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A B S T R A C T

This “perspectives” article draws upon close to 50 years of experience in the development and application of
crop, soil and farm systems models in pursuit of enhanced productivity and sustainability of agricultural systems.
The scientific foundations and practical utility of such models have been questioned by some and this article
shares the author's learnings around model development, testing and application in settings of applied agri-
cultural research and development. The article concludes that provided a rigorous scientific approach is retained
to model development, parameterisation and application, farm system models will remain essential in sup-
porting effective agricultural research – in particular in addressing the 21st Century challenges of food security
and sustainable development in the face of climate change.

1. Introduction

Keating and Thorburn (2018) and Jones et al. (2017) have recently
reviewed the evolution of crop, soil and farm systems models – a
journey that spans 150 years and has its roots in the earliest scientific
endeavours to understand soil and environment controls over plant
growth and development. Digital technologies have co-evolved with
simulation methods over the last 75 years, with computing capacity and
accessibility improving by mega orders of magnitude within a single
professional career.

As an undergraduate student in the early 1970's I heard passing
reference to models being used to augment crop physiology studies.
Despite this, classical growth analysis and classical statistics were the
stock tools of trade for agronomists and crop physiologists. Most
Universities had a mainframe with card readers as data input devices
but as students the closest we got to advances in digital technologies
were mechanical calculators pre-configured to calculate sums of
squares for ANOVA. Another decade was to pass before the first PC-DOS
/ MS-DOS PC's appeared around 1981 and as they say – the rest was
history! Forty years later, upon retirement from CSIRO, I observed in-
dividuals running complex farming system simulations over continental
or global land surfaces with daily or sub-daily time steps over century
time spans.

While computing and programming technology is no longer a sig-
nificant constraint to cropping systems simulation (this has probably

been the case from the 1990's onward), one wonders whether the sci-
ence that underpins these models and the expertise to enable their valid
utilization has kept pace with the advances in computing power. This
niggling concern over the scientific appropriateness of model use is not
new. Close to 25 years ago, Passioura (1996) provocatively questioned
whether the growing interest in simulation modelling was actually
science, perhaps engineering or even “snake oil”. As an early career
agronomist who was finding simulation models immensely useful in
exploring productivity and sustainability constraints in climatically
risky environments, Passioura's negativity over the utility and scientific
validity of simulation models was a significant cause for concern. With
the benefit of 25 years of hindsight, it is timely to revisit Passioura's
warnings and assess their continuing relevance as we enter the decade
of the 2020's.

Passioura (1996) Identified two major classes of model, namely; (i)
mechanistic models built from physical and biological component
knowledge and “looking upwards” towards higher orders of system
complexity with aspirations for generality and scientific insight and (ii)
empirical models statistically fitted to data with potential for en-
gineering applications within the limited domain of the data. He con-
cluded the former had generally failed to advance physical or physio-
logical understanding largely because of limited understanding of
system constraints at the higher orders of complexity. He acknowledged
the latter were sometimes of practical utility within the domain of the
data used to build the model, but generality beyond that domain was
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limited.
Passioura reserved his strongest criticism for models that he saw fell

between these two poles. That is, models that purported to be me-
chanistically based but where the mechanisms were founded on in-
correct process knowledge and/or where parameters and functional
forms were fitted to data without sound physiological or physical
foundations. While not specifically identified, models like DSSAT
(Jones et al., 2003) or APSIM (Keating et al., 2003a; Holzworth et al.,
2014) that were gaining recognition and widespread use at the time
might have been a target for this warning. These models are structured
around the key plant-soil-environment processes yet there is a high
degree of pragmatism and empiricism in the choice of any individual
functional forms or any set of parameters for the functions.

So how relevant are Passioura's observations and warnings today
with the benefit of 25 years of hindsight?

My personal view is that Passioura was justified in his warnings
about the risks of simulation models crossing over into the domain of
“snake oil” purveyors. I see this risk however being primarily associated
with the abuse of such models, rather than model usage per se. A pri-
mary source of abuse was what de Wit (1970) first called “the most
cumbersome and subjective technique of curve-fitting that can be imagined.”
That is, uninformed and inappropriate fitting of model parameters to a
particular dataset without regard to the physical or biological founda-
tions of these models. In other words, “getting the right answers for all
the wrong reasons”! This is a futile exercise and is “bad science”. Short-
term or localised appearances of model utility will disappear as at-
tempts are made to extend the model application to different circum-
stances.

