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We study the large-scale topological and dynamical properties of real Internet maps at the autonomous
system level, collected in a 3-yr time interval. We find that the connectivity structure of the Internet presents
statistical distributions settled in a well-defined stationary state. The large-scale properties are characterized by
a scale-free topology consistent with previous observations. Correlation functions and clustering coefficients
exhibit a remarkable structure due to the underlying hierarchical organization of the Internet. The study of the
Internet time evolution shows a growth dynamics with aging features typical of recently proposed growing
network models. We compare the properties of growing network models with the present real Internet data
analysis.
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I. INTRODUCTION Internet structure and topology. We provide a statistical
analysis of several average properties. In particular, we con-
The Internet is a capital example of growing complexsider the average connectivity, clustering coefficient, path
network [1,2] interconnecting large numbers of computerslength, and betweenness. These quantities will provide a pre-
around the world. Growing networks exhibit a high degree ofliminary test of the stationarity of the network. The scale-free
wiring entanglement that takes place during their dynamicahature of the Internet has been pointed out by inspecting the
evolution. This feature, at the heart of the proposed and ineonnectivity probability distribution, and it implies that the
teresting topological properties recently observed in growindluctuations around the average connectivity are not
network system$3,4], has triggered the attention of the re- bounded. In order to provide a full characterization of the
search community to the study of the large-scale propertiescale-free properties of the Internet, we analyze the connec-
of router-level maps of the Intern¢b—7]. The statistical tivity and betweenness probability distributions for different
analysis performed so far has focused on several quantitigsne snapshot of the Internet maps. We observe that these
exhibiting nontrivial properties: wiring redundancy and clus-distributions exhibit an algebraic behavior and are character-
tering, [8-11], the distribution of shortest path lengths ized by scaling exponents that are stationary in time. The
[5,10], and the eigenvalue spectra of the connectivity matrixshortest path length between pairs of nodes, on the other
[10]. Noteworthy, the presence of a power-law connectivityhand, appears to be sharply peaked around its average value,
distribution[8,10-13 makes the Internet an example of the providing a striking evidence for the presence of well-
recently identified class of scale-free netwofkd,15. This  defined small-world propertig24]. A more detailed picture
evidence implies the absence of any characteristiof the Internet can be achieved by studying higher order
connectivity—large connectivity fluctuations—and a high correlation functions of the network. In this sense, we show
heterogeneity of the network structure. that the Internet hierarchical structure is reflected in non-
As widely pointed out in the literatur¢13,16,17, a trivial scale-free betweenness and connectivity correlation
deeper empirical understanding of the topological propertiefunctions. Finally, we study several quantities related to the
of the Internet is fundamental in the developing of realisticgrowth dynamics of the network. The analysis points out the
Internet map generators, that on their turn are used to test aqulesence of two distinct wiring processes: the first concerns
optimize Internet protocols. In fact, the Internet topology hasnewly added nodes, while the second is related to already
a great influence on the dynamics that data traffic carries owgxisting nodes increasing their interconnections. We confirm
on top of it. Hence, a better understanding of the Internethat newly added nodes establish new links with the linear
structure is of primary importance in the design of routingpreferential attachment rule often used in modeling growing
[16,17] and searching algorithnj48,19, and to protect from networks[14]. In addition, a study of the connectivity evo-
virus spreadind20] and node failure§21—23. In this per- lution of a single node shows a rich dynamical behavior with
spective, the direct measurement and statistical characterizaging properties. The present study could provide some hints
tion of real Internet maps are of crucial importance in thefor a more realistic modeling of the Internet evolution, and
identification of the basic mechanisms that rule the Internetvith this purpose in mind we provide a discussion of some of
structure and dynamics. the existing growing network models in the light of our find-
In this work, we shall consider the evolution of real Inter- ings. A short account of these results appeared in [R&l.
net maps from 1997 to 2000, collected by the National Labo- The paper is organized as follows. In Sec. Il we describe
ratory for Applied Network ReseardNLANR) [5], in order  the Internet maps used in our study. Section Il is devoted to
to study the underlying dynamical processes leading to théhe study of average quantities as a function of time. In Sec.
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IV we provide the analysis of the statistical distributions  TABLE I. Total number of new N,,,) and deletedN.) nodes
characterizing the Internet topology. We obtain evidence foin the years 1997, 1998, and 1999. We also report the number of
the scale-free nature of this network as well as for the stadeleted nodes with connectivik>10.

