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a b s t r a c t

Given a directed graph G, an edge is a strong bridge if its removal increases the number of
strongly connected components of G. Similarly, we say that a vertex is a strong articulation
point if its removal increases the number of strongly connected components of G. In this
paper, we present linear-time algorithms for computing all the strong bridges and all the
strong articulation points of directed graphs, solving an open problem posed in Beldiceanu
et al. (2005) [2].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Weassume that the reader is familiarwith the standard graph terminology, as contained for instance in [6]. LetG = (V , E)
be a directed graph, withm edges and n vertices. A directed path in G is a sequence of vertices v1, v2, . . . , vk, such that edge
(vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1. A directed graph G is strongly connected if there is a directed path from each vertex
in the graph to every other vertex. The strongly connected components of G are its maximal strongly connected subgraphs.
Given a directed graph G, an edge is a strong bridge if its removal increases the number of strongly connected components
of G. Similarly, we say that a vertex is a strong articulation point if its removal increases the number of strongly connected
components of G.

Strong articulation points and strong bridges are related to the notion of 2-vertex and 2-edge connectivity of directed
graphs. We recall that a strongly connected graph G is said to be 2-vertex-connected if the removal of any vertex leaves
G strongly connected; similarly, a strongly connected graph G is said to be 2-edge-connected if the removal of any edge
leaves G strongly connected. It is not difficult to see that the strong articulation points are exactly the vertex cuts for
2-vertex connectivity, while the strong bridges are exactly the edge cuts for 2-edge connectivity: G is 2-vertex-connected
(respectively 2-edge-connected) if and only if G does not contain any strong articulation point (respectively strong bridge).
The 2-vertex and 2-edge connectivity of a directed graph can be tested in linear time. For 2-vertex connectivity, there is a
very recent algorithm of Georgiadis [14]. Although there is no specific linear-time algorithm in the literature, the 2-edge
connectivity of a directed graph can be tested in O(m + n) as observed somewhat indirectly in [12]: one can test whether
a directed graph is 2-edge-connected by using Tarjan’s algorithm [20] to compute two edge-disjoint spanning trees in
combination with the disjoint set-union algorithm of Gabow and Tarjan [13]. However, both the algorithm of Georgiadis
and the combination of Tarjan’s algorithm with the set-union data structure of Gabow and Tarjan do not find all the strong
articulation points or all the strong bridges of a directed graph.
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In this paper, we show how to find all the strong bridges and all the strong articulation points of a directed graph in
O(m + n) worst-case time. Besides being natural concepts in graph theory, strong articulation points and strong bridges
find applications in other areas. For instance, the computation of strong articulation points arise in constraint programming,
and in particular in the tree constraint defined by Beldiceanu et al. [2]. The detection of the strong articulation points in a
directed graph is indeed a crucial step in their filtering algorithm for the tree constraint, and Beldiceanu et al. [2] leaves as
an open problem the design of a linear-time algorithm for computing all the strong articulation points of a directed graph.
The algorithm presented in this paper solves exactly this problem.

Besides being interesting on their own, the algorithms presented in this paper have further applications. A first
application is verifying the restricted edge connectivity of strongly connected graphs, as defined by Volkman in [21]: our
algorithm is able to improve the bounds in [21] from O(m(m + n)) to O(n(m + n)). As a further application, we cite that
our method is able to simplify substantially the approach of Georgiadis [14] to test the 2-vertex connectivity of a strongly
connected graph and it also provides a more practical linear-time algorithm for this problem. Our algorithms can also be
used to speed up the computation of matrix determinants: indeed, in the case of the adjacency matrix of a directed graph
G, the computation of its determinant can be sped up if G has strong articulation points or strong bridges [3,17].

The remainder of this paper is organized as follows. Section 2 introduces few preliminary definitions and proves some
basic properties on strong articulation points and strong bridges. In Section 3 we analyze the relationship between strong
articulation points, strong bridges and dominators in flowgraphs. In Sections 4 and 5 we show how to exploit effectively
this relationship and present, respectively, our linear-time algorithms for computing the strong bridges and the strong
articulation points of a directed graph, whilst in Section 6 we consider some applications. Finally, Section 7 contains some
concluding remarks.