A related concern has been an over-reliance on the notion of “va-
lidation”. That is, the model has been shown to have predictive power
over a particular independent dataset and hence it is “validated” and
can be deployed elsewhere without question. A more appropriate view
is that these models are evolving hypotheses of how key plant-soil-en-
vironment relations interact, always subject to continuing refinement
and always “wrong” at some level, but still potentially “useful” in
carefully established circumstances (sensu Box, 1976). The validation
process I have been most comfortable with has been to continuously
expose the model to new datasets that “stress test” its performance in
new directions. Exploring the key individual functions (plant develop-
ment, growth and yield, water and nitrogen dynamics in both plant and
soil is fundamental to ensuring models “get the right answers for the
right reasons”. Any evolution of model structure, functional forms or
parameterisation has to perform across the entire model testing data-
base – not just on one new dataset.

The APSIM team developed the idea of “sensibility testing” to
augment traditional validation procedures. This means we would look
for evidence of whether the model “made sense” alongside the crop/soil
insights of an expert physiologist, agronomist or hydrologist. Does the
model predict summary relationships that these practitioners believe to
be robust? Examples might include robust summary relationships such
as the French and Schultz (1984) relationship between yield and water
seasonal water supply, yield-plant density curves, N response curves,
yield-grain protein curves etc. The fact that these summary relation-
ships are NOT directly specified in the model yet can “emerge” from the
combination of model predictions of individual processes and their
interactions gives the model developer and user added confidence in
the robustness of the model structure and specification. (see Holzworth
et al., 2011 for more on sensibility testing and software process and
testing in general).

The earliest development and application of crop and soil models
arose from the engineering domain – more precisely the operations
research domain in the early 1950s. The two pioneer Dutchmen, C.T. de
Wit (crop models) and C·H.M. Van Bavel (soil water models) both
trained under Prof. van Wijk from the Shell Laboratories, a pioneer in
application of operations research principles to optimising distillation
processes in oil refining (see Keating and Thorburn (2018) for more on

that story).
The view of simulation models as engineering tools does not mean

they cannot generate new understanding – particularly understanding
of “emergent” properties of complex and variable systems. In fact, it is
this correspondent's experience that the more complex the farming
system and more variable the soil and weather environment, the greater
are the prospects for “novel systems understanding” to be generated
through the combination of experimentation and simulation modelling.
Examples from the correspondent's personal experience include; in-
sights of fertiliser use in subsistence farming systems (Keating et al.,
1991, 1992a; McCown et al., 1992) and intensive sugarcane systems
(Keating et al., 1997), insights on the leaching and deep drainage risks
from dryland farming systems (Asseng et al., 1998; Keating et al.,
2003a, 2003b), insights on drought frequencies for policy formulation
(Keating and Meinke, 1998).

The issue of “parsimony” in model design and parameterization has
continued to arise (Antle et al., 2014; Hammer et al., 2019). Passioura
(1996) called for agronomic (engineering) simulation models to be “as
simple as possible and especially have a small appetite for data” and
deploy “simple robust empirical relationships between the main vari-
ables” where uncertainty exists in understanding of “mechanistic
structure”. Yet anyone who has a working knowledge of the complex
components and interactions that shape a farming system will know the
real world is far from simple and parsimonious! The notion of an “un-
derstanding” of mechanism is also a relative one – we may for instance
have robust and useful predictions of crop biomass production without
a full understanding of all the biochemistry and physics that control leaf
photosynthesis. In this correspondent's experience, the model should be
as simple as possible in the context of intended application, but no simpler
(a concept often attributed to Albert Einstein but not well authenti-
cated).

Take for instance, the well-known simple model of French and
Schultz (1984) which relates grain yield to seasonal rainfall. This pro-
vides valuable predictions of yield in the absence of any other in-
formation, but these predictions are certainly improved if there is some
knowledge of soil water storage to elaborate the model. Further im-
provements can be made with knowledge of the crop life-cycle and a
daily water balance replaces the seasonal water balance. When we took
the CERES Maize model to Kenya for the first time, we found crops
would not die under extreme water stress in the model yet we were
observing that in practice (Keating et al., 1992b). Hence, given our
interest was in the riskiness of cropping, it was critical that we elabo-
rated the model to predict the crop death that was likely in about
5–10% of seasons in that environment. All these elaborations increase
the numbers of functions and parameters in a model. Yet, they also add
greater bio-physical realism and relevance to our systems investiga-
tions. The trade-off will always be a judgement call but what is critical
is a robust process in model development, elaboration, testing and va-
lidation (see relevant comments above).