tionarity in time of this property. In Sec. V we characterize

the hierarchical structure of the Internet by the statistical Year 1997 1998 1999
anaIyS|s of th_e betweenness and connectlwty_ correlation Nie 309 1990 3410
functions. Section VI reports the study of dynamical proper-

ties such as the preferential attachment and the evolution of 129 881 1713
ies such as the preferential attachment and the evolution o Nyo(k>10) 0 14 68

the average connectivity of newly added nodes. These prop-
erties, which show aging features, are the basis for the de-

veloping of Inte_rnet d_ynami_cal models. Section VIl is de-ine ratior between the number of days in which a node is
voted to a d.etalled discussion of some Interngt mpdels a§bserved in the NLANR maps and the total number of days
compared with the presented real data analysis. Finally, ier the first appearance of the node, averaged over all nodes
Sec. VIII we draw our conclusions and perspectives. in the maps. The analysis reveals that1 andr>0.65 for
nodes with connectivityk=10, and k<10, respectively.
Hence, nodes wittk<<10 have fluctuations that must be
taken into account. In order to shed light on this point, we
Several Internet mapping projects are currently devoted tinspect the incidence of deletion events with respect to the
obtain high-quality router-level maps of the Internet. In mostcreation of new nodes. We consider a deletion event only if a
cases, the map is constructed by using a hop-limited probeode is not observed in the map during a 1-yr time interval.
(such as thaunix traceroutetool) from a single location in  In Table | we show the total number of deletion events in a
the network. In this case the result is a “directed,” map asyear, for 1997, 1998, and 1999, in comparison with the total
seen from a specific location on the Interfi@l. This ap- number of new nodes created. It can be seen that the AS’s
proach does not correspond to a complete map of the Internéfrth rate appears to be larger by a factor of 2 than the dele-
because cross-links and other technical problésugh as tion rate. More interestingly, if we restrict the analysis to
multiple Internet provider aliasgsre not fully considered. nodes with connectivitk> 10, the deletion rate is reduced to
Heuristic methods to take into account these problems hava few percent of the birth rate. This clearly indicates that
been proposesee, for instance, Ref26)). only poorly connected nodes have an appreciable probability
A different representation of the Internet is obtained byto disappear. This fact is easily understandable in terms of
mapping the autonomous systef#sS) topology. The Inter- the market competition among ISP’s, where small newcom-
net can be considered as a collection of subnetworks that aers are the ones which more likely go out of business.
connected together. Within each subnetwork the information
is routed using an internal algorithm that may differ fromone |, AVERAGE PROPERTIES AND STATIONARITY
subnetwork to another. Thus, each subnet is an independent
unit of the Internet and it is often referred as an AS. These The growth rate of AS maps reveals that the Internet is a
AS communicate between them using a specific routing alrapidly evolving network. Thus, it is extremely important to
gorithm, the border gateway protocol. Each AS number apknow whether or not it has reached a stationary state whose
proximately maps to an Internet service provid3P) and  average properties are time independent. This will imply
their links are inter-ISP connections. In this case it is possibléhat, despite the continuous increase of nodes and connec-
to collect data from several probing stations to obtain intertions in the system, the network’s topological properties are
connectivity mapgsee Refs[5,6] for a technical description not appreciably changing in time. As a first step, we have
of these projects In particular, the NLANR project is col- analyzed the behavior in time of several average magnitudes:
lecting data since November 1997, and it provides topologithe average connectivitfk), the clustering coefficienfc),
cal as well as dynamical information on a consistent subsghe average path lengtty’), and the average betweenness
of the Internet. The first November 1997 map contains 318@b).
AS, and it has grown in time until the December 1999 mea- The connectivityk; of a nodei is defined as the number of
surement, consisting of 6374 AS. In the following we will connections of this node with other nodes in the network,
consider the graph whose nodes represent the AS and whoasd (k) is the average ok; over all nodes in the network.
links represent the adjacencig¢imterconnections between Since each connection contributes to the connectivity of two
AS. In particular we will focus on three different snapshotsnodes, we have thdk) =2E/N, whereE is the total number
corresponding to 8 November 1997, 1998, and 1999, thadf connections andl is the number of nodes. Bota andN
will be referenced as AS97, AS98, and AS99, respectively. are increasing with time but their ratio remains almost con-
The NLANR connectivity maps are collected with a reso-stant. The average connectivity for the years 1997, 1998, and
lution of one day and are changing from day to day. Thesd 999 (averaged over all the AS maps available for that year
changes are due to the additidrirth) and deletiodeath) of is shown in Table Il. In average each node has three to four
nodes and links, but also to the flickering of connections, s@onnections, which is a small number compared with that of
that a node may appear to be isolaf@dt mappeyl from  a fully connected network of the same siz&kY=N-—1
time to time. A simple test, however, shows that flickering is~10%). The average connectivity gives information about the
appreciable just in nodes with low connectivity. We computenumber of connections of any node but not about the overall

