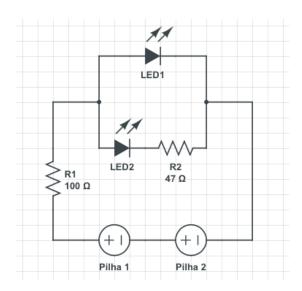
Física Experimental IV


Primeiro semestre de 2016

Aula 4 - Experimento I - semana 4

Página da disciplina:

http://disciplinas.stoa.usp.br/course/view.php?id = 10374

Experimento I - Circuitos elétricos de corrente contínua

- Experimento
 - Experimento I
 - Metais, isolantes e semicondutores
 - Resistividade elétrica
 - Atividades da semana IV

- Experimento
 - Experimento I
 - Metais, isolantes e semicondutores
 - Resistividade elétrica
 - Atividades da semana IV

- Experimento
 - Experimento I
 - Metais, isolantes e semicondutores
 - Resistividade elétrica
 - Atividades da semana IV

Objetivos do experimento

- Estudar alguns elementos simples de circuitos elétricos a partir de suas curvas características
 - Resistores

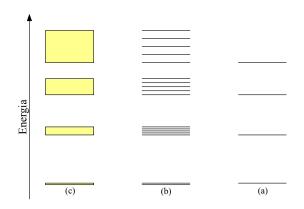
- Diodos LED
- Baterias recarregáveis
- Utilizar estas curvas para resolver um circuito elétrico proposto em sala

Cronograma

4 semanas

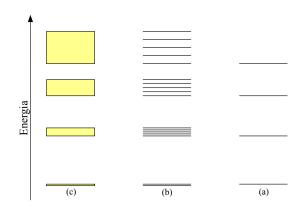
- ▶ Semana 1
 - ★ Medida da curva característica de um resistor ôhmico e do LED
- ► Semana 2
 - ★ Medida da curva característica de uma pilha comum
- ► Semana 3
 - ★ Montagem de um circuito proposto, medidas diversas e comparações com previsões

Cronograma

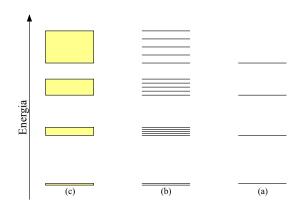

4 semanas

- ▶ Semana 1
 - ★ Medida da curva característica de um resistor ôhmico e do LED
- ► Semana 2
 - ★ Medida da curva característica de uma pilha comum
- ► Semana 3
 - ★ Montagem de um circuito proposto, medidas diversas e comparações com previsões
- ► Semana 4
 - Estudo da resistividade de condutores e semicondutores com a temperatura

IMPORTANTE!

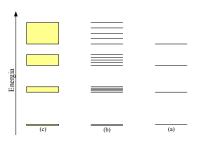

- Síntese da semana (até 1 ponto)
 - Tabela com os dados brutos (exemplo no site da disciplina)
 - Arquivo em PDF com os gráficos das curvas obtidas, ajustes realizados e eventuais comentários
 - A data máxima para upload é 18h00 da segunda-feira
 - ★ Upload no site de reservas como "síntese"
- Muitas atividades s\u00e3o feitas atrav\u00e9s da compara\u00e7\u00e3o dos resultados de toda a turma
- Banco de dados no site da disciplina (até 1 ponto)
 - Grupos DEVEM fazer upload de resultados no site
 - ▶ A data máxima para upload é 18h00 da última segunda-feira do experimento

- Experimento
 - Experimento I
 - Metais, isolantes e semicondutores
 - Resistividade elétrica
 - Atividades da semana IV

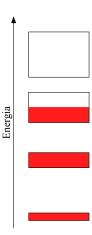


(a) Átomo isolado

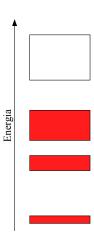
- ► Cada nível de energia ⇒ 2 elétrons
- Exemplo: Na $1s^2$, $2s^2$, $2p^6$, $3s^1$


