

1-) Para os modelos abaixo, detemine as F.T. indicadas (i - input, o - output).

 $2.5-1.$ O sistema mecânico mostrado abaixo possui duas entradas, o desdo abaixo possui duas entradas, o desdo $\frac{1}{2}$ 2-) Determine as *constantes de mola equivalente* para cada um dos modelos abaixo. Estabeleça hipóteses que julgar necessárias.

square (or side *a*), and nonow circle (or mean diameter *a* and wan
betering a which of these cross sections leads to an economical design (b) FIGURE 1.69 When of these cross sections reads to an economical design $\begin{bmatrix} 0 \end{bmatrix}$, square (of side d), and hollow circle (of mean diameter d and wall **1.13** A cantilever beam of length *L* and Young s modulus *E* is subjected to a bending force at its ² spring constants of beams with cross sections in the form of a solid

Section 1.7 Spring Elements

1.13 A cantilever beam of length *L* and Young s modulus *E* is subjected to a bending force at its

*k*¹ *k*¹ *k*¹ *k*¹ ent, weighing 200 lb, is supported on a rubber mounting whose forcep is given by $F(x) = 800x + 40x^3$, where the force (F) and the bunds and inches, respectively. Determine the following: $\frac{1}{2}$ ($\frac{1}{2}$) ($\frac{1}{$

iounting corresponding to the equivalent linear spring constant. pring constant of the mounting at its static equilibrium position.

ches, respectively. If the spring undergoes a steady deflection of 0.5 in. \blacksquare IS E is subjected to a bend experiment the equivalent linear spring constant of the vith cross sections in the form of $x + 50x^2 + 10x^3$, where the force (F) and deflection (x) are mea-Example the force (F) and deflection (x) are mea-
spring undergoes a steady deflection of 0.5 in. $flection.$ of the engine, determine the equivalent linear spring constant of the vith cross sections in
Flection **FIGURE 1.733** elation of a steel helical spring used in an engine is found experimen-

urs—each of length a—are connected to a spring of stiffness k to form SS sections leads to an eco g a vertical load P, as shown in Figs. 1.72(a) and (b). Find the equiva-
The system k_{eq} , for each case, disregarding the masses of the bars and g a vertical load P, as shown in Figs. 1.72(a) and (b). Find the equiva-
it has vertical load P, as shown in Figs. 1.72(a) and (b). Find the equivats.

 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ com líquido side *d*) and hollow circle (of mean diameter *d* and wall thickness). Determine which

ness k, find the equivalent spring stiffness of the tripod in the vertical From the space. The legs of the tripod are focaled symmetrically
axis, each leg making an angle α with the vertical. If each leg has a $\log_3 n$, $\lim_{\alpha \to \infty} \log_2 \alpha$ equivalent spring surfaces **1.2** JB USed ICT Incuming an electronic instrument that finds the (T) \vee rig. $1\sqrt{e}$ is used the homining an executive instrument that finds the (1)

b points in space. The legs of the tripod are located symmetrically Fig. 1.72 is used for mounting an Fig. 1.**12** is used for mounting an electronic instrument that finds the (f)

 α n. **FIGURE 1.69** the ted to a spring of stiffness k to form and the sections leads to an economical design of stiffness k to form a de Exercícios # 1 - Sistemas Mecânicos Data: 12-03-2024

Ans in the form of a solid

and and are linear d are linear space and are linear spring whose fore constants.

The constant of the foreconstant spring constant of

*P P P P******P P* que julgar necessárias. 3-) O modelo mecânico mostrado abaixo possui duas entradas, o deslocamento $x_i(t)$ e a força $f_i(t)$, springs. aplicadas ao amortecedor B_1 e à massa M_2 , respectivamente. Estabeleça hipóteses simplificadoras que inlava nocessárias 3-) O modelo mecânico mostrado abaixo possui duas entradas, o deslocamento $x_i(t)$ e a força $f_i(t)$,

- \mathcal{D} determine as \mathcal{D} as \mathcal{D} as \mathcal{D} e \mathcal{D} . The \mathcal{D} a) Deduza as equações diferenciais do modelo. Mostre seu trabalho !
- b) Determine as F.T. $X_1(s)/X_i(s)$ e $X_2(s)/X_i(s)$.
- c) Considere que a força exercida pela mola na massa M_2 seja f_0 . Determine a F.T. $F_0(s)/F_i(s)$.