Il. MAPPING THE INTERNET
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TABLE II. Average properties of the Internet for three different /ij » averaged over every pair of nodes in the network. For
years.N, number of nodesE, number of connectiongk), average regular Iattlces(/>D~N1’D whereD is the spatial dimen-
connectivity;(c), average clustering coefficiery”), average path sion. As it can be seen from Table II, for the AS mdp$
length; (b), average betweenness. Figures in parentheses |nd|cate3 7, which is smaller than the expected value for a regular
ggijé?gtﬁ?nghnscitg:x I:gg: averaging the values of the COMwo-dimensional lattice of the same size. The Internet strik-

ingly exhibits what is known as the “small-world” effect
[24,28: in average one can go from one node to any other in

Year 1997 1998 1999 ! .

the system passing through a very small number of interme-
N 3112 3834 5287 diate nodes. This necessarily implies that besides the short
E 5450 6990 10100 local connections that contribute to the large clustering coef-
(k) 3.51) 3.61) 3.811) ficient, there are some hubs and backbones that connect dif-
(c) 0.183) 0.21(3) 0.2433) ferent regional networks, strongly decreasing the average
() 3.8(1) 3.8(1) 3.71) path length. Another measure of this feature is given by the
(b)/N 2.42) 2.31) 2.2(1) number of minimal paths that pass by each node. To go from

one node in the network to another following the shortest
path, a sequence of nodes is visited. If we do this for every
structure of these connections. More information can be obpair of nodes in the network, there will be a certain number
tained using the clustering coefficient introduced in Ref.of key nodes that will be visited more often than others. Such
[24]. The number of neighbors of a nodes given by its nodes will be of great importance for the transmission of
connectivityk; . On their turn, these neighbors can be con-information along the network. This fact can be quantita-
nected among them forming a triangle with nad&he clus-  tively measured by means of the betweenrigsgefined by
tering coefficientc; is then defined as the ratio between thethe total number of shortest paths between any two nodes in
number of connections among thke neighbors of a given the network that pass thorough the ndad@he average be-
nodei and its maximum possible valug;(k;—1)/2. The tweennesgb) is the average value @ over all nodes in the
average clustering coefficie(t) is the average of; over all  network. The betweenness has been introduced in the analy-
nodes in the network. The clustering coefficient thus pro-sis of social networks in Ref29] and more recently it has
vides a measure of how well locally interconnected are thédeen studied in scale-free networks, with the name of load
neighbors of any node. The maximum value (@f is 1, [30]. Moreover, an algorithm to compute the betweenness
corresponding to a fully connected network. For randomhas been given in Ref29]. For a star network the between-
graphs[27], which are constructed by connecting nodes atess takes its maximum valbN—1)/2 at the central node
random with a fixed probability, the clustering coefficient and its minimum valuéN—1 at the vertices of the star. The
decreases with the network sikkas(c)..¢=(k)/N. On the  average betweenness of the three AS maps analyzed here is
contrary, it remains constant for regular lattices. The averagehown in Table Il. Its value is betweeN2and 3N, which is
clustering coefficient obtained for the years 1997, 1998, anduite small in comparison with its maximum possible value
1999 is shown in Table II. As it can be seen, the clusteringN(N—1)/2~10’.
coefficient of the AS maps increases slowly with increasing The present analysis makes clear that the Internet is not
N and takes value&c)=0.2, two orders of magnitudes larger dominated by a very few highly connected nodes similarly to
than (c),ane=10"3, corresponding to a random graph with star-shaped architectures. As well, simple average measure-
the same number of nodes and average connectivity. Thergents rule out the possibility of a random graph structure or
fore, the AS maps are far from being a random graph, & regular grid architecture. This evidence hints towards a
feature that can be naively understood using the followingoeculiar topology that will be fully identified by looking at
argument: In AS maps the connections among nodes aiie detailed probability distributions of several quantities. Fi-
equivalent, but they are actually characterized by a real spadgelly, it is important to stress that despite the network size is
length corresponding to the actual length of the physical conmore than doubled in the 3-yr period considered, the average
nection between AS’s. The larger this length is, the highequantities suffer variations of a few perceisee Table ).
the costs of installation and maintenance of the line, favoringlhis points out that the system seems to have reached a fairly
therefore the connections between nearby nodes. It is thugell-defined stationary state, as we shall confirm in the fol-
likely that nodes within the same geographical region willlowing section by analyzing the detailed statistical properties
have a large number of connection among them, increasingf the Internet.
in this way the local clustering coefficient.

