1

 Since y < - 'G, and since the result is to be doubled, we have

 1 2G

 P= 2k {(F(y) + 1 - F(y + G)k-1 -(2F(y)) `} dF( y)

 Making the substitutions u = F(y), h(u) = F(y) + 1 - F(y + G), this
 becomes

 Pi = 2k f hkl du -{2F(- G)}k

 For reasonably large G, the second term is fairly small and we can get
 an accurate value of Pi with a reasonable amount of labor.

 As an example, let us take the unit normal distribution and G = 2.
 Since h(u) is non-analytic near 1 and has a minimum at F(-1) = .1587,

 it is natural to break the integral up into parts as follows:

 f*0004 (.004 *04

 Pi= 2k hk-l du + 2k hk-l du + 2k 1 hk-l du O *~~~0004 *004

 *16

 + 2k hk-l du - 0.0013(2k)(h(.1587))'` - (.3174)k
 *04

 Calculating h to four decimals, applying Simpson's rule to the range
 from 0 to .004, and the corresponding six-panel rule to the other three
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 COMPARING INDIVIDUAL MEANS 111

 ranges yields the following results, where the terms are given in the order

 of the formula above:

 k + + + + - _P

 2 .00151 .01168 .07875 .16781 .00165 .10074 .15736

 3 .00214 .01426 .06603 .08885 .00079 .03206 .13843

 4 .00270 .01553 .04227 .04224 .00032 .01014 .09228

 5 .00320 .01590 .03035 .01908 .00013 .00322 .06518

 6 .00363 .01567 .02635 .00835 .00005 .00102 .05293

 7 .00402 .01508 .01880 .00353 .00002 .00032 .04109

 8 .00436 .01426 .01342 .00154 .00001 .00010 .03347

 9 .00468 .01330 .00959 .00065 .00000 .00003 .02819

 10 .00493 .01230 .00691 .00029 .00000 .00000 .02443

 The value for k = 2 can of course be calculated directly as

 2(1 - F(21/2))= 2(.0787) = .1574

 The results are probably accurate to 1 or 2 in the fourth place. They

 can be conveniently stated as in the following table:

 TABLE 4

 NUMBER OF GAPS LONGER THAN 2.00 EXPECTED PER 100 SAMPLES OF k FROM THE

 UNIT NORMAL

 k 2 3 4 5 6 7 8 9 10

 gaps

 15.74 13.84 9.23 6.52 5.29 4.11 3.35 2.82 2.44

 100 samples

 9. RESULTS OF EXPERIMENTAL SAMPLING

 The results of the experimental sampling of 1000 sets of 5 from

 Mahalanobis' approximation to the unit normal are given in the follow-
 ing table, (Table 5).

 The approximate normality of (largest gap)2 in this sample, as indi-
 cated by the correspondence of the last two columns between the 2%
 points is striking. For comparison it seemed worthwhile to examine the

 normality of (largest gap)1/2 for k = 2, where the probability of a
 gap 2 G is 2N(G/2), where N(u) is the unit normal cumulative. This
 gives the following results, (Table 6).

This content downloaded from 
�����������200.144.62.89 on Sun, 07 Apr 2024 22:51:33 +00:00������������ 

All use subject to https://about.jstor.org/terms



 112 BIOMETRICS, JUNE 1949

 TABLE 5

 RESULTS OF EXPERIMENTAL SAMPLING. DISTRIBUTION OF LARGEST GAPS IN
 1000 SAMPLES OF 5

 (gap)1/2 - 1.07
 Cell Number Cumu. Equiv.

 Norm. Dev. .23

 .185- .199 2 2 -2.88 (-2.70)

 .200- .299 9 11 -2.29 (-2.26)

 .300- .399 20 31 -1.87 -1.90
 .400- .499 28 59 -1.56 -1.57

 .500- .699 97 156 -1.01 -1.00

 .700- .899 141 297 -0.53 -0.52
 .900-1.099 172 469 - .08 - .09

 1.100-1.299 149 618 0.30 0.30

 1.300-1.499 126 744 0.66 0.68

 1.500-1.699 110 854 1.05 1.00

 1.700-1.899 56 910 1.34 1.34

 1.900-2.099 36 946 1.61 1.64

 2.100-2.299 24 970 1.88 1.90
 2.300-2.499 11 981 2.07 2.12

 2.500-2.699 8 989 2.29 (2.51)