2. Preliminaries

In this section we prove some properties about strong bridges and strong articulation points. Throughout the paper, we
assume that we need to compute strong bridges and strong articulation points only in the case of strongly connected graphs.
This is without loss of generality, since the strong bridges (respectively strong articulation points) of a directed graph G are
given by the union of the strong bridges (respectively strong articulation points) of the strongly connected components
of G.

We start with some technical lemmas. Let G = (V , E) be a directed graph. Let S ⊆ E be a subset of edges of G: we denote
by G \ S the graph obtained after deleting from G all the edges in S. Let X ⊆ V be a subset of vertices of G: we denote by
G \ X the graph obtained after deleting from G all the vertices in X together with their incident edges.

Lemma 2.1. Let G = (V , E) be a strongly connected graph, and let v ∈ V be a vertex of G. Then v is a strong articulation point
in G if and only if there exist vertices x and y in G, x ≠ v, y ≠ v, such that all the paths from x to y in G contain vertex v.

Proof. Assume that v is a strong articulation point: then G \ {v} is not strongly connected. This implies that there must be
two vertices x and y, x ≠ v, y ≠ v, such that there is no path from x to y in G \ {v}, which is equivalent to saying that all
the paths from x to y in G must contain vertex v. Conversely, assume that there exist vertices x and y in G, x ≠ v, y ≠ v,
such that all the paths from x to y in G contain vertex v. Removing v from G leaves no path from x to y, and thus G \ {v} is no
longer strongly connected. This implies that v must be an articulation point of G. �

Lemma 2.2. Let G = (V , E) be a strongly connected graph, and let (u, v) ∈ E be an edge of G. Then (u, v) is a strong bridge in G
if and only if there exist vertices x and y in G such that all the paths from x to y in G contain edge (u, v).

Proof. Similar to the proof of Lemma 2.1: assume that (u, v) is a strong bridge, then G \ {(u, v)} is not strongly connected;
therefore there must be two vertices x and y, such that there is no path between x and y in G \ {(u, v)}, that is equivalent
to saying that all the paths from x to y in Gmust contain edge (u, v). Conversely, assume that there are two vertices x and y
such that all the paths from x to y in G contain the edge (u, v); thus, removing edge (u, v) from G leaves no path from x to
y, and therefore G \ {(u, v)} is no longer strongly connected, i.e. (u, v) is a strong bridge of G. �

Note that as a special case of Lemma 2.2 we can have x = u and y = v. We now need the following definition.

Definition 2.1. Given a directed graph G = (V , E), we say that an edge (u, v) is redundant if there is an alternative path
from vertex u to vertex v avoiding edge (u, v). Otherwise, we say that (u, v) is non-redundant.

The following corollary is an immediate consequence of Lemma 2.2.

Corollary 2.3. Let G = (V , E) be a strongly connected graph. Then the edge (u, v) ∈ E is a strong bridge if and only if (u, v) is
non-redundant in G.

By Corollary 2.3, in a strongly connected graph the problem of finding strong bridges is equivalent to the problem of
finding redundant edges. We remark that finding all the redundant edges in a directed acyclic graph is essentially the
transitive reduction problem. This is equivalent to the problem of computing the transitive closure [1], which is known
to be equivalent to Boolean matrix multiplication [10,11,18]. Thus, while for directed acyclic graphs the best known bound
for computing redundant edges is O(nω), where ω is the exponent of the fastest matrix multiplication algorithm (currently
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Fig. 1. (a) A strongly connected graph G = (V , E). (b) After removing vertex 2, G is still strongly connected, so vertex 2 is not a strong articulation point,
while (c) after removing vertex 5, G is no longer strongly connected, so vertex 5 is a strong articulation point. (d) After removing edge (5, 2), G is still
strongly connected, so edge (5, 2) is not a strong bridge, while (e) after removing edge (4, 5), G is no longer strongly connected, so edge (4, 5) is a strong
bridge. In summary, the strong articulation points in G are vertices 3 and 5, and the strong bridges in G are edges (2, 3) and (4, 5).
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Fig. 2. A graph with n vertices and n strong articulation points.