With this reasoning one m_ight be led to the conclusion |\, £| UCTUATIONS AND SCALE-FREE PROPERTIES
that the Internet topology is close to a regular two-
dimensional lattice. The analysis of the shortest path length In order to get a deeper understanding of the network
between nodes, however, reveals that this is not the caswmpology we look at the probability distributiong (k) and
Two noded andj are said to be connected if one can go frompy(b) that any given node in the network has a connectivity
nodei to j following the connections in the network. The kand a betweenness respectively. The study of these prob-
path fromi to j may not be unique and its length is given by ability distributions will allow us to probe the extent of fluc-
the number of nodes visited. The average path lefigthis  tuations and heterogeneity present in the network. We shall
defined as the shortest path length between two nioaled;j, see that the strong scale-free nature of the Internet, previ-
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10° : ; . connectivity exponeny seems to be independent of time and
¢ o AT in good agreement with previous measurem¢hes.
. sg o AS98 The betweenness distributigm,(b) (i.e., the probability
107 ¢ * ¢ AS99 3 that any given node is passed overthghortest pathshows
also scale-free properties, with a power-law distribution
=0 - Po(b)~b~? 4
5 extending over three decades. As shown in Fi@),2the
107 ¢ o integrated betweenness distribution measured in the AS maps
o’su is evidently stable in the 3-yr period analyzed and follows a
10 ) , * power-law decay
10’ 10’ 10° 10°
k Pu(b)= | “pyl)dbr ~b )

FIG. 1. Integrated connectivity distribution for the AS97, AS98,

and AS99 maps. The power-law behavior is characterized by §here the betweenness exponentsis 2.1+ 0.2. The con-
slope—1.2, which yields a connectivity exponepit=2.2+0.1. nectivity and betweenness exponents can be simply related if
one assumes that the number of shortest phthpassing

ously noted in Refs|10,12, results in power-law distribu- 61 3 node of connectivity follows the scaling form

tions with diverging fluctuations for these quantities. The
analysis of the maps reveals, in fact, an algebraic decay for b~ k~. (6)
the connectivity distribution,
By inserting the latter relation in the integrated betweenness
Pr(k)~k™7, (1)  distribution Eq.(5) we obtain

extending over three orders of magnitude. In Fig. 1 we report Py (k)~kP(1=9), (7)
the integrated connectivity distribution
Since we have tha®, (k) ~k!~?, we obtain the scaling rela-
°° tion
k= | “putk) )k @

B=5—71 (8)

<
=

[N

corresponding to the AS97, AS98, and AS99 maps. The in-

tegrated distribution, which expresses the probability that a ,

node has connectivity larger than or equakfescales as The measured and 6 have approximately the same value
for the AS maps data and we expect to recg9er1.0. This

P (k)~k:7, ©) is corroborated in Fig. (®), where we report the direct mea-
surement of the average betweenness of a node as a function

and it has the advantage of being considerably less noisy thaf its connectivityk. It is also worth remarking the study of
the original distribution. In all maps we find a clear power- the betweenness distribution in scale-free networks made in
law behavior with slope close te 1.2 (see Fig. 1, yielding  Ref.[30]. From a numerical study of both static and dynamic
a connectivity exponeny=2.2+0.1. The distribution cutoff scale-free network models with different valuesjgfit was
is fixed by the maximum connectivity of the system and isfound in Ref[30] that the betweenness distribution follows a
related to the overall size of the Internet map. We see that fopower-law decay with an estimated expondist 2.2+0.1.
more recent maps the cutoff is slightly increasing, as exThe authors argued that this fact represents a universal prop-
pected due to the Internet growth. On the other hand, therty, independent of the connectivity exponent, for all scale-

0

10

10’

L ]

FIG. 2. (a) Integrated between-
ness distribution for the AS97,
AS98, and AS99 maps. The
power-law behavior is character-
ized by a slope—1.1, which
yields a betweenness exponeht
=2.1+0.2.(b) Betweennesb, as
a function of the node’s connec-
tivity k. The full line corresponds
to the expected behavido, ~k.
Errors bars take into account sta-
tistical fluctuations over different
b/N k nodes with the same connectivity.
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with the other regional clusters. These large connectivity
nodes will be on their turn connected to nodes in different
clusters that are not interconnected and, therefore, will have
a small local clustering coefficient. This picture also shows
the existence of some hierarchy in the network that will be-
come more evident in the following section.