4-) A figura abaixo mostra o conhecido modelo mecânico de 02 graus de liberdade (02-GDL), muito empregado em estudos iniciais da dinâmica e vibrações de sistemas discretos. O modelo possui duas entradas, dadas pelas forças $f_1(t)$ e $f_2(t)$, aplicadas às massas M_1 e M_2 . As saídas do modelo são os deslocamentos absolutos $u_1(t)$ e $u_2(t)$.

a) Deduza as equações diferenciais do modelo para as entradas e saídas mencionadas. Uma vez obtidas tais equa¸c˜oes, coloque-as na forma matricial, devendo vocˆe encontrar uma equa¸c˜ao do tipo

$$
[M]{\n{ii} + [B]{\n{ii} + [K]}{u} = {p(t)}
$$
\n(1)

matrizes no problema em questão e faça uma análise detalhada de suas características principais, escrevendo-as para fixação de conceitos. \overline{a} $\} = \{u(t)\}\in\{p(t)\}\$ são c onde [M], [B] e [K] são as conhecidas matrizes de massa, amortecimento e rigidez do modelo, respectivamente e, ${u} = {u(t)} e (p(t))$ são os vetores contendo as saídas e entradas. Identifique tais

1.21 Figure 1.782 shows a U-tube manometer open at an at both ends and containing a contai cando suas principais semelhanças e diferencas. *Everyous deduzidas no fiem anten* todas as condições iniciais do problema: (i) $U_1(s)/F_1(s)$; (ii) $U_2(s)/F_1(s)$; (iii) $U_2(s)/F_1(s)$; (iv) b) Usando as equações deduzidas no ítem anterior, obtenha as seguintes F.T. considerando-se nulas $U_2(s)/F_2(s)$. Uma vez obtida as F.T. indicadas, faça uma análise comparativa entre elas, desta-

c) A resposta do sistema no domínio da Variável de Laplace s pode ser escrita da seguinte forma:

$$
\{U(s)\} = [H(s)]\{F(s)\}\tag{2}
$$

x como os vetores de entrada $\{F(s)\}\$ e saída $\{U(s)\}.$ seu trabalho aqui é identificar para o problema em questão a matriz de F.T. $[H(s)]$ do modelo bem

d) Suponha agora que $f_1(t) = f_2(t) = 0$ e que a entrada no modelo seja dado por um *deslocamento* $horizontal\ e\ absolute\ x(t)$ aplicado na fronteira do sistema (terminais esquerdos de k_1 e $B_1)$. Repita o ´ıtem (a) identificando as matrizes do problema bem como os vetores envolvidos. Dica: ap´os deduzir novamente as equações de movimento, você deverá encontrar uma equação matricial do tipo

$$
[\bar{M}]\{\ddot{u}\} + [\bar{B}]\{\dot{u}\} + [\bar{K}]\{u\} = \{a\}x(t) + \{b\}\dot{x}
$$
\n(3)

novamente, faça uma análise das grandezas encontradas e compare-as àquelas obtidas no ítem (b).

e) Usando a Transformada de Laplace, considerando nulas as condições iniciais do problema, obtenha as F.T.: (i) $U_1(s)/X(s)$; (ii) $U_2(s)/X(s)$. E, agora, similarmente ao que foi feito no ítem (c) escreva as equações no domínio de Laplace na forma

$$
\{U(s)\} = [\bar{H}(s)]\{X(s)\}\tag{4}
$$

e discuta as principais diferenças entre os modelos de resposta dados pelas Equações [2](#page-2-0) e [4.](#page-3-0)

5-) A figura abaixo mostra um modelo dinâmico onde tem-se duas massas M_1 e M_2 . A primeira apoia-se sobre uma superfície horizontal e plana e a segunda apoia-se sobre a primeira. Entre o solo e M_1 existe uma fina camada de óleo lubrificante cuja constante viscosa equivalente é B_3 . O mesmo de observa entre as superfícies superior de M_1 e inferior de M_2 (B_2). A entrada do modelo é uma força horizontal $f(t)$ aplicada à massa M_2 . As variáveis $x(t)$ e $z(t)$ são o deslocamento absoluto de M_1 e o *deslocamento relativo* entre M_1 e M_2 , respectivamente.