ω < 2.376), we show in this paper that for strongly connected graphs all the redundant edges can be computed faster, in
optimal O(m + n) time.

A directed graph can have at most n strong articulation points. This bound is realized by the graph consisting of a simple
cycle: indeed in this graph each vertex is a strong articulation point (see Fig. 2).
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Fig. 3. Let G be the graph shown in Fig. 1a. (a) An out-branching T+(4) of G. (b) An in-branching T−(4) of G. (c) The graph G′
= T+(4) ∪ T−(4); note that

G′ is strongly connected, and thus it includes all the strong bridges of G.

To bound the number of strong bridges in a directed graph, we need a different argument. Let G = (V , E) be a strongly
connected graph, and fix any vertex v of G. Let T+(v) to be an out-branching rooted at v, i.e., a directed spanning tree rooted
at v with all edges directed away from v. Similarly, let T−(v) to be an in-branching rooted at v, i.e., a directed spanning tree
rooted at v with all edges directed toward v.

Lemma 2.4. The graph G′
= T+(v) ∪ T−(v) contains at most (2n − 2) edges, can be computed in O(m + n) time and includes

all the strong bridges of G.

Proof. G′ is the union of two branchings, each having exactly (n − 1) edges: this gives immediately the bound on the size
of G′. G′ can be computed in linear time using either depth-first or breadth-first search. We now show that all the strong
bridges of Gmust be contained in G′. For any given pair of vertices x, y in V , there is a directed path from x to y in G′: the in-
branching T−(v) contains a path from x to v, and the out-branching T+(v) contains a path from v to y. Thus, G′ is a strongly
connected subgraph of G, and therefore all the edges not in G′ are redundant and cannot be strong bridges. �

An example of a graph G′
= T+(v)∪ T−(v), that refers to the graph G shown in Fig. 1a, is depicted in Fig. 3. The following

corollary is an immediate consequence of Lemma 2.4:

Corollary 2.5. A directed graph G can have at most (2n − 2) strong bridges.



78 G.F. Italiano et al. / Theoretical Computer Science 447 (2012) 74–84

1 2

3 4 5

6 7

Fig. 4. A graph with n vertices and 2(n − 1) strong bridges.
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Fig. 5. Dominator trees of the flowgraphs relative to the graph of Fig. 1a. Non-trivial dominators are shown in bold.

The bound given in Corollary 2.5 is tight, as it is easy to construct graphs having exactly (2n − 2) strong bridges (see
Fig. 4). Lemma 2.4 gives immediately a simpleO(n(m+n)) algorithm to compute strong bridges: first compute the subgraph
G′

= T+(v) ∪ T−(v) in O(m + n) time; since all the strong bridges of G are contained in G′, for each edge (u, v) in G′ test
whether (u, v) is a strong bridge by computing the strongly connected components of G \ {(u, v)}.

3. Strong articulation points, strong bridges and dominators

Our linear-time algorithms for computing strong articulation points and strong bridges exploits a connection between
strong articulation points, strong bridges and dominators in flowgraphs. We start with few definitions, and next we show
how those notions are related.

A flowgraph G(s) = (V , E, s) is a directed graph with a start vertex s ∈ V such that every vertex in V is reachable from s.
The dominance relation in G(s) is defined as follows: a vertex u is a dominator of vertex v if every path from vertex s to vertex
v contains vertex u. Let dom(v) be the set of dominators of v. Clearly, dom(s) = {s} and for any v ≠ s we have that {s, v} ⊆

dom(v): we say that s and v are the trivial dominators of v in the flowgraph G(s). The dominance relation is transitive and
its transitive reduction is referred to as the dominator tree DT (s). Note that the dominator tree DT (s) is rooted at vertex s.
Furthermore, vertex u dominates vertex v if and only if u is an ancestor of v inDT (s). We say that u is an immediate dominator
of v if u is a dominator of v, and every other non-trivial dominator of v also dominates u. It is known that if a vertex v has any
dominators, then v has a unique immediate dominator: the immediate dominator of v is the parent of v in the dominator
tree DT (s).