A different behavior is followed by the shortest path
length/” between two nodes, which does not show singular
fluctuations from one pair of nodes to another. This can be
shown by means of the probability distributign (/) of
shortest path lengths between pairs of nodes, reported in
Fig. 4(a). This distribution is characterized by a sharp peak
k around its average value and its shape remains essentially
unchanged from the AS97 to the AS99 maps. Associated to
) o the shortest path length distribution we have the hop plot
ity k for the AS97, AS98, and AS99 maps. The best fitting Power-.,qyced in Ref[10]. The hop plot is defined as the aver-
law behavior is characterized by a slopd).75. Errors bars take o0 graction of noded (/)/N within a distance less than or
into account statistical fluctuations over different nodes with the p . o . .
same conneciivity. equal to/” from a given node. At ’—0 we f!nd the start!ng

node and, thereforeM (0)=1. At /=1 we find the starting

free networks with 2 y=<3. Our results on the AS maps N0de plus its neighbors and thi(1)=(k)+1. If the net-

present further support to the universality claim made in RefVOrK is made up by a single cluster, for=/y , where/,

[30]. is the maximum shor-test path length, we rIIDM(a/M)= N_.
Another quantity of interest is the probability distribution FOr regularbD-dimensional latticesM (/) ~/", and in this

of the clustering coefficient of the nodes. In our analysis weF@S€M can be interpreted as the mass. The hop plot is related

do not find definitive evidence for a power-law behavior of 0 the distribution of shortest path lengths through the fol-

this distribution. However, still useful information can be l0Wing relation:

FIG. 3. Clustering coefficiert, as a function of the connectiv-

gathered from studying the clustering coefficiant as a ) Y
function of the node connectivity. In this case the local clus- M(7) ) 9)
tering coefficient of each nodg is averaged over all nodes N S0 anr

with the same connectivitk. The plots for the AS97, AS98,

and AS99 maps are shown in Fig. 3. Also in this case, meaFhe hop plots for the AS97, AS98 and AS99 maps are shown
surements yield a power-law behaviog~k™¢ with o in Fig. 4(b). In this case the shortest path length barely spans
=0.75+0.03, extending over three orders of magnitude. Thea decade {y=11). Most importantly,M (/) practically
exponent 0.75 has been computed as an average over theaches its maximum valud at /=5. Hence, the shortest
regressions of the individual data sets. This fact implies thapath length does not show strong fluctuations, as already
nodes with a small number of connections have larger locahoticed from the shortest path length distribution. In Ref.
clustering coefficients than those with a large connectivity[10] it was argued that the increase Mf(/") for small /

This behavior is consistent with the picture previously de-follows a power-law behavior. This observation is not con-
scribed in Sec. Il of highly clustered regional networks sistent with the present data, that yield a very abrupt increase
sparsely interconnected by national backbones and interngaking place in a very narrow range, as shown in Figp) 4
tional connections. The regional clusters of AS are probably Finally, it is important to stress again that all the measured
formed by a large number of nodes with small connectivitydistributions are characterized by scaling exponents or be-
but large clustering coefficients. Moreover, they also shoulchaviors that are not changing in time. This implies that the
contain nodes with large connectivities that are connectegtatistical properties characterizing the Internet are time in-

04— :
a)

FIG. 4. (a) Distribution of
shortest path lengthg, (/) for
the AS97, AS98, and AS99 maps.
3 (b) Hop plotsM (/) for the same
maps. See text for definitions.

M()/N
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3

10

FIG. 5. (a) Average connectiv-
ity (knn) of the nearest neighbors
of a node as a function of the con-
nectivity k for the AS97, AS98,

3 10 and AS99 maps. The full line has
= a slope —0.5. (b) Average be-
tweenness(b,,) of the nearest
neighbors of a node as a function
10! of its betweennesb for the same
maps. The full line has a slope
—-0.4.
dependent, providing a further test to the network stationar- (Knny~ k™, (12)
ity; i.e., theInternet is self-organized in a stationary state
characterized by scale-free fluctuations with an exponent,,=0.5+0.1. This observation clearly im-
plies that the connectivity correlation function has a marked
V. HIERARCHY AND CORRELATIONS dependence updk suggesting nontrivial correlation proper-

) ) . ties for the Internet. In practice, this result indicates that

_Due to installation costs, the Internet has been designefighly connected nodes are more likely pointing to less con-
with a hierarchical structure. The primary known structuralnected nodes, emphasizing the presence of a hierarchy in
difference between Internet nodes is the distinction betweefynich smaller providers connect to larger ones and so on,

stubandtransit domains. Nodes in stub domains have "”ksclimbing different levels of connectivity.

