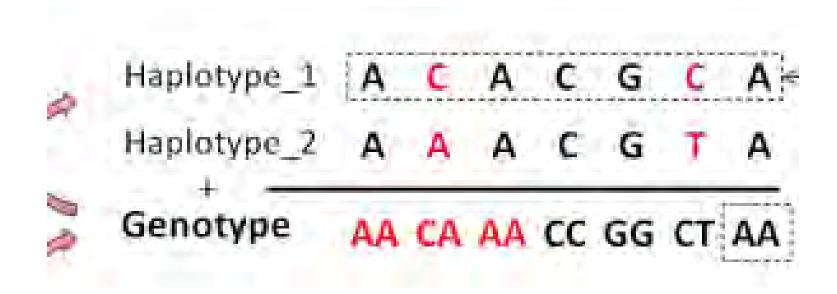
Genes nas familias e populações

Prof. David De Jong Depto. de Genética

Tópicos

Haplótipo


Ligação gênica

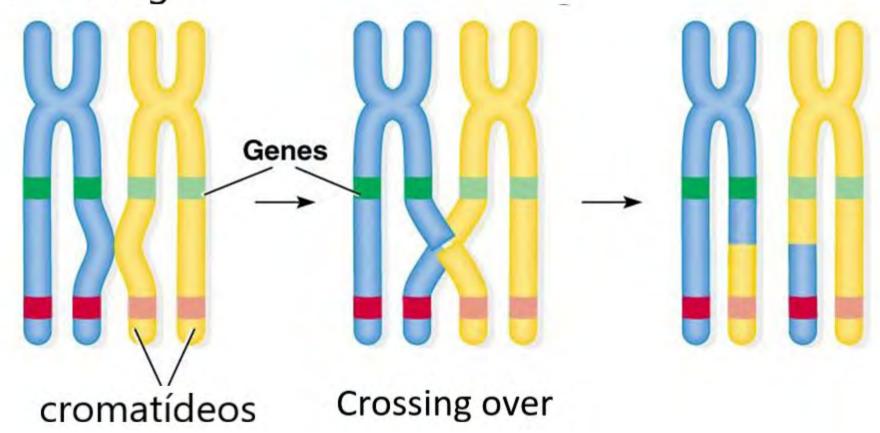
Recombinação germinativa

Haplótipo

Uma combinação de um grupo de alelos de loci adjacentes, que fazem parte do mesmo cromossomo, geralmente herdados como uma unidade. Um haplótipo pode ser formado por vários alelos, ou até pelo cromossomo inteiro.