Let G = (V , E) be a strongly connected graph, and let s be any vertex in G. Since G is strongly connected, every vertex
of V is reachable from s: thus for every vertex s ∈ V , G(s) = (V , E, s) is a flowgraph. Note that there are n flowgraphs for
each strongly connected graph. As an example, Fig. 5 shows the dominator trees of the flowgraphs relative to the graph of
Fig. 1a. The following lemmas show a close relationship between strong articulation points in strongly connected graphs
and non-trivial dominators in flow graphs.

Lemma 3.1. Let G = (V , E) be a strongly connected graph, and let s be any vertex in G. Let G(s) = (V , E, s) be the flowgraph
with start vertex s. If u is a non-trivial dominator of a vertex v in G(s), then u is a strong articulation point in G.

Proof. If u is a non-trivial dominator of v in the flowgraph G(s) = (V , E, s), then u ≠ s, u ≠ v and all the paths in G from s
to v must include u. Consequently, G \ {u} is not strongly connected and thus umust be a strong articulation point in G. �

Lemma 3.2. Let G = (V , E) be a strongly connected graph. If u is a strong articulation point in G, then there must be a vertex
s ∈ V such that u is a non-trivial dominator of a vertex v in the flowgraph G(s) = (V , E, s).
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Fig. 6. Out-branchings of the flowgraphs relative to the graph of Fig. 1a. Edge dominators are shown in bold.

Proof. If u is a strong articulation point of G, then by Lemma 2.1 there must be two vertices s and v in G, s ≠ u, v ≠ u,
such that every path from s to v contains vertex u. This implies that u must be a non-trivial dominator of vertex v in the
flowgraph G(s). �

We observe that Lemmas 3.1 and 3.2 are still not sufficient to achieve a linear-time algorithm for our problem: indeed, to
compute all the strong articulation points of a strongly connected graphG, we need to compute all the non-trivial dominators
in the flowgraphs G(s), for each vertex s in V . Since the dominators of a flowgraph can be computed in O(m + n) time [5]
and there are exactly n flowgraphs to be considered, the running time of this algorithm is O(n(m+ n)). In the next sections,
we will show how a more careful exploitation of the relationship between strong articulation points and dominators yields
a linear-time algorithm for computing the strong articulation points of a directed graph.

We now show how to exploit similar properties for strong bridges. We say that an edge (u, v) is an edge dominator of
vertex w if every path from vertex s to vertex w contains edge (u, v). Furthermore, if (u, v) is an edge dominator of w, and
every other edge dominator of w also dominates u, we say that (u, v) is an immediate edge dominator of w. Similar to the
notion of dominators, if a vertex has any edge dominators, then it has a unique immediate edge dominator. As an example,
Fig. 6 shows the out-branching trees of the flowgraphs relative to the graph of Fig. 1a. The following lemmas are completely
analogous to Lemmas 3.1 and 3.2.

Lemma 3.3. Let G = (V , E) be a strongly connected graph, and let s be any vertex in G. Let G(s) = (V , E, s) be the flowgraph
with start vertex s. If (u, v) is an edge dominator in G(s), then (u, v) is a strong bridge in G.

Lemma 3.4. Let G = (V , E) be a strongly connected graph. If (u, v) is a strong bridge in G, then there must be a vertex s ∈ V
such that (u, v) is an edge dominator in the flowgraph G(s) = (V , E, s).

Similar to dominators, also the edge dominators of a flow graph G(s) = (V , E, s) can be computed in linear time. This
can be done by finding two out-branchings rooted at s having only the edge dominators in common.1 To find two such
out-branchings in linear time one can use the algorithm of Tarjan [20] with the linear-time disjoint-set union algorithm of
Gabow and Tarjan [13].

As previously explained for the case of dominators and strong articulation points, Lemmas 3.3 and 3.4 are still not
sufficient to obtain a linear-time algorithm for computing all the strong bridges of a strongly connected graph G, since
we would need to compute the edge dominators for all n flowgraphs of a given strongly connected graph. We will show
in the next section how to obtain this goal by exploiting more carefully the relationship between strong bridges and edge
dominators.