In my view Passioura was too pessimistic over the potential for what
might be called the mixed functional/empirical models. Certainly usage
patterns of models such as DSSAT and APSIM don't support any waning
in interest in such models – in fact the reverse is true with a seven-fold
increase in papers making use of the APSIM and DSSAT models between
the years 2000 and 2015 (see Keating and Thorburn (2018)).

Model use per se does not necessarily imply positive impact. A good
case study of impact can be found in the work on improving water use
efficiency in wheat-based systems from southern Australia. In that
work, simulation modelling was used in both pre-experimental and
extrapolation modes at scales from plant to crop, system and nation.
The potential for significant gain in paddock-scale yields through sy-
nergies of pre-crop and in-crop agronomic interventions was predicted
by pre-experimental modelling (Kirkegaard and Hunt, 2010) and sub-
sequently validated in on-farm experiments over 5 years (Kirkegaard
et al., 2014). The specific combination of strict fallow weed manage-
ment and early-sown, slower duration “fast winter” wheat not only
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increased yield and WUE at paddock scale (Flohr et al., 2018), but also
at farm-scale by moving the entire sowing program earlier (Hunt et al.,
2019), with predicted national increase in wheat production of 7.1 Mt.
pa (approximately 30% increase). Further refinements combining long-
coleoptile varieties for reliable early sowing into stored water following
legumes or fallow have recently been predicted to offer even further
yield improvements (Flohr et al., 2019), and these await experimental
confirmation. That work exemplifies the highly productive combination
of informed simulation in the hands of systems agronomists.

2. Contemporary trends and looking forward

The existing reality and future prospects for a changing climate to
impact (positively or negatively) on global agricultural systems has
grown from a niche area of scientific inquiry in the mid’90s to a central
challenge for all fields of science in 2020. Climate change poses a
particular challenge to the crop and soil modelling community. On one
hand, simulation models are more central to our scientific methods than
ever as we are exploring agriculture under future climates and direct
experimental observations are necessarily very limited (e.g., FACE ex-
periments are expensive and restricted in scope and cannot capture the
full system effects). On the other hand, our abilities to ensure the
models are valid and sensible – and “getting the right answers for the
right reasons” are much more constrained. Also the depth of our phy-
siological understanding of plant response to elevated CO2, higher
temperatures and other climate extremes is inevitably more limited. So
we need simulation models more than ever in the face of climate change
but we have greater cause to be cautious about their validity and utility.

The application of “ensemble” model predictions is an interesting
development in crop-soil modelling (Wallach et al., 2018) but it re-
mains to be seen whether this is useful development or a distraction.
Crop-soil models are predominately deterministic – given the same
inputs they generate the same predictions. It is variability in soil and
weather inputs that generate variability in model predictions. Two
crop-soil models producing different predictions of crop performance
under a future climate reflect different biological or physical mechan-
isms at work within the model structures. Both can't be correct and
taking the mean of an ensemble of models may or may not improve
accuracy of predictions. The argument for ensemble modelling ap-
proaches has more traction in modelling of global and regional weather
systems given the more fundamentally chaotic nature of global circu-
lation models (Tebaldi and Knutti, 2007) but I remain unconvinced the
same case applies in farming systems simulation. In my view, directing
energy into understanding why differences in model performance under
climate change are arising and then gathering data and evolving model
structures or parameterization would be a more useful way forward.

It is not only the climate and farming systems that have changed
over the 40 years of my career, but also the human dimension of model
development and application. In the 1980's, the classical career tra-
jectory was for a young researcher to build a model as part of their PhD
and then apply that and other models as part of a career directed at
practical agronomy or other disciplines including crop physiology and
breeding, soil physics and agro-meteorology. The models were quite
limited in scope and the application process often involved model de-
velopment to address new problem settings. The strength in this ap-
proach is that we had well trained and experienced agronomists or
physiologists adding models to their tool-kit. The good researchers re-
tained a healthy scepticism for model output and took great care to
ensure model parameterisation and application was scientifically ro-
bust. Today, it is possible to download very powerful and comprehen-
sive modelling platforms (e.g. APSIM or DSSAT) from the web and for
individuals to run these models with relative ease – essentially as a
black box. But that does not mean the model applications are always
scientifically sound and the interpretations robust. Those still active in
support for such big model platforms (e.g., the software engineers on
the APSIM Initiative) tell me that a lot of their effort goes into trying to

build “workflows” and IT solutions including machine learning and
automation that allow “users” to do “modelling”. They lament the over-
abundance of “users” and scarcity of “modellers or developers”. I would
add that the combination of practical agronomy and modelling com-
petencies is even more scarce. Why might that be given the good ex-
amples of success? Are the skill sets inherently incompatible or is it a
matter of our professional training and career regimes that discourage
these cross-over competencies?