Haplótipo - genótipo

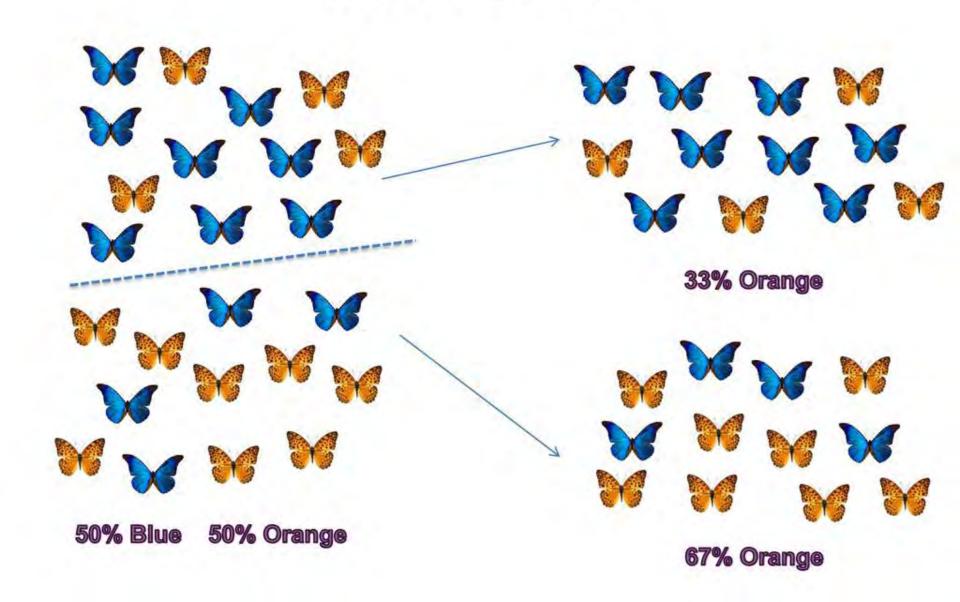
Ligação gênica


Genes no mesmo cromossomo e não são distantes

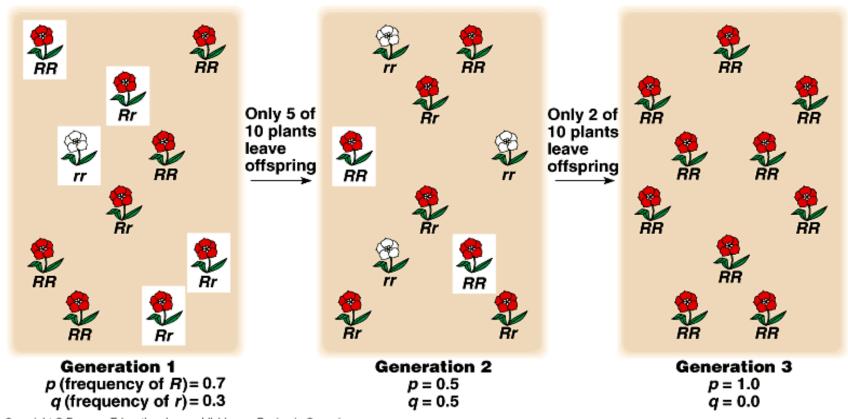
Não segrega de forma independente

Recombinação germinativa

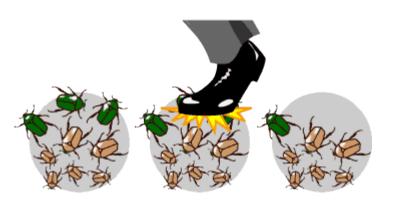
cromossomos

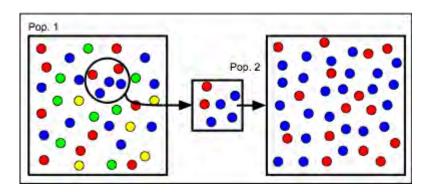

homologos

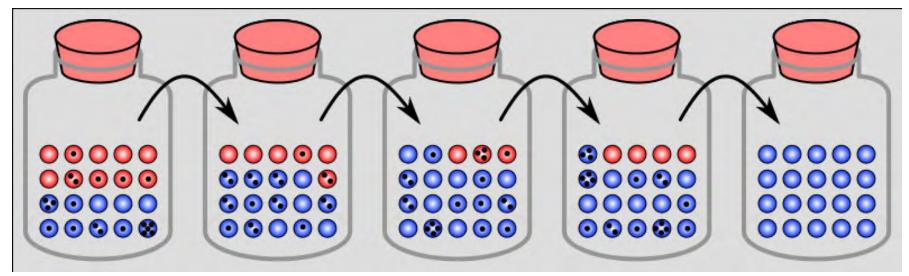
Genética de populações


Variações e porque ocorrem

Deriva Genética Genetic Drift

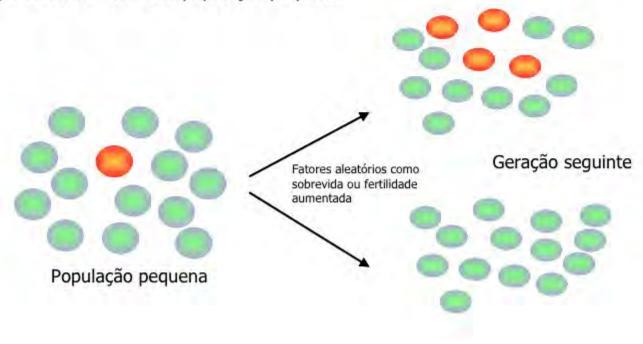

Deriva genética muda populações......


Mudança aleatória em frequência do alelo pode tornar um alelo comum



Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Deriva genética




Deriva Genética


... outra causa das altas frequências para alelos de condições deletérias ou letais em uma população.

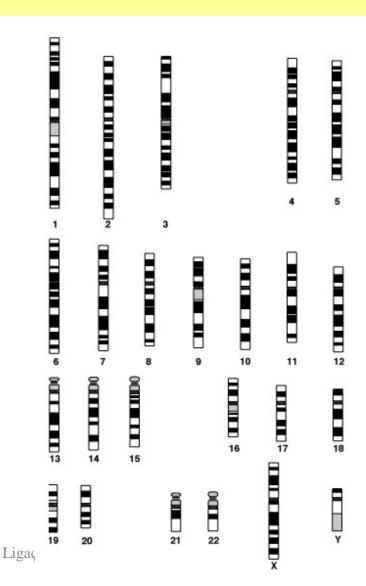
= flutuação da frequência alélica aleatória que opera em um pequeno pool de genes contido em uma população pequena.

Efeito gargalo

Variabilidade genética

Grande variabilidade é melhor

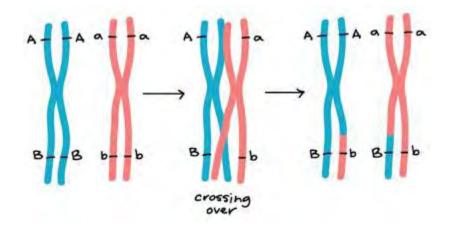
Por que?


Agricultura

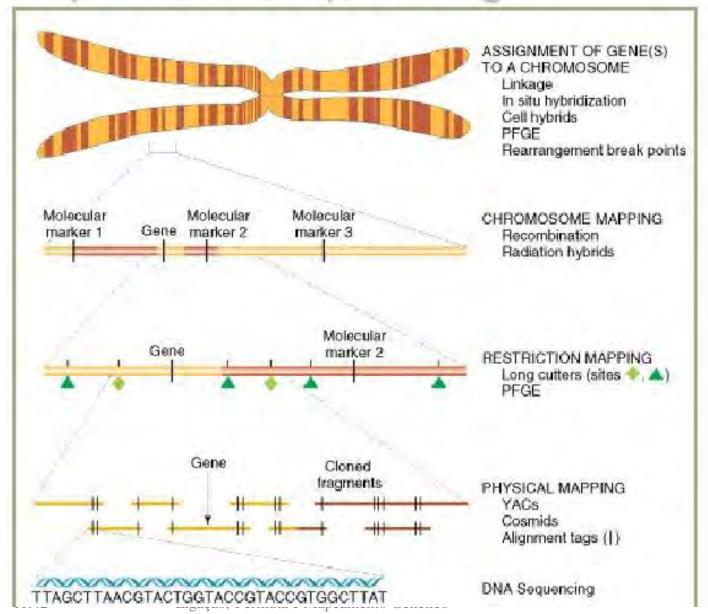
Natureza

Tipos de Mapas

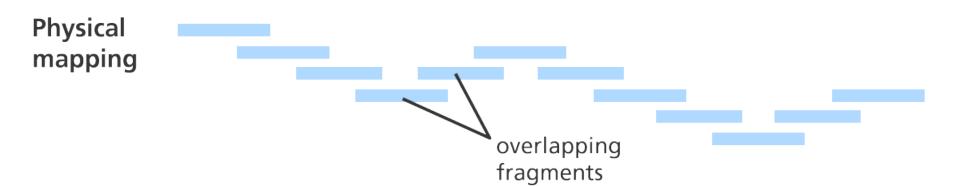
- Mapas de sequencias de Nucleotidios
 - Organismos completamente ou parcialmente sequenciados
- Mapas citogeneticas
- Mapas de ligações geneticas
 - Marcadores
- Mapas fisicas