that go only through the domain itself. Stub domains, on the - gimjlarly, it is expected that nodes with high betweenness
other hand, are connected via a gateway node to transit domat js, carrying a heavy load of traffiand consequently a
mains that, on the contrary, are fairly well interconnected vigarge connectivity, will be connected to nodes with smaller
many paths. This hierarchy can be schematically divided intgeweenness, less load and, therefore, small connectivity. A
international connections, national backbones, regional netjmple way to measure this effect is to compute the average
works, and local area networks. Nodes providing access Betweenneséh,,,) of the neighbors of the nodes with a given
international connections or national backbones are of courSgatweenness. The plot of (b,,,) for the AS97, AS98, and

on top level of this hierarchy, since they make possible theyggg maps, represented in Figh§ shows that the average

communica}tion_between regional and local area ”etworksneighbor betweenness exhibits a clear power-law depen-
Moreover, in this way, a small average path length can bgance on the node betweennéss

achieved with a small average connectivity.

Very likely the hierarchical structure will introduce some (bpp)~b™ ", (12)
correlations in the network topology. We can explore the
hierarchical structure of the Internet by means of the condiwith an exponentr,=0.4+0.1, evidencing that the more
tional probability p.(k’|k) that a link belonging to a node loaded nodegbackbones are more frequently connected
with connectivityk points to a node with connectivity'. If with less loaded nodegocal networks.
this conditional probability is independent &f we are in These hierarchical properties of the Internet are likely
presence of a topology without any correlation among thealriven by several additional factors such as the space local-
nodes’ connectivity. In this case,p.(k’|k)=pc(k’) ity, economical resources, and the market demand. An at-
~k'py(k’), in view of the fact that any link points to nodes tempt to relate and study some of these aspects can be found
with a probability proportional to their connectivity. On the in Ref.[13], where the geographical distribution of popula-
contrary, the explicit dependence hiris a signature of non- tion and Internet access are studied. In Sec. VII we shall
trivial correlations among the nodes’ connectivity, and thecompare a few of the existing models for the generation of
presence of a hierarchical structure in the network topologyscale-free networks with our data analysis, in an attempt to
A direct measurement of thp.(k’|k) function is a rather identify some relevant features in the Internet modeling.
complex task due to large statistical fluctuations. More clear
indications can be extracted by studying the quantity VI. DYNAMICS AND GROWTH

, , In order to inspect the Internet dynamics, we focus our
<k“”>:§ k'pe(k’[k), (10 attention on the addition of new nodes and links into the
maps. In the 3-yr range considered, we keep track of the
i.e., the nearest-neighbors average connectivity of nodes withumber of linksL ,.,, appearing between a newly introduced
connectivityk. In Fig. 5a) we show the results obtained for node and an already existing node. We also monitor the rate
the AS97, AS98, and AS99 maps, that again exhibit a cleaof appearance of linkk 4 between already existing nodes.
power-law dependence on the connectivity degree, In Table 11l we can observe that the creation of new links is
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TABLE Ill. Monthly rate of new links connecting existing ' ' '
| @——@ links from new nodes |
nodes to newl(,, and old L,y nodes. -1 ! ke ErommcTieiofs
Year 1997 1998 1999 )
Lrew 18309) 1709) 231(11) =
Lo 546(35) 35009) 450(29) 3 I
L new/ Lo 0.342) 0.482) 0.533) %%
-4 } |
governed by these two processes at the same time. Specifi-
cally, the largest contribution to the growth is given by the 5 , ; s
appearance of links between already existing nodes. This 0 1 2 3
clearly points out that the Internet growth is strongly driven logyg k
by the need of redundancy in the wiring and an increased . _ o
need of available bandwidth for data transmission. FIG. 7. Frequency of links emanating from new and existing

A Customar”y measured quantiw in the case of growingnodes that attach to nodes with connectikityThe full line corre-
networks is the average connectiv{t;(t)) of new nodes as SPonds to a slope 1.2, which yields an exponent=1.0. The flat
a function of their age. In Refs.[15,31,3] it is shown that tails are originated from the poor statistics at very hiigbalues.
(k;(t)) is a scaling function of bothand the absolute time of _ ! . .
birth of the nodet,. We thus consider the total number of Neétwork algorithms define models in which the raigk)
nodes born within a small observation winddy, such that with which a node withk connections receives new links is

to=const with respect to the absolute time scale that is th@roPortional tok® (see Ref[14] and Sec. VI). The inspec-