1 This is related to Edmonds’ Theorem [7], which states that a k-connected directed graph admits k edge-disjoint out-branchings rooted at a fixed
vertex r .
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4. Finding all strong bridges

In this section we present a linear-time algorithm for computing all the strong bridges of a directed graph G. We recall
from Section 2 that it is enough to restrict our attention to the case where G is strongly connected. Given a directed graph
G = (V , E), define its reversal graph GR

= (V , ER) by reversing all edges of G: namely, GR has the same vertex set as G and
for each edge (u, v) in G there is an edge (v, u) in GR. We say that the edge (v, u) in GR is the reversal of edge (u, v) in G. The
following lemma is immediate.

Lemma 4.1. Let G = (V , E) be a strongly connected graph and GR
= (V , ER) be its reversal graph. Then GR is strongly connected.

Furthermore, edge (u, v) is a strong bridge in G if and only if its reversal (v, u) is a strong bridge in GR.

Let G = (V , E) be a strongly connected graph, let s ∈ V be any vertex in G, and let G(s) = (V , E, s) be the flowgraph with
start vertex s. We denote by DE(s) the set of edge dominators in G(s). Similarly, let GR

= (V , ER) be the reversal graph of
G, and let GR(s) = (V , ER, s) be the flowgraph with start vertex s. We denote by DER(s) the set of edge dominators in GR(s).
The following theorem provides a characterization of strong bridges in terms of the edge dominators in the two flowgraphs
G(s) = (V , E, s) and GR(s) = (V , ER, s).

Theorem 4.2. Let G = (V , E) be a strongly connected graph, and let s ∈ V be any vertex in G. Then edge (u, v) is a strong bridge
in G if and only if (u, v) ∈ DE(s) or (v, u) ∈ DER(s).

Proof. We first prove that if (u, v) is a strong bridge in G, then wemust have (u, v) ∈ DE(s) or (v, u) ∈ DER(s). Assume not:
namely, assume that (u, v) is a strong bridge in G, v ≠ s, but (u, v) ∉ DE(s) and (v, u) ∉ DER(s). Since v is a strong bridge in
G, then G\{(u, v)} is not strongly connected. As a consequence, theremust be a vertexw in G,w ≠ s, such that the following
is true: w is in the same strongly connected component as s in G, but w is not the same strongly connected component as
s in G \ {(u, v)}. Namely, either (a) there is a path from s to w in G, but there is no path from s to w in G \ {(u, v)}, or (b)
there is a path from w to s in G, but there is no path from w to s in G \ {(u, v)}. If we are in case (a), then all the paths from
s to w in G must contain edge (u, v). This is equivalent to saying that (u, v) is an edge dominator of w in the flowgraph
G(s) = (V , E, s), i.e., (u, v) ∈ DE(s), which clearly contradicts the assumption (u, v) ∉ DE(s) and (v, u) ∉ DER(s). If we
are in case (b), then all the paths from w to s in G must contain edge (u, v). This is equivalent to saying that (v, u) is an
edge dominator of w in the flowgraph GR(s) = (V , ER, s), i.e., (v, u) ∈ DER(s), which again contradicts the assumption
(u, v) ∉ DE(s) and (v, u) ∉ DER(s). This shows that if (u, v) is a strong bridge in G, then (u, v) must be in DE(s) or (v, u)
must be in DER(s).

To prove the converse, let (u, v) be any edge such that (u, v) ∈ DE(s) or (v, u) ∈ DER(s). If (u, v) ∈ DE(s), (u, v) is an
edge dominator in G(s), and thus (u, v) must be a strong bridge in G by Lemma 3.3. Analogously, if (v, u) ∈ DER(s), again
by Lemma 3.3 (v, u) must be a strong bridge in GR: Lemma 4.1 now ensures that (u, v) must be a strong bridge in G as well.
This completes the proof of the theorem. �

We now present our algorithm for computing the strong bridges of a strongly connected graph.

Algorithm StrongBridges(G)

Input : A strongly connected graph G = (V , E), with n vertices and m edges.
Output : The strong bridges of G.

1. Choose arbitrarily a vertex s ∈ V in G.
2. Compute DE(s), the set of edge dominators in the flowgraph G(s) = (V , E, s).
3. Compute the reversal graph GR

= (V , ER).
4. Compute DER(s), the set of edge dominators in the flowgraph GR(s) = (V , ER, s).
5. Output the union of the edges in DE(s) and the reversal of the edges in DER(s).