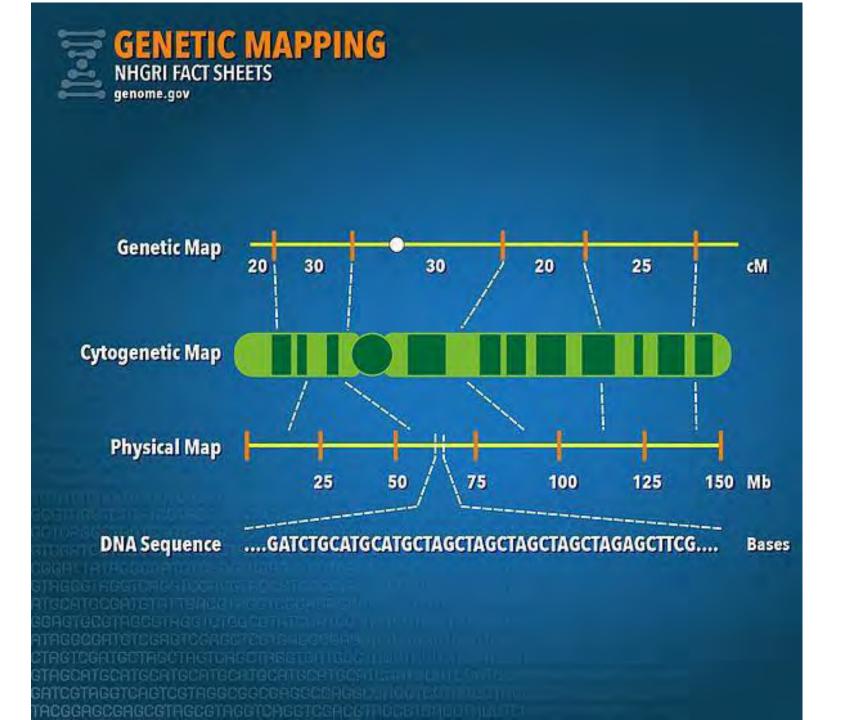

Mapas citogeneticas

17/02/2020 - 11:42

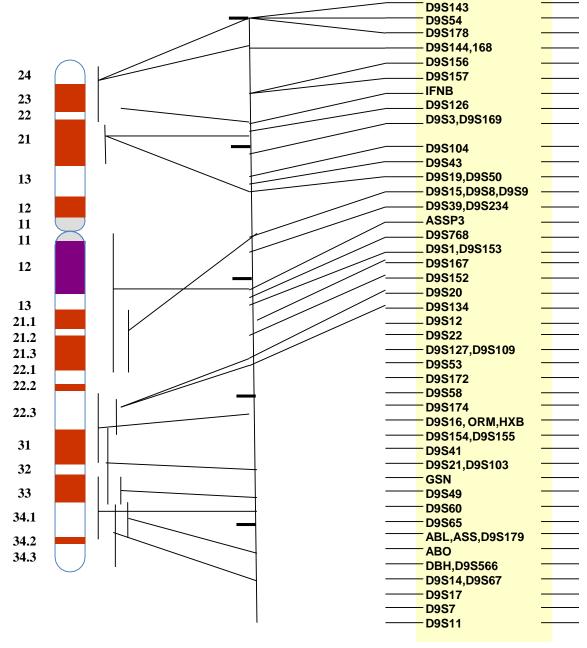

Slide 3

Mapas de ligações geneticas


17/02/2020 - 11:42


Map-based sequencing

Chromosome



- Maioria dos marcadores são apenas sítios do DNA
- Mapa genético do Homem é diferente do da Mulher
- Se 1 cM
 corresponde a 1
 Mpb, qual é o
 tamanho
 genético do
 cromossomo 9? –
 145 milhões de
 pb

E do genoma humano que tem 3 bilhões de pb?

Loci ligados

- Dois loci próximos, herdados juntos mais frequentemente do que não
- Perto pouco chance que separam por crossing over
- Ligados no mesmo cromossomo em acoplamento
- Em cromossomos homólogos em repulsão
- Fase de ligação

Cruzamento teste

	# of Progeny
Purple, long	39
Purple, short	9
Red, long	10
Red, short	42

Parentais? / Recombinantes?

PL	39
Pl	9
pL	10
pl	42

17/02/2020 - 11:42 Slide 23

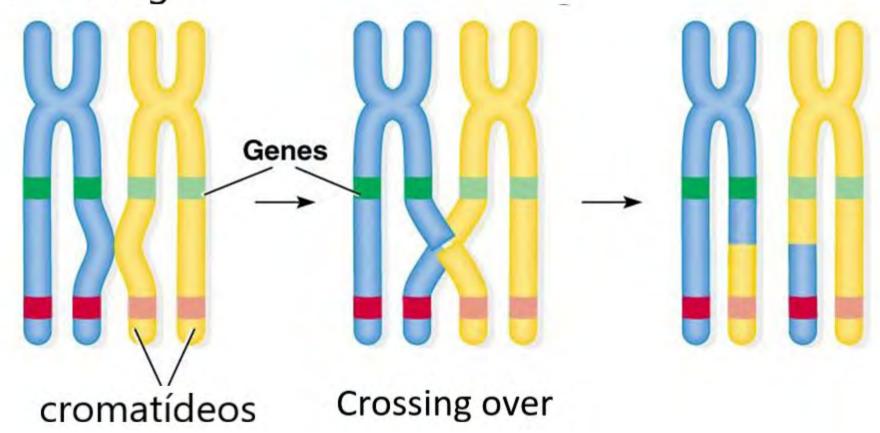
Parentais? / Recombinantes?