Internet lifetime. For these nodes, we measure the averag%?n of the exact value o& in real networks is an important

connectivity as a function of the timeelapsed since their 'SSU€ since the connectivity properties strongly depend on

birth. The data for two different time windows are reportedtis €xponent31-33. Here we use a simple recipe that
in Fig. 6, where it is possible to distinguish two different &lloWs to extract the value af by studying the appearance

dynamical regimes: At early times, the connectivity is nearly®’ N€W links. We focus on links emanating from newly ap-
constant with a very slow increase. Later on, connectivityP€@réd nodes in different time windows ranging from one to

grows rapidly approaching what appears to be a power-laf/ré€ years. We consider the frequenefk) of links that
connect to nodes with connectiviky By using the preferen-

or faster growth regime. While reliable fits or exponent esti-*~ ! g ) Prett

mates are affected by noise and limited time window effectstial attachment hypothesis, this effective probability.itk)

the crossover between two distinct dynamical regimes is”K“Pk(K). Since we know thap,(k) ~k™”, we expect to

compatible with the general aging form obtained in the confind & power-law behavior (k) ~k“~” for the frequency. In

text of growing networks in Ref§31,32. Flg. 7 we report the obtalnegic results which shpw for the
A very important issue in the modeling of growing net- integrated frequencye,m(k) = [ u(k")dk’ a behavior com-

works concerns the understanding of the growth mechanismatible with an algebraic dependene¢k)~k~*2 By using

at the origin of the developing of new links. As we shall seethe independently obtained valye=2.2 we find a preferen-

more in detail in the following section, the basic ingredientstial attachment exponent=1.0, in good agreement with the

in the modeling of scale-free growing networks is the pref-result obtained with a different analysis in R¢83]. We

erential attachment hypothes{i];&]_] In generaL all growing performed a similar analysis also for links emanated by ex-
isting nodes, recovering the same form of preferential attach-

: ment(see Fig. 7. The present analysis confirms the validity

o Aty =17 days of the_preferentigl attachme_nt hypothesis, but leaves open the
a Ato = 30 days question of Fhe interplay with seyeral other factors, such'as
the nodes’ hierarchy, space locality, and resource constraints.

0.6

VII. MODELING THE INTERNET

In the preceding section we have presented a thorough
analysis of the AS maps topology. Apart from providing use-
ful empirical data to understand the behavior of the Internet,
our analysis is of great relevance in order to test the validity

. . . of models of the Internet topology. The Internet topology has
0.8 0.5 15 25 a great influence on the information traffic carried on top of
it, including routing algorithm$16,17], searching algorithms
[18,19, virus spreadind20], and resilience to node failure

FIG. 6. Average connectivity of nodes borne within a small time[21—-23. Thus, designing network models that accurately re-
window At,, after a timet elapsed since their appearance. Tine  produce the Internet topology is of capital importance to
measured in days. carry out simulations on top of these networks.

logyy (ki(t))

logyot
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Early works considered the ErsidRenyi [34] model or  domly connecting the nodes witfyk;/2 links, respecting the
hierarchical networks as models of the Interf@f]. How-  assigned connectivities. The results presented here are ob-
ever, they yield connectivity distributions with a fasixpo-  tained usingm=1 and a connectivity exponeny=2.2,
nentia) decay for large connectivities, in disagreement withequal to that found in the AS maps. Clearly this construction
the power-law decay observed in real data. Only recently thalgorithm does not take into account any correlations or dy-
Internet modeling benefited of the major advance provided imamical features of the Internet and it can be considered as a
the field of growing networks by the introduction of the first order approximation that focuses only on the connectiv-
Barabai-Albert (BA) model[14,15,36, which is related to ity properties.

1955 Simon’s mode[37—-39. The main ingredients of this GBA model It is defined by starting witlm, nodes con-
model are the growing nature of the network and a preferenaected in a ring40]: At each time step one of the following
tial attachment rule, in which the probability of establishing operations is performed:

new links toward a given node grows linearly with its con- (i) With probability g we rewire m links. For each of
nectivity. The BA model is constructed using the following them, we randomly select a notdand a linkl;; connected to
algorithm[14]: We start from a small numben, of discon- it. This link is removed and replaced by a new lihk con-
nected nodes; every time step a new node is added,with necting the nod¢to a new node’ selected with probability

links that are connected to an old nadeith probability I1(k;/) where
ki ki +1
Hga(k)) = ——, (13 Hega(k) = ——. (14)
; 3 > (kj+1)
J
wherek; is the connectivity of theth node. After iterating (i) With probability p we addm new links. For each of

this procedureN times, we obtain a network with a connec- them, one end of the link is selected at random, while the
tivity distribution p,(k)~k ™3 and average connectivit{k) other is selected with probability as in E@.4).