Theorem 4.3. Algorithm StrongBridges computes the strong bridges of a strongly connected graph G in time O(m + n).

Proof. The correctness of the algorithmhinges on Theorem4.2.Wenowanalyze its running time. Since the edge dominators
of a flowgraph can be computed in linear time, Steps 2 and 4 can be implemented in time O(m + n). Finally, the reversal
graph GR in Step 3 can be computed in linear time, and thus the theorem follows. �

Theorem 4.3 can be generalized to general directed graphs.

Theorem 4.4. The strong bridges of a directed graph G can be computed in time O(m + n).

Proof. To compute the strong bridges ofG it is enough to find the strongly connected components ofG inO(m+n) time [19],
and then to return the strong bridges of each connected component of G. By Theorem 4.3, this require overall O(m + n)
time. �
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5. Finding all strong articulation points

In the previous section we presented an algorithm to compute effectively all the strong bridges of a directed graph. Now
we show how to adapt the same approach to compute all the strong articulation points. The following are the analogs of
Lemma 4.1 and of Theorem 4.2.

Lemma 5.1. Let G = (V , E) be a strongly connected graph andGR
= (V , ER) be its reversal graph. Vertex v is a strong articulation

point in G if and only if v is a strong articulation point in GR.

Theorem 5.2. Let G = (V , E) be a strongly connected graph, and let s ∈ V be any vertex in G. Then vertex v ≠ s is a strong
articulation point in G if and only if v ∈ D(s) ∪ DR(s).

Proof. This proof follows the line of the proof of Theorem 4.2. We first prove that if v is a strong articulation point in G,
v ≠ s, then wemust have v ∈ D(s)∪DR(s). Assume not: namely, assume that v is a strong articulation point in G, v ≠ s, but
v ∉ D(s) and v ∉ DR(s). Since v is a strong articulation point in G, then G \ {v} is not strongly connected. As a consequence,
there must be a vertex w in G, w ≠ s, such that the following is true: w is in the same strongly connected component as s in
G, but w is not the same strongly connected component as s in G \ {v}. Namely, either (a) there is a path from s to w in G, but
there is no path from s to w in G \ {v}, or (b) there is a path from w to s in G, but there is no path from w to s in G \ {v}. If we
are in case (a), then all the paths from s to w in Gmust contain vertex v. This is equivalent to saying that v is a dominator of
w in the flowgraph G(s) = (V , E, s), i.e., v ∈ D(s), which clearly contradicts the assumption v ∉ D(s) and v ∉ DR(s). If we
are in case (b), then all the paths from w to s in Gmust contain vertex v. This is equivalent to saying that v is a dominator of
w in the flowgraph GR(s) = (V , ER, s), i.e., v ∈ DR(s), which again contradicts the assumption v ∉ D(s) and v ∉ DR(s). This
shows that if v is a strong articulation point in G, then v must be in D(s) or in DR(s).

To prove the converse, let v be any vertex such that v ∈ D(s) or v ∈ DR(s). If v ∈ D(s), v is a dominator in G(s), and thus
v must be a strong articulation point in G by Lemma 3.1. Analogously, if v ∈ DR(s), again by Lemma 3.1 v must be a strong
articulation point in GR: Lemma 5.1 now ensures that v must be a strong articulation point in G as well. This completes the
proof of the theorem. �

Note that Theorem 5.2 provides no information on whether vertex s is a strong articulation point. However, this can be
easily checked as shown in the following algorithm.

Algorithm StrongArticulationPoints(G)

Input : A strongly connected graph G = (V , E), with n vertices andm edges.
Output : The strong articulation points of G.

1. Choose arbitrarily a vertex s ∈ V in G, and test whether s is a strong articulation point in G. If s is an articulation point,
output s.

2. Compute D(s), the set of non-trivial dominators in the flowgraph G(s) = (V , E, s).
3. Compute the reversal graph GR

= (V , ER).
4. Compute DR(s), the set of non-trivial dominators in the flowgraph GR(s) = (V , ER, s).
5. Output D(s) ∪ DR(s).