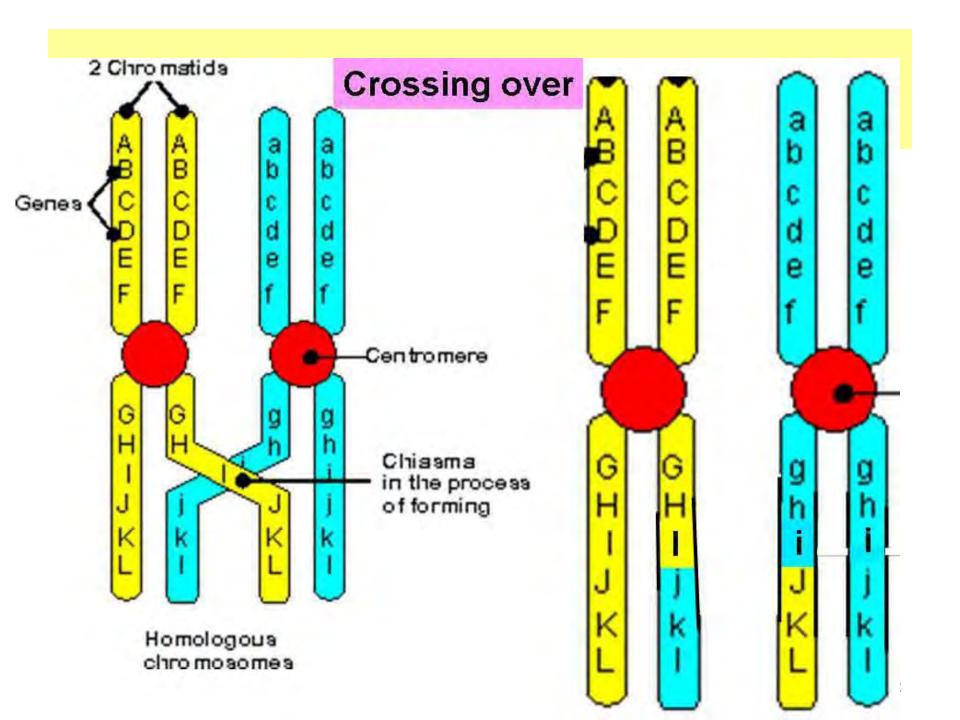
haplotipos

PL	39
Pl	9
pL	10
pl	42

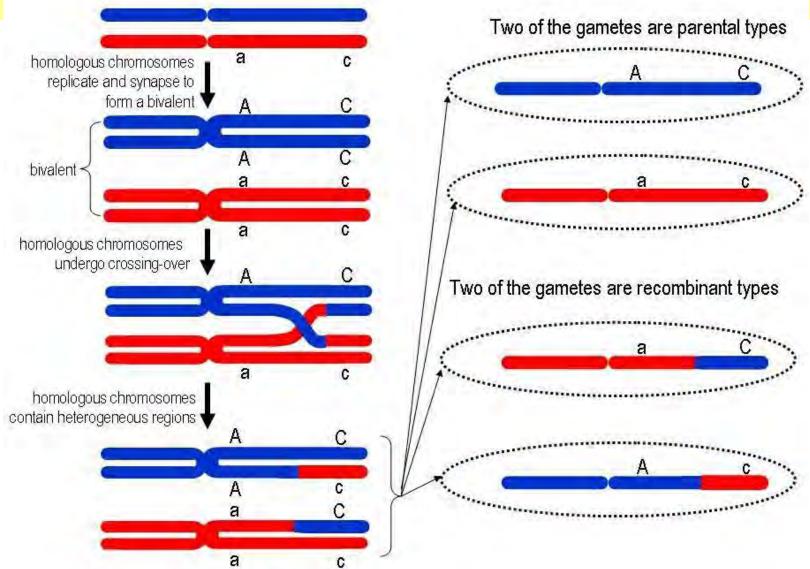
17/02/2020 - 11:42 Slide 24

Distancia?

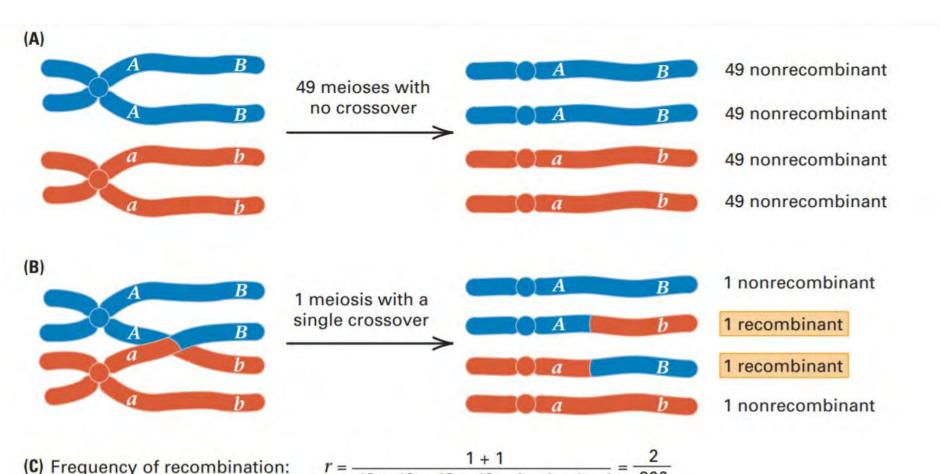

- Total = 39 + 9 + 10 + 42 = 100
- Recombinantes 9 + 10 = 19
- Distancia em cM = 19