3. In summary

I have had the good fortune to train as an agronomist/crop phy-
siologist in the pre-digital era and to have discovered the power of crop-
soil simulation modelling early in a career directed at practical agro-
nomic problem solving. Working on complex farming systems issues in
regions of high climatic risk has stimulated my appreciation of the
power of well-developed and well-applied simulation tools. I have not
been backward in seeing this approach as agronomic engineering, built
upon the foundations of scientific principles and understanding. I can
appreciate Passioura's warnings of models in the context of “snake-oil
salesmen”. This warning is as relevant in 2020 as it was in 1996.
However, I see this as a risk that can be managed with a rigorous sci-
entific approach to model development, parameterisation and appli-
cation. A healthy scepticism of model output and relentless pursuit of
getting the “right answers for the right reasons” is part of this rigorous
approach.

In 2020 with models critical to our addressing climate change
challenges, I would look to our profession for the highest possible
standards of scientific integrity in our modelling studies. Modelling
climate change impacts, adaptation and mitigation options is essential,
but there are many limitations in our models and in our understanding
of these impacts and options and we need to address these uncertainties
explicitly.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

Antle, J.M., Stoorvogel, J.J., Valdivia, R.O., 2014. New parsimonious simulation methods
and tools to assess future food and environmental security of farm populations.
Philos. Trans. R. Soc. B 369, 1639.

Asseng, S., Fillery, I.R.P., Anderson, G.C., Dolling, P.J., Dunin, F.X., Keating, B.A., 1998.
Use of the APSIM wheat model to predict yield, drainage and NO3 leaching in a deep
sand. Australian Journal Agricultural Research 49, 363–377.

Box, G.E.P., 1976. Science and statistics. J. Am. Stat. Assoc. 71, 791–799.
de Wit, C.T., 1970. Dynamic Concepts in Biology. In “Prediction and measurement of

photosynthetic productivity”. Proc. ffiP/PP Tech. Meet., Trebon. Pudoc, Wageningen,
Netherlands, pp. 17–23.

Flohr, B.M., Hunt, J.R., Kirkegaard, J.A., Evans, J.R., Lilley, J.M., 2018. Genotype ×
management strategies to stabilise the flowering time of wheat in the south-eastern
Australian wheatbelt. Crop and Pasture Science. 69, 547–560.

French, R.J., Schultz, J.E., 1984. Water use efficiency of wheat in a Mediterranean-type
environment. II. Some limitations to efficiency. Aust. J. Agric. Res. 35, 765–775.

Hammer, G.L., Messina, C., Wu, A., Cooper, M., 2019. Biological reality and parsimony in
crop models—why we need both in crop improvement! in silico Plants. https://
academic.oup.com/insilicoplants.

Holzworth, D.P., Huth, N.I., de Voil, P.G., 2011. Simple software process and tests im-
prove the reliability and usefulness of a model. Environ. Model. Softw. 26, 510–516.

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G.,
Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish,
J.P.M., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z.,
Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S.,
Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E.,
Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H.,
McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C.,
Harsdorf, J., Wedgwood, S., Keating, B.A., 2014. APSIM – evolution towards a new
generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350.

Hunt, J.R., Lilley, J.M., Trevaskis, B., Flohr, B.M., Peake, A., et al., 2019. Early sowing

B.A. Keating Agricultural Systems 184 (2020) 102903

3

http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0005
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0005
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0005
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0010
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0010
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0010
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0015
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0020
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0020
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0020
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0025
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0025
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0025
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0030
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0030
https://academic.oup.com/insilicoplants
https://academic.oup.com/insilicoplants
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0040
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0040
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0045
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0050


systems can boost Australian wheat yields despite recent climate change. Nat. Clim.
Chang. 9, 244–247.