Theorem 5.3. Algorithm StrongArticulationPoints computes the strong articulation points of a strongly connected
graph G in time O(m + n).

Proof. The correctness of the algorithmhinges on Theorem5.2.Wenowanalyze its running time. Step 1 canbe implemented
in time O(m+ n) by simply computing the strongly connected components of G \ {s} [19]. Since computing the dominators
of a flowgraph requires linear time [4], also Steps 2 and 4 can be implemented in time O(m + n). Finally, the reversal graph
GR in Step 3 can be computed in linear time, and thus the theorem follows. �

Theorem 5.3 can be generalized to general directed graphs:

Theorem 5.4. The strong articulation points of a directed graph G can be computed in time O(m + n).

Proof. To compute the strong articulation points ofG it is enough to find the strongly connected components ofG inO(m+n)
time [19], and then to return the strong articulation points of each connected component of G. By Theorem 5.3, this require
overall O(m + n) time. �

We conclude this section by observing that it is possible to reduce the problem of computing strong bridges to the
problem of computing strong articulation points.

Lemma 5.5. If there is an algorithm to compute the strong articulation points of a strongly connected graph in time T (m, n), then
there is an algorithm to compute the strong bridges of a strongly connected graph in time O(m + n + T (2m, n + m)).
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Proof. Let G = (V , E) be a strongly connected graph with m edges and n vertices. We define a new graph G′ as follows. G′

contains all the vertices of G; furthermore, for each edge e = (u, v) in G, we introduce a new vertex ϕ(e) in G′. The edge
set of G′ is defined as follows: for each edge e = (u, v) in G, there are edges (u, ϕ(e)) and (ϕ(e), v) in G′. Note that G′ has
exactly n + m vertices and 2m edges, it is still strongly connected and can be computed in time O(m + n). The lemma now
follows from the observation that an edge e is a strong bridge in G if and only if the corresponding vertex ϕ(e) is a strong
articulation point in G′. �

By Lemma 5.5, a linear-time algorithm for computing the strong articulation points implies immediately a linear-time
algorithm for computing the strong bridges. This provides an alternative algorithm to the one described in Section 4.

6. Applications of strong articulation points and strong bridges

In this section, we list a few other applications of our linear-time algorithms for computing strong articulation points
and strong bridges.

Verifying restricted edge connectivity. A notion related to edge connectivity is restricted edge connectivity, originally
introduced for undirected graphs by Esfahanian and Hakimi [9] in 1988. The restricted edge connectivity of an undirected
graph G is theminimum cardinality over all edge-cuts S of G such that there are no isolated vertices in G\S. Given a strongly
connected graph G, we say that an edge set S is a restricted edge-cut of G if G \ S has a non-trivial strongly connected
component D such that G \ V (D) contains (at least) one edge. The restricted edge connectivity λ′(G) is the minimum
cardinality over all restricted edge-cuts S. A strongly connected graph G is called λ′-connected if λ′(G) exists. The restricted
edge connectivity of undirected and directed graphs is an interesting measure of network reliability. In [21] Volkmann
presented an O(m(m + n)) algorithm to verify the λ′-connectedness of a strongly connected graph G. The algorithm by
Volkmann needs to carry outm distinct computations of strongly connected components, one for each edge of the graph. It
is possible to reduce to O(n) the total number of computations of strongly connected components required, i.e., one for each
strong bridge of G (recall that the strong bridges of a directed graph are O(n) by Corollary 2.5). This improves to O(n(m+n))
the overall time needed to verify the λ′-connectedness of a strongly connected graph.