l l as variaveis. a) Deduza as equações diferenciais de movimento para o modelo considerando como variáveis de saída as variáveis $x(t)$ e $z(t)$.

de M_2 . Compare os resultados dos dois ítens, analisando suas semelhanças e diferenças. Sugestão: **b**) Repita o ítem (a) agora considerando como saída $x(t)$ e o deslocamento absoluto horizontal $y(t)$ embora não solicitado, esta análise comparativa pode ser efetuada escrevendo-se as equações em ambos os casos na forma matricial !

O 6-) Para o modelo mostrado abaixo x_1 e x_2 denotam as elongações das molas k_1 e k_2 , respectiva- \overline{f} Determine os valores de x springs. m_{α} ments $m_{\alpha} = m_{\alpha} = 0$ today as males execution as equivalent mente. Quando $x_1 = x_2 = 0$ todas as molas encontram-se em seus comprimentos naturais (nem as saídas x_1 e x_2 mostradas; *(ii)* Determine os valores de x_1 e de x_2 que correspondem à posição alongadas ou comprimidas. (i) Obtenha as equações diferenciais de movimento para o modelo para

F
F de equilíbrio estático (quando $f_i(t) = 0$) e as massas não $\frac{1}{\sqrt{2}}$ **EXC**
 n \det $\overline{}$

k

8-) Considere os modelos dinâmicos mostrados abaixo. (i) Para ambos, obtenha suas equações diferenciais no domínio do tempo e as compare. Sugestão: para esta comparação procure escrever os termos inerciais em função da velocidade das massas e não de suas acelerações. (ii) Para o modelo (b) discuta o papela da polia quanto à suas propriedades de inércia. Estabeleça hipóteses simplificadoras que julgar necessárias. Considere que nas configurações mostradas $u_1 = 0$ e $u_2 = 0$ correspondem as condições onde as molas se encontram em seus comprimentos naturais.

9-) Para o modelo físico abaixo, as forças de mola são nulas quando $u_1 = u_2 = u_3 = 0$. Considere, inicialmente a base estacionária tal que $u_3 = 0$. Obtenha as equações de movimento para a entrada mostrada. Agora, repita o problema quando a base de massa M_3 é liberada a se mover sobre o plano.

elásticas torsionais respectivamente iguais a k_1 e k_2 . Os dois discos, de momentos de inércia J_1 e deslocamentos angulares mostrados; (ii) Obtenha em seguida as F.T. relacionando essas variáveis elementos viscosos B_1 e B_2 . (i) Obtenha as equações diferenciais para os discos em termos dos 10-) No modelo geom´etrico mostrado abaixo, os dois eixos s˜ao considerados flex´ıveis, com constantes J_2 são apoiados em mancais cujo atrito com os eixos pode ser desprezado comparativamente aos de saída à entrada torque $T_i(t)$.

(engrenagem menor) - coroa (engrenagem maior). Em ambos os casos considere que a entrada no *x x x x x x x**x**x******x x* s istema pinhão (engrenagem reta de raio R) e cremalheira ("engrenagem"linear); (b) sistema pinhão 11-) A figura abaixo mostra dois modelos geom´etricos muito usados em projeto de m´aquinas: (a) o deslocamento horizontal x(t) da cremalheira, que se move numa guia horizontal, existindo uma fina camada viscosa de constante equivalente c entre a superfície inferior da cremalheira e o plano. Para o modelo (b) obenta a F.T. relacionando o deslocamento angular θ_3 da inércia I_2 em relação ao torque de entrada T_1 . Estabeleça as hipóteses simplificadoras que julgar necessárias.

massa M , $x(t)$ com a força tangencial $f_a(t)$ aplicada ao volante de momento de inércia J. Estabeleça *k* hipóteses que julgar necessárias. 135 Bara a modele meetrede abeive determine a ET relaxionande a ϵ 12-) Para o modelo mostrado abaixo determine a F.T. relacionando o deslocamento absoluto da