17/02/2020 - 11:42 Slide 25

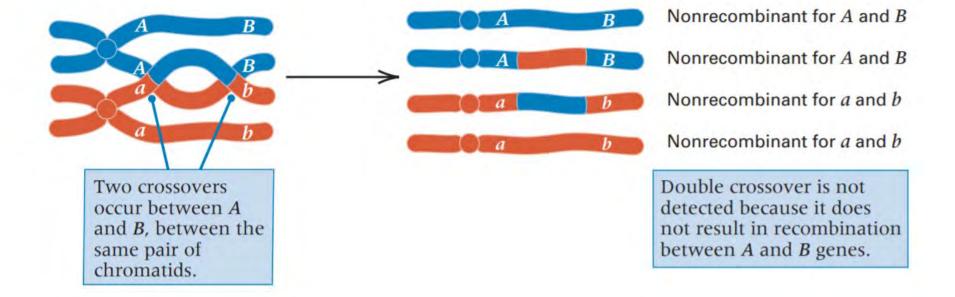
Recombinação germinativa


cromossomos

homologos



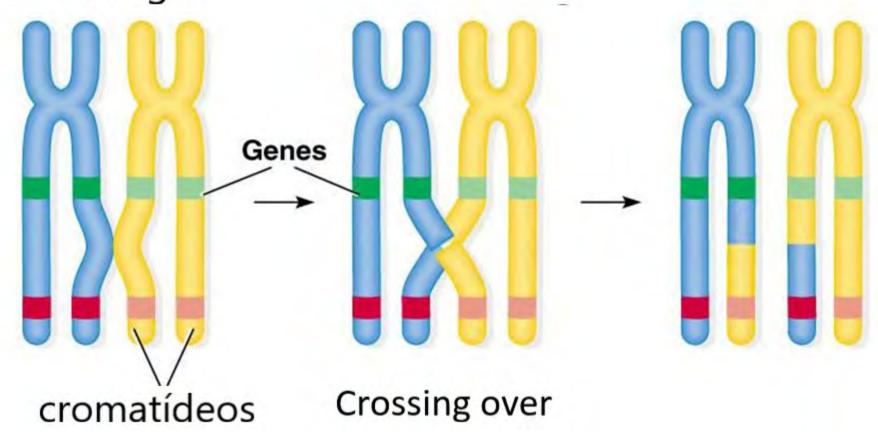
Resultado de crossing over



Distancias - % de recombinação

= 1 percent = 1 map unit = 1 cM

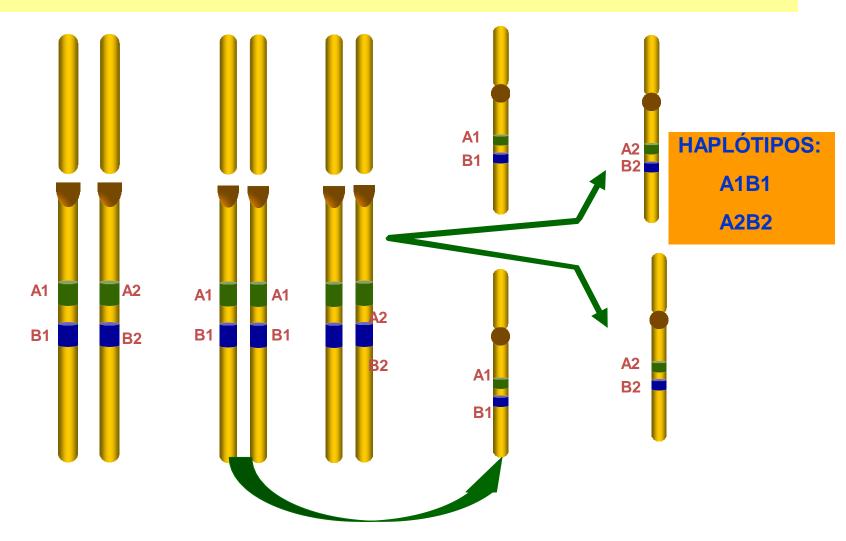
Crossing over duplo


Fração de Recombinação

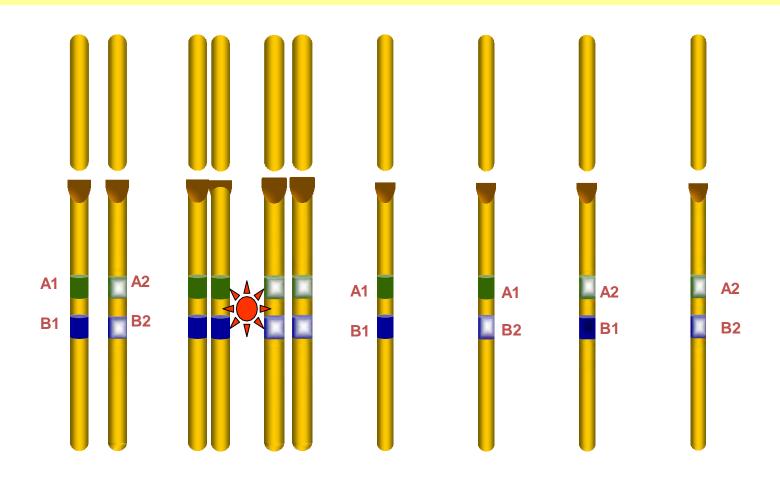
- 0
- Medida de distancia que separa dois loci
- Indicação da probabilidade que ocorre um crossing-over entre eles
- Dois loci não ligados. $\Theta = 0.5$
- Θ = 0,05 um crossing em media 1 em
 20 meioses

Recombinação germinativa

cromossomos



Centimorgans


- Unidade de mapa (cM)
- 1 cM crossing over 1 em cada 100 meioses
- $\Theta = 0.01$

- Não é distancia física
- Kb quilobases 1.000 pares de bases
- Mb − 1.000 kb
- Mais ou menos 1 cM = 1 Mb

Alelos LIGADOS segregam juntos, formando HAPLÓTIPOS

ALELOS LIGADOS PODEM RECOMBINAR-SE

PROPORÇÃO MÁXIMA DE RECOMBINAÇÃO

- Se 100% das células apresentam crossing over:
 - 25% A1B1
- 25%A2B2
- 25% A1B2
- 25%A2B1
- Se 50% das células apresenta crossing over,
 - (25+12,5)% A1B1 e (25+12,5%) A2B2 PARENTAIS
 - 12,5% A1B2 e 12,5% A2B1

RECOMBINANTES

- Considerando-se vários lóci:
 - Frequência máxima de recombinação entre qualquer par de lóci: 50%
 - Distância entre o <u>primeiro</u> e o <u>último</u> lócus de uma série é igual à <u>soma</u> das distâncias entre os lóci intermediários.

FASE

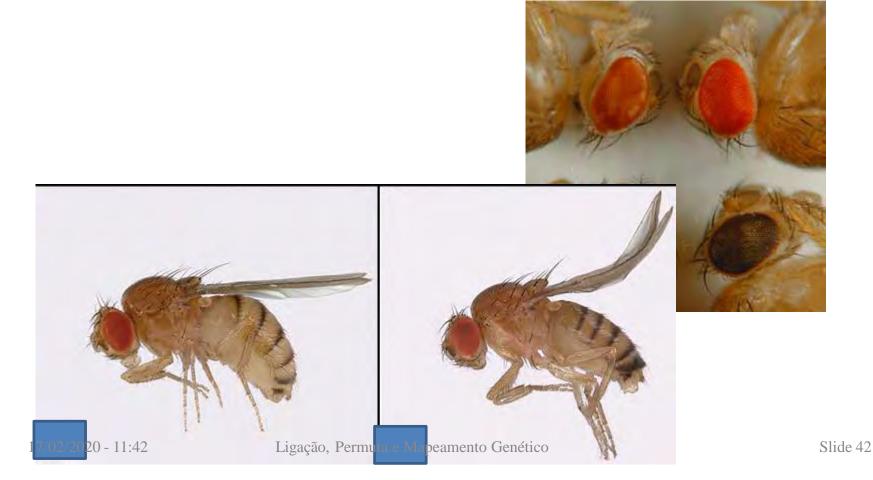
- Dois alelos de lóci diferentes em um mesmo cromossomo constituem um haplótipo e, por isso, diz-se que estão em fase de <u>CIS</u> ou de <u>ACOPLAMENTO</u>.
- Em um indivíduo A1 B1 / A2 B2, diz-se que A1 e
 B1 estão em acoplamento; idem os alelos A2 e B2;
- A1 e B2 estão em fase <u>TRANS</u> ou de <u>REPULSÃO</u>.