 2.700-2.899 4 993 2.46 (2.77)

 2.900-3.099 4 997 2.75 (2.99)

 3.100-3.299 2 999 3.09 (3.20)

 4.000-4.099 1 1000 co

 Here the fit is good between the 10% points. This suggests that the

 (largest gap) 12 may be a convenient interpolation variable.
 The number of cases > 2.00 actually found was 68, while the number

 to be expected according to the last section was 65.2 less an allowance

 for large double gaps which might amount to one unit. Finding 68
 instead of 64 is a deviation of 0.5o, and is highly reasonable.

 For k = 10, the count was only made for gaps > 1.5, with the follow-
 ing results, (Table 7).

 The fit here is reasonably good out to the 5% point. Since theory
 predicts about 12.2 beyond 2.00 instead of 9 observed, there is no serious

 disagreement here.
 If we want to make real use of this (gap)112 variable, we may use the

 known percentages beyond 1.414, found for k between 2 and 10 in the

 last section to fix lines in the plane of the mean and standard deviation
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 TABLE 6

 CUMULATIVE FOR (LARGEST GAP)1/2 IN SAMPLES OF 2 FROM THE UNIT NORMAL

 (gap) 1/2 - .98
 % gap (gap)'/2 Equiv. Norm.

 Deviate .44

 1 .0177 .134 -2.33 (-1.95)
 2 .0357 .189 -2.05 (-1.80)
 5 .0891 .299 -1.64 (-1.55)
 10 .1781 .423 -1.28 -1.26
 20 .360 .600 -0.84 -0.86
 50 .960 .980 0.00 0.00
 80 1.825 1.353 0.84 0.85
 90 2.350 1.536 1.28 1.26
 95 2.794 1.672 1.64 (1.57)
 98 3.308 1.821 2.05 (1.91)
 99 3.650 1.914 2.33 (2.12)

 TABLE 7

 RESULTS OF EXPERIMENTAL SAMPLING
 DISTRIBUTION OF LARGEST GAPS IN 500 SAMPLES OF 10

 Equiv. (gap)1/2 - 0.85

 Cell Number Cumul. Norm.
 Deviate .24

 -1.499 454 454 1.33 1.38
 1.500-1.599 15 469 1.54 1.53
 1.600-1.699 9 478 1.71 1.68-
 1.700-1.799 9 487 1.94 1.82
 1.800-1.899 2 489 2.01 1.98
 1.900-1.999 2 491 2.10 2.08
 2.000-2.199 1 492 2.14 (2.39)
 2.200-2.399 2 494 2.26 (2.48)
 2.400-2.599 3 497 2.51 (2.93)
 2.600-2.799 2 499 2.88 (3.13)

 3.100-3.199 1 500

 of the approximation. A little bold, dashing, freehand, two-dimensional
 interpolation produces the following results:
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 TABLE 8

 TENTATIVE BEHAVIOR OF (LARGEST GAP)1/2 FOR SAMTIPLES OF k FROM THE UNIT
 NORMAL

 Parameters Levels for (gap)1/2 Levels for gap
 k m s 5% 2.5% 1% 5% 2.5% 1%

 2 0.98 0.43 1.69 1.82 1.98 2.8 3.3 3.9
 3 1.03 0.36 1.62 1.74 1.87 2.6 3.0 3.5
 4 1.06 0.27 1.50 1.59 1.69 2.3 2.5 2.8
 5 1.06 0.23 1.43 1.51 1.60 2.0 2.3 2.6
 6 1.06 0.22 1.42 1.49 1.57 2.0 2.2 2.5
 7 1.04 0.21 1.39 1.45 1.53 1.9 2.1 2.3
 8 1.02 0.21 1.37 1.43 1.51 1.9 2.0 2.3
 9 1.00 0.21 1.35 1.41 1.49 1.8 2.0 2.2
 10 0.99 0.22 1.33 1.40 1.48 1.8 2.0 2.2

 By a stroke of luck, the levels for the gap itself might be accurate to one
 or two tenths. These are, of course, unstudentized levels.
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