Resolução dos Exercícios – Aula Conceitos Fundamentais de Mecânica

1) Uma árvore de transmissão disponibiliza 50 cv com uma rotação de 720 rpm.

Determinar o torque exercido pela árvore

P = T x 2 pi x n /60				P (W), T (Nm), n (rpm)		
	_					
50 cv =	36,764 kW		36,76471			
26764	_	6 000405	700			
36,764	= I X	6,283185	720			
		60				
36764	= T					
6,283185 ;	* 12					
T	487,60	Nm				

2) Um moinho é acionado por um motor elétrico de 1,47 kW. A árvore do motor tem uma rotação de 1800 rpm e a transmissão do movimento é realizada por meio de correia e polias. A polia do motor tem 180 mm de diâmetro e a do moinho 230 mm de diâmetro.

a) Qual a rotação na árvore do moinho?

b) Qual o torque, a plena potência, na árvore do moinho considerando 99% de rendimento na transmissão?

a)	<u>N1</u> =	<u>Z2</u>		
	N2	Z1		
	mm	rpm		
	180	Х		
	230	1800		
		X	1409	rpm

b)	P (W) = T (/60		
	em W		2 pi	rpm
	1455,3	T	6,28	1409
	T =	9,868	Nm	motor

3) Um motor de um trator desenvolve uma potência de 100 cv a uma rotação de 1800 rpm e move-se com velocidade constante de 7,2 km/h.

Determine a força de tração do trator, considerando não haver perdas.

P(W) = F(N) * V(m/s)								
100 cv = 73,55 kW								
	•							
7,2 km/h =	= 2 m/s							
73550	F	2						
	F	36775	N					

4) Uma grade pesada demanda 37 kN para ser tracionada a 5 km/h em operação numa determinada condição de solo.

Considerando que o trator, nessa condição, aproveita 65% da potência que gera, qual a potência necessária no motor deste trator?

			P(W) = F(N) * V(m/s)			
F	37	kN				
V	1,388889	m/s				
Ef	0,65		P * 0,65 =	37000 N *	1,389 m/s	
			Р	79,05983	kW	

5) Qual a potência que cada um dos equipamentos demanda?

a) Preparo do solo com enxada rotativa: 540 rpm e um torque de 49 Nm;

b) Aração – com um arado que necessita de uma força de tração de 2000 kgf, para trabalhar a uma velocidade de 5 km/h;

$$P(W) = F(N) * V(m/s)$$

c) Gradagem – com uma grande niveladora que necessita de uma força de tração de 5000 kgf, para trabalhar a uma velocidade de 7 km/h;

$$P(W) = F(N) * V(m/s)$$

c)
$$P = 5000 \text{ kgf} * 9,8 * 7 \text{ km/h} * 3,6$$
 $transformar em N$ passar para m/s
$$P = 95278 \text{ W}$$

d) Cultivo – com um cultivador que necessita de uma força de tração de 1000 kgf para trabalhar a uma velocidade de 9 km/h.

d)	P(W) = F(N) * V(m/s)								
	Р	=	1000	kgf *	9,8	*	9	km/h *	3,6
					transformar em N			passar para m/s	
	Р	=	24500	W					