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J.,
Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H.,
Rosenzweig, C., Wheeler, T.R., 2017. Brief history of agricultural systems modelling.
Agricultural Systems 155, 240–254.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A.,
Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping
system model. Eur. J. Agron. 18, 235–265. https://doi.org/10.1016/S1161-0301(02)
00107-7.

Keating, B.A., Meinke, H., 1998. Assessing exceptional drought with a cropping systems
simulator: a case study for grain production in north-East Australia. Agric. Syst. 57,
315–332.

Keating, B.A., Godwin, D.C., Watiki, J.M., 1991. Optimization of nitrogen inputs under
climatic risk. In: Muchow, R.C., Bellamy, J.A. (Eds.), Climatic Risk in Crop Production
- Models and Management for the Semi-Arid Tropics and Sub-Tropics. CAB
International, Wallingford, UK, pp. 329.

Keating, B.A., McCown, R.L., Wafula, B.M., 1992a. Adjustment of nitrogen inputs in re-
sponse to a seasonal forecast in a region of high climatic risk. In: International
Symposium on Systems Approaches to Agricultural Development, Bangkok, Dec
1991. Kluwer Academic publ, Dordrecht, The Netherlands, pp. 233–252.

Keating, B.A., Wafula, B.M., Watiki, J.M., 1992b. Development of a modelling capability
for maize in semi-arid eastern Kenya. In: Probert, M.E. (Ed.), A Search for Strategies
for Sustainable Dryland Cropping in Semi-Arid Eastern Kenya. Australian Centre for
International Agricultural Research Proceedings. vol. 41. pp. 26–33.

Keating, B.A., Thorburn, P.J., 2018. Modelling crops and cropping systems – evolving
purpose, practice and prospects. European Journal of Agronomy 100, 163–176.

Keating, B.A., Verburg, K., Huth, N.I., Robertson, M.J., 1997. Nitrogen management in
intensive agriculture: Sugarcane in Australia. In: Keating, B.A., Wilson, J.R. (Eds.),
Intensive Sugarcane Production: Meeting the Challenges beyond 2000. CAB
International, Wallingford, UK, pp. 221–242.

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth,
D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K.,
Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S.,
Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003a. An overview of
APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288.

Keating, B.A., Gaydon, D., Huth, N.I., Probert, M.E., Verburg, K., Smith, C.J., Bond, W.,
2003b. Use of modelling to explore the water balance of dryland farming systems in
the Murray Darling basin, Australia. Eur. J. Agron. 18, 159–169.

Kirkegaard, J.A., Hunt, J.R., 2010. Increasing productivity by matching farming system
management and genotype in water-limited environments. J. Exp. Bot. 61,
4129–4143.

Kirkegaard, J.A., Hunt, J.R., McBeath, T.M., Lilley, J.M., Moore, A., Verburg, K.et.al.,
2014. Improving water productivity in the Australian grains industry—a nationally
coordinated approach. Crop and Pasture Science 65 (7), 583–601.

McCown, R.L., Keating, B.A., Probert, M.E., Jones, R.K., 1992. Strategies for sustainable
crop production in semi-arid Africa. Outlook on Agriculture 21, 21–31.

Passioura, J.B., 1996. Simulation models: science, snake oil, education, or engineering?
Agronomy Journal 88, 690–694.

Tebaldi, C., Knutti, R., 2007. The use of the multi-model ensemble in probabilistic climate
projections. Phil. Trans. R. Soc. A 365, 2053–2075.

Wallach, D., Martre, P., Liu, B., Asseng, S., et al., 2018. Multimodel ensembles improve
predictions of crop-environment-management interactions. Glob. Chang. Biol. 24,
5072–5083.

B.A. Keating Agricultural Systems 184 (2020) 102903

4

http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0050
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0050
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf2000
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf2000
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf2000
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf2000
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S1161-0301(02)00107-7
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0060
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0060
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0060
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0065
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0065
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0065
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0065
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0070
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0070
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0070
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0070
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0075
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0075
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0075
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0075
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf1000
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf1000
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0080
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0080
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0080
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0080
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0085
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0085
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0085
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0085
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0085
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0090
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0090
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0090
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0095
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0095
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0095
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0100
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0100
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0100
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0105
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0105
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf3000
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf3000
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0110
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0110
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0115
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0115
http://refhub.elsevier.com/S0308-521X(20)30764-2/rf0115

	Crop, soil and farm systems models – science, engineering or snake oil revisited
	Introduction
	Contemporary trends and looking forward
	In summary
	Declaration of Competing Interest
	References