- (b) Alguns átomos
 - ► Interação
 - Quebra da degenerescência

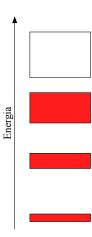
- (c) Cristal
 - ► Formação de bandas de energia


(c) Cristal

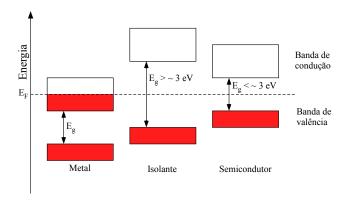
- ightharpoonup Considerando que um cristal contem $\sim 10^{23}$ átomos/mol os níveis de energia estarão tão próximos que formam-se bandas de energia contínuas
- Os níveis de energia mais baixos, das camadas mais internas dos átomos, são pouco influenciados pelos átomos vizinhos
- ▶ Propriedades elétricas ⇒ elétrons de valência


Metais

- Nível de valência parcialmente preenchido
- Dá origem a uma banda parcialmente preenchida
 - Exemplo: Na $1s^2$, $2s^2$, $2p^6$, $3s^1$


Isolantes

- Número par de elétrons de valência por célula unitária primitiva
- Dá origem a uma banda totalmente preenchida
 - Exemplo: Diamante



Semicondutores

- Número par de elétrons de valência por célula unitária primitiva
- Dá origem a uma banda totalmente preenchida
 - Exemplo: Silício

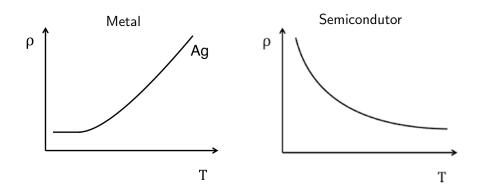
Comparando

- No metal a banda parcialmente preenchida é a banda de valência
- ullet No isolante e no semicondutor as bandas de valência e condução estão completamente preenchida e vazia, respectivamente (para $T=0~{
 m K}$)
 - ightharpoonup O isolante e o semicondutor diferem pelo valor de E_g (gap de energia ou banda proíbida)

- Experimento
 - Experimento I
 - Metais, isolantes e semicondutores
 - Resistividade elétrica
 - Atividades da semana IV

Resistência e resistividade

$$R = \rho \frac{L}{A}$$


- R resistência (Ω)
- ρ resistividade (Ω m)
- L comprimento da amostra (m)
- A área atravessada pela corrente (m²)

Resistividade

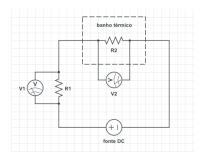
$$R = \rho \frac{L}{A}$$

- Propriedade do material
- Depende da temperatura
- É uma medida da oposição de um material ao fluxo de corrente elétrica
- É devida essencialmente às colisões entre as cargas de condução e os átomos ou íons. As cargas de condução são aceleradas pela força eletrostática, mas devido às colisões acabam por atingir uma velocidade média constante.

Resistividade - dependência com a temperatura

- Experimento
 - Experimento I
 - Metais, isolantes e semicondutores
 - Resistividade elétrica
 - Atividades da semana IV

Objetivos da semana


 Estudar o comportamento da resistividade elétrica em função da temperatura para um resistor metálico e um resistor de carvão

Atividades pré-lab

- Verificar no roteiro do experimento no site
- OS GRUPOS somente poderão usar o laboratório após apresentar esta atividade resolvida

Atividades da semana

- Montar o circuito da figura ao lado
 - Onde R2 será primeiramente o resistor metálico e posteriormente o resistor de carvão
- Obter o valor de R2 para as seguintes temperaturas
 - ► Ambiente
 - Água fervente
 - Água + gelo
 - Nitrogênio líquido
- Determine a resistividade dos dois materiais em função da temperatura