Cruzamento entre parentais

	MACHO	FÊMEA	GERAÇÃO F1
GENÓTIPOS	AABB	aabb	AaBb
FENÓTIPOS	AB	ab	AB

QUADRO 1. Genótipos possíveis na prole de um cruzamento entre dois indivíduos duplo heterozigotos (AaBb x AaBb).

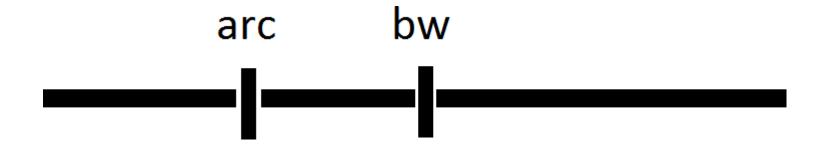
GAMETAS	GAMETAS MASCULINOS					
FEMININOS	AB	Ab	aB	ab		
AB	AABB	AABb	AaBB	AaBb		
Ab	AABb	AAbb	AaBb	Aabb		
aB	AaBB	AaBb	aaBB	aaBb		
ab	AaBb	Aabb	aaBb	aabb		

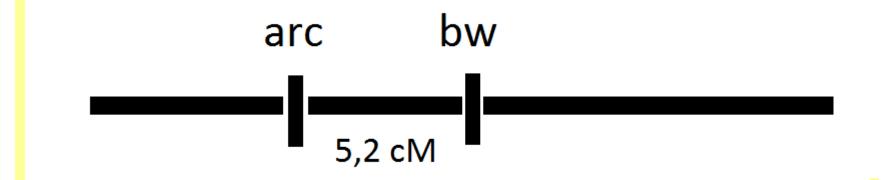

QUADRO 2. Freqüências das classes genotípicas e fenotípicas na prole de um cruzamento entre duplo heterozigotos (*AaBb x AaBb*).

CLASSES	S GENOTÍPICAS	CLASSES FENOTÍPICAS			
TIPO	FREQÜÊNCIAS	TIPO	FREQÜÊNCIAS		
AABB	1/16				
AABb	2/16	AB	9/16		
AaBB	2/16				
AaBb	4/16				
AAbb	1/16	Ab	3/16		
Aabb	2/16				
aaBb	2/16	аВ	3/16		
aaBB	1/16				
aabb	1/16	ab	1/16		

Quadro 3: Genótipos e Fenótipos obtidos após união dos Gametas F1, com o único tipo de gametas (ab) produzindo pelo duplo recessivo *aabb*

GAMETAS	GAMETA	GENÓTIPOS	FENÓTIPOS	FREQÜÊNCIAS
F1	PARENTAL	F2	F2	ESPERADAS
AB	ab	AaBb	AB	25 %
Ab	ab	Aabb	Ab	25 %
aB	ab	aaBb	aB	25 %
ab	ab	aabb	ab	25 %

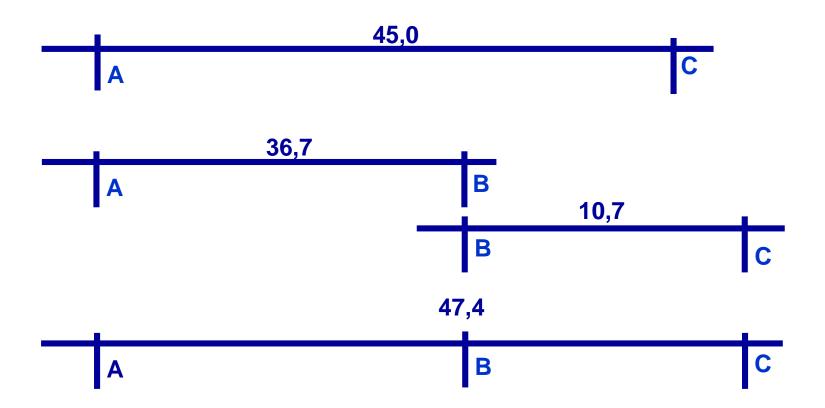

Olho vermelho / marrom Asa reta / arqueada


Quadro 4. Descendência de cruzamento teste entre fêmea duplo heterozigota e macho duplo homozigoto recessivo para as características cor de olho e tipo de asa em drosófila.

GAMETAS	GENÓTIPO DA	FENÓTIPOS DA	FREQÜÊNCIAS
MATERNOS	GERAÇÃO F2	GERAÇÃO F2	OBSERVADAS
bw+arc+	bw+arc+/bw arc	Selvagem (olhos	47,4%
		e asas normais)	
bw+arc	bw+arc/bw arc	Olho normal, asa	2,6%
		arqueada	
bw arc+	bw arc+/bw arc	Olho marrom e	2,6%
		asa normal	
bw arc	bw arc/bw arc	Olho marrom-asa	47,4%
		arqueada	

Mapear – distancia?

Mapear – distancia?


RESULTADOS DO CRUZAMENTO

AaBbCc x aabbcc

Quadro 5. Exemplo hipotético de freqüências fenotípicas observadas entre os descendentes de um cruzamento teste em relação a três caracteres.

descendentes de um cruzamento teste em relação a tres caracteres.						
FENÓTIPOS DOS	TOTAL DE	NÚMERO DE RECOMBINANTES				
DESCENDENT ES	DESCENDENTES	А-В	B-C	A-C		
ABC	261	-	-	-		
abc	277	-	-	-		
Abc	173	173	-	173		
aBC	182	182	-	182		
ABc	44	-	44	44		
abC	51	-	51	51		
AbC	5	5	5	-		
аВс	7	7	7	-		
TOTAIS	1000	367	107	450		

Quadro 5					
FENÓTIPOS DOS DESCENDENT ES	TOTAL DE DESCENDENTES	NÚMEF A-B	RO DE RECOMBIN B-C	NANTES A-C	
TOTAIS	1000	367	107	450	