Testing 2-vertex connectivity. Very recently Georgiadis [14] has given a linear-time algorithm for testing the 2-vertex
connectivity of a strongly connected graph G. The algorithm in [14] work as follows: first, choose two distinct vertices a
and b in G, and next check whether the four flowgraphs G(a), G(b), GR(a), and GR(b) have only trivial dominators. The proof
of correctness given in [14] is rather involved and lengthy. Theorem 5.2 in this paper provides a much simpler proof: if G(a)
and GR(a) have only trivial dominators, then only vertex a could be an articulation point in G; if also the flowgraphs G(b) and
GR(b) have only trivial dominators, then a cannot be a strong articulation point, and hence G must be 2-vertex connected.
Conversely, if G is 2-vertex connected, then G has no strong articulation points, and therefore, for any choice of the start
vertex s, the flowgraphs G(s) and GR(s) have only trivial dominators. We also observe that the algorithm presented in this
paper is likely to be faster in practice than the algorithm in [14]. Indeed, while the algorithm in [14] needs to work with four
different flowgraphs, the algorithmpresented here needs only two different flowgraphs, plus one simple computation of the
strongly connected components. We recall that, besides simplifying the correctness proofs and providing algorithms that
are likely to be faster in practice, our algorithm is able to report all the cut vertices, i.e., all the strong articulation points in G.

The Tree Constraint. We conclude this section by mentioning the tree constraint defined by Beldiceanu et al. [2]: here the
problem is to partition a directed graph into a set of vertex-disjoint anti-arborescences, where a directed graph A is an anti-
arborescencewith anti-root r if and only if there exists a path from all vertices of A to r and the undirected graph associated
with A is a tree. One of the bottlenecks of this problem is the computation of the strong articulation points of a directed
graph, which is exactly the problem solved in this paper.

7. Conclusions and open problems

Strong articulation points and strong bridges in directed graphs are a natural generalization of the notions of articulation
points and bridges in undirected graphs, and appear to be interesting on their own. Surprisingly, they have not received
much attention in the literature, despite the fact that they seem to arise in several applications (see, e.g., [2,17,21]). In this
paper, we have presented linear-time algorithms for computing all the strong articulation points and all the strong bridges
of a directed graph. Our algorithms are simple, and thus appear to be amenable to practical implementations.

Our work raises some additional and perhaps intriguing questions. Let G be a strongly connected directed graph. As in
the case of undirected graphs, one could define the 2-vertex-connected components of G as the maximal 2-vertex-connected
subgraphs of G, i.e., the maximal strongly connected subgraphs of G that contain no strong articulation points (see Fig. 7).
Note that this is completely analogous to the definition of 2-vertex-connected (or biconnected) components of undirected
graphs. Similarly, one could define the 2-edge-connected components of a strongly connected G as the maximal 2-edge-
connected subgraphs of G, i.e., the maximal strongly connected subgraphs of G that contain no strong bridges (see Fig. 8).
Can the 2-vertex- and the 2-edge-connected components of a strongly connected graph G be computed efficiently (i.e., in
linear time) like their undirected counterparts? To the best of our knowledge, the best bound known in the literature for
these problems is Ω(mn) [8,16].
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Fig. 7. (a) A strongly connected directed graph G, with strong articulation points shown in bold. (b) The 2-vertex-connected components of G.
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Fig. 8. (a) A strongly connected directed graph G, with strong bridges shown in bold. (b) The 2-edge-connected components of G.

We remark that 2-vertex- and 2-edge-connected components of strongly connected graphs seem to have rather
different structural properties from their undirected counterparts. For the sake of argument, consider 2-vertex-connected
components. First, in strongly connected graphs a strong articulation point does not necessarily occur in two or more
2-vertex-connected components (see vertex C in Fig. 7), while in undirected graphs an articulation point always occurs
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in two or more biconnected components. Second, in strongly connected graphs a vertex common to two different 2-vertex-
connected components is not necessarily a strong articulation point (see vertex J in Fig. 7), while in undirected graphs a
vertex common to twobiconnected components is always an articulation point. Third, differently from the case of undirected
graphs, in strongly connected graphs the 2-vertex-connected components do not partition the edge set.

Another problem that seems to deserve further study is the computation of higher connectivity cuts in strongly connected
graphs. For instance, given a strongly 2-vertex-connected graph G (i.e., a strongly connected graph containing no strong
articulation point), one could define a separation pair as a pair of vertices whose removal increases the number of
strongly connected components of G. Similarly, given a strongly 2-edge-connected graph G (i.e., a strongly connected graph
containing no strong bridge), one could define a separation edge pair as a pair of edges whose removal increases the number
of strongly connected components of G. Can we compute efficiently all (vertex and edge) separation pairs of a strongly
connected graph?
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