Cruzamento

ABC x abc

AABBCC x aabbcc

AaBbCc

Cruzamento teste

AaBbCc x aabbcc

Progenie de cruzamento teste

ABC	479
abc	473
abC	15
ABc	13
AbC	9
aBc	9
aBC	1
Abc	1

Fenótipos

ABC

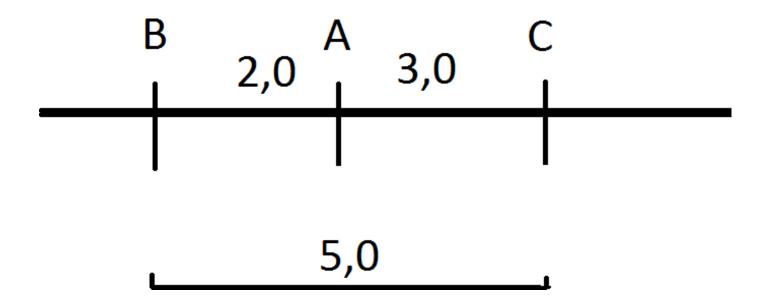
abc

abC

ABc

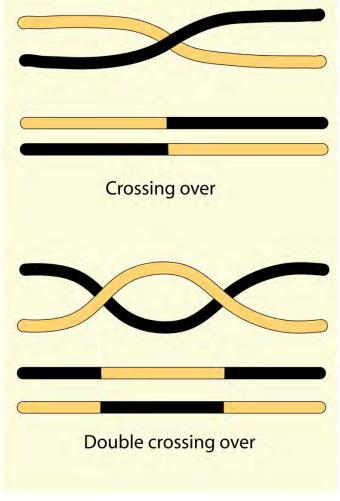
AbC

aBc


aBC

Abc

Recombinantes


		AB	BC	AC
ABC	479	0	0	0
abc	473	0	0	0
abC	15	0	15	15
ABc	13	0	13	13
AbC	9	9	9	0
aBc	9	9	9	0
aBC	1	1	0	1
Abc	1	1	0	1
		20	46	30

Locando genes

4,6?

Duplo crossing over

Proporções de gametas Recombinantes e Não-recombinantes

```
Gametas recombinantes = \theta

Gametas Gt ou gT = \theta/2 CADA UM

Gametas não recombinantes = 1 - \theta

Gametas GT ou gt = (1 - \theta)/2 CADA UM
```

No exemplo da drosófila, $\theta = 0.052$.

Portanto: $\theta/2 = 0.026$ e $(1-\theta)/2 = 0.474$

Dois lóci dois alelos

Se dois *lóci* não estiverem no mesmo cromossomo (isto é, não forem *sintênicos*) ou se estiverem no mesmo cromossomo mas muito distantes entre si $(\theta > 0,5)$, haverá igual número dos quatro tipos de gametas.

MAPEAMENTO GENÉTICO vs CITOGENÉTICO (físico)

- Mapeamento Citogenético ou Mapeamento físico
 - Localização regional no cromossomo
- Mapeamento genético
 - Posição relativa dos genes
 - Distância entre genes determinada pela taxa de recombinação (θ)

LIGAÇÃO vs. ASSOCIAÇÃO

- Ao surgir por mutação um novo alelo em um determinado loco, os alelos ligados (próximos) estarão <u>associados</u> ao alelo novo.
- Por exemplo, se o indivíduo for homozigoto L1/L1 no Loco 1 e, no Loco 2, surgir uma mutação D, este novo alelo ficará associado a um dos alelos L1
- Note que todas as vezes em que o alelo D estiver presente, estará presente um alelo L1 no loco vizinho (ligado), mas nem sempre o L1 será acompanhado da mutação D.
- Se a mutação D for dominante e causar uma doença, podemos usar o alelo associado para auxiliar o diagnóstico: diante de um paciente com suspeita da doença, examina-se o Loco 1. Ausência do alelo L1 significa que o paciente NÃO tem a doença, mas a presença dele não confirma a doença. Apenas aumenta a probabilidade.

Marcadores

- QTLs quantitative trait loci loci de características quantitativas
- SNPs single nucleotide polymorphisms polimorfismos de um nucleotídeo
- Outros tipos de polimorfismos
- restriction fragment length polymorphisms (RFLPs), simple sequence length polymorphisms (SSLPs), e single nucleotide polymorphisms (SNPs).

17/02/2020 - 11:42

Equilíbrio de Hardy-Weinberg

• Para verificar se está ocorrendo evolução

 Mudanças em frequências dos genes na população podem ser detectadas

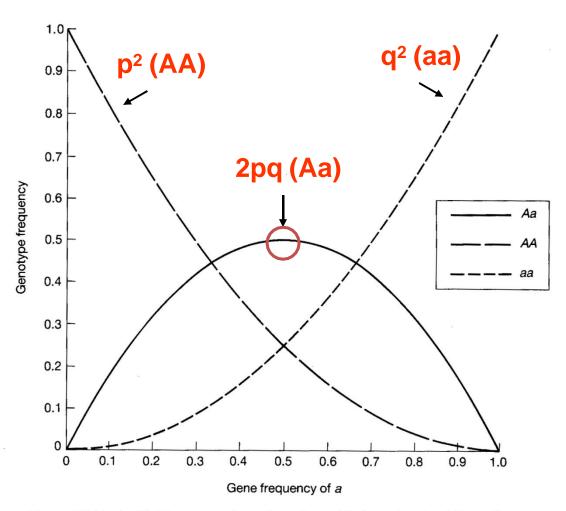
Equilíbrio de Hardy-Weinberg

 Se não houver evolução, um equilíbrio de frequências alélicas vai se mantendo geração após geração em populações de espécies com reprodução sexuada

Para que o equilíbrio se mantem (não ocorre evolução), há varias condições:

- Não ha mutações novas para que não sejam incorporadas novos alelos
- Não há fluxo gênico (sem migração de indivíduos para a população ou para fora)
- Acasalamento ao acaso
- A população deve ser grande para que deriva genética (eventos aleatórios) não muda as frequências
- Não haja seleção.

Para que serve?


 o equilíbrio Hardy-Weinberg permite detectar frequências alélicas que variam de uma geração para outra, providenciando uma metodologia simples para determinar se está ocorrendo evolução.

As formulas:

- $p^2 + 2pq + q^2 = 1$
- p + q = 1

- p = frequência do alelo dominante na população
- q = frequência do alelo recessiva na população

FREQUENCIA DO GENOTIPO VS. ALELOS

Figure 5.2 Hardy-Weinberg proportions of genotypes AA, Aa, and aa in relation to the frequency of the gene a(q)

UTILIDADES DO PRINCIPIO HARDY WEINBERG:

- 1) Permite que determina frequências dos genótipos geração apos geração
- 2) Serve como um modelo nulo em testes para seleção natural, acasalamento sem ser ao acaso, etc. comparando frequências genicas observadas com esperadas.
- 3) Analise forense.

Frequência de genótipos e alélica

	n	Α	a
AA	30	60	0
Aa	55	55	55
aa	15	0	30
		115	85
		0,575	0,425

- p² = % de indivíduos dominante homozigoto
- q² = % de indivíduos recessivo homozigoto

2pq = % de indivíduos heterozigotos

Hardy Weinberg – calculo dos valores esperados

Α	a		p ²		2 pq	C	q ²
60	0						
55	55						
0	30						
115	85						
0,575	0,425	0	,33	0,	49	0,1	.8

Calculo do qui-quadrado

$$\chi^2 = \sum \frac{(o-e)^2}{e}$$

	0	е	$(O-E)^2/E$	
AA	30	33	(3*3)/33	0,27
Aa	55	49	(6*6)/49	0,73
aa	15	18	(3*3)/18	0,50
			total	1,50

Genótipo N
AA 30
Aa 55
aa 15

Alelo Frequência

A 0,575

a 0,425

Calcular χ2. (Qui-quadrado)

Genótipo/Observado		Esperado	$(O-E)^2/E$
AA	30	33	0,27
Aa	55	49	0,73
aa	15	18	0,50
Total	100	100	1,50

Grupos sanguíneos

Genótipo

	Observado	Esperado
MM	298	294.3
MN	489	496.4
NN	213	209.3

$$\chi 2 = 0.222 < 3.841$$

54 pessoas com síndrome Jaeken.

Genótipo	Observado	Esperado
OO	11	19.44
OR	43	25.92
RR	0	8.64

$$\chi 2=23.56>3.841$$
 (1 GL – 2 alelos)

Resolver

Uma população de ovelhas está em equilíbrio Hardy-Weinberg. O alelo para lã branca (B) é dominante sobre o alelo para lã preto (b). Ovelhas pretas tem uma frequência de 0,81; e ovelhas brancas (Bb ou BB) tem uma frequência de 0,19.

Qual é a porcentagem de indivíduos heterozigotos na

população?

Cálculos para as ovelhas

- $q^2 = 0.81$
- q = 0.9
- p + q = 1
- p = 0,1

- 2pq = 2 * 0,1 * 0,9 = 0,18
- $p^2 + 2pq + q^2 = 1$
- 0.01 + 0.18 + 0.81 = 1

Resolver

- Em milho, grãos roxos são dominantes sobre amarelo.
- Uma amostra aleatória de 100 grãos é retirada de uma população em equilíbrio Hardy-Weinberg.
 Encontraram 9 grãos amarelas e 91 roxas.

 Qual é a frequência estimada do alelo amarela nesta população?

Resolução

- $q^2 = 0.09$
- q = 0.3
- p = 0.7
- $p^2 + 2pq + q^2 = 1$
- 0.7*0.7 + 2*0.7*0.3 + 0.3*0.3 = 1
- \bullet 0,49 + 0,42 + 0,9 = 1

Calcular

 A alelo recessivo b ocorre com uma frequencia de 0,8 em uma população em equilíbrio Hardy-Weinberg

 Qual é a frequência de indivíduos homozigotos dominantes?

Resolvido

- q = 0.8
- p + q = 1

- p = 0,2
- p² = % de indivíduos dominante homozigoto

• $p^2 = 0.04$

Phenylthiocarbamide

The TAS2R38 gene is determinant of one's ability to taste bitter, which is found in many common foods and drinks like coffee, beer, and bitter tasting vegetables.

Hardy-Weinberg - exemplo

Cerca de 64% dos norte-americanos brancos podem sentir o gosto da substância química feniltiocarbamida (PTC) e o restante não pode. A capacidade de sentir o gosto é determinada por um alelo dominante T e a incapacidade de sentir o gosto é determinada por um alelo recessivo t.

Se a população está em Equilíbrio de Hardy-Weinberg, quais são as frequências alélicas nessa população?

64% podem sentir o gosto do PTC

Então 36% não sentem este gosto

$$p^2+2pq+q^2=1$$
 $p^2+2pq=64%$
 $q^2=36%$ $q=0,6$
 $p+q=1$ $p=0,4$ $p^2=0,16$
 $2pq=2 \times 0,4 \times 0,6=0,48$
 $p^2+2pq=0,16+0,48=0,64$
 $p^2+2pq+q^2=0,16+0,48+0,36=1$

Problema de mapeamento Resolver em sala

Fenotipo	Frequencia	
ABc	306	
abC	305	
abc	148	
ABC	141	
AbC	43	
aBc	46	
Abc	6	
aBC	5	
	1000	

17/02/2020 - 11:42

Hardy-Weinberg - resolver

Em uma população de gatos, tem gatos pretos e gatos brancos. O alelo preto (P) tem dominância completa sobre o alelo branco (p).

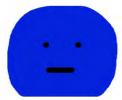
Supondo uma população de 500 gatos, 420 preto e 80 branco, determina a frequência dos alelos, a frequência de indivíduos para cada genótipo, e o número de indivíduos para cada genótipo.

Hardy-Weinberg

Espécie fictício com cor controlado por 2 alelos (dominância incompleta)

V – vermelho

A – azul


VV - Vermelho - 100

VA – Purpura - 100

AA – Azul – 300

População em equilíbrio Hardy-Weinberg?

Mostrar cálculos

Espirro fótico

Espirro fótico é a tendencia de espirrar uma ou várias vezes quando a pessoa de repente é exposta a luz de sol forte. Envolve uma herança dominante. Supondo que um gene com dois alelos determina esta característica que tem uma frequência fenotípica de 36% em uma população de 100 indivíduos em equilíbrio Hardy Weinberg, quantos indivíduos seriam homozigotos dominantes para espirro fótico?