=2m. In this model, heavily connected nodes will increase (iii) With probability 1—q—p we add a new node wittn
their connectivity at a larger rate than less connected nodefipks that are connected to nodes already present with prob-
a phenomenon that is known as the “rich-get-richer” effectability as in Eq.(14).

[14]. It is worth remarking, however, that more general stud- The preferential attachment probability Ed4) leads to a
ies[4,31,39 have revealed that nonlinear attachment rates opower-law distributed connectivity, whose exponent depends
the formII(k)~k* with «# 1 have as an outcome connec- on the parameterg and p. In the particular case=0, the
tivity distributions that depart form the power-law behavior. connectivity exponent is given Hyl0]

The BA model has been successively modified with the in-

troduction of several ingredients in order to account for con- N (1-g)(2m+1)

nectivity distribution with 2<y<3 [31,32,4Q, local geo- r=1 m (15
graphical factor$41], wiring among existing noddg2], and ) )
age effect§43]. Hence, changing the value of and q we can obtain the

In the preceding section we have analyzed different meadesired connectivity exponent In the present simulations
sures that characterize the structure of AS maps. Since se\e use the valuem=2 andq=13/25, that yield the expo-
eral models are able to reproduce the right power law behayient y=2.2. The GBA model embeds both the rich-get-
ior for the connectivity distribution, the analysis obtained in ficher paradigm and the growing nature of the Internet; how-
the previous sections can provide the effective tools to scru€Ver, it does not take into account any possible difference or
tinize the different models at a deeper level. In particular, wehierarchies in newly appearing nodes.
perform a data comparison for three different models that Fitness modelThis network model introduces an external
generate networks with power-law connectivity distributions.competence among nodes to gain links, that is controlled by
First we have considered a random graph with a power-lav@t random(fixed) fitness parametes; that is assigned to each
connectivity distribution, constructed using the Molloy andhodei from a probability distributiorp(#). In this case, we
Reed (MR) algorithm [44,45. Secondly, we have studied also start withm, nodes connected in a ring and at each time
two variations of the BA model, that yield connectivity ex- Step we add a new nodé with mlinks that are connected to
ponents compatible with the one measured in the Internefiodes already present on the network with probability
the generalized BarabaAlbert (GBA) model [40], which
includes the possibility of connection rewiring, and the fit- (k)= niki _ 1

. . . . Hflmesé |) ( 6)
ness mod€]l46], that implements a weighting of the nodes in z K
the preferential attachment probability. The models are de- i 7%
fined as follows:

MR model In the construction of this modé4,44,45,47  The newly added node is assigned a fithgss The results
we start assigning to each nodé a set ofN nodes a ran- presented here are obtained usimg-2 and a probability
dom connectivityk; drawn from the probability distribution p(%) uniformly distributed in the intervdl0,1], which yields
pk(k)~k™7, with m=k;<N, imposing the constraint that a connectivity distributionp,(k)~k™?/Ink with y~2.26
the sumX;k; must be even. The graph is completed by ran{46]. The fithess model adds to the growing dynamics with
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10° »—% ; ; : TABLE IV. Average properties of the MR, GBA, and fithess
models, compared with the values from the Internet in 1988,
Zlc\;d]];A average connectivity(c), average clustering coefficieqty), aver-
10" I age path length{b), average betweenness. Figures in parentheses
« ASO8 indicate the statistical uncertainty from the average of 1000 realiza-
= tions of the models.
=107 F
R MR GBA Fitness 1998
10° ég% 1 (k) 4.81) 5.4(1) 4.001) 3.6(1)
N (c) 0.161) 0.121) 0.021) 0.21(3)
- | | Vvvv%,@o (/) 3.1(2) 1.8(1) 4.01) 3.81)
10° 10' 10° 10° (b)/N 221 1.93) 2.1(1) 2.31)

FIG. 8. Integrated connectivity distribution for the MR, GBA, tivity, clustering coefficient, path length, and betweenness for
and fitness models, compared with the result from the AS98 magthe three models, compared with the respective values com-
The full line has slope-1.2. puted for the Internet during 1998. From the examination of

this table, one could surprisingly conclude that the MR
preferential attachment a stochastic parameter, the fitnessiodel, which neglects by construction any correlation
that embeds all the properties, other than the connectivittamong nodes, yields the average values in better agreement
that may influence the probability of gaining new links. with the Internet data. As we can observe, the fithess model

We have performed simulations of these three modelprovides too small a value for the average clustering coeffi-
with the parameters mentioned above and using sizé$ of cient, while the GBA model clearly fails for the average path
=4000 nodes, in analogy with the size of the AS maps analength and the betweenness. A more crucial test about the
lyzed. In each case we perform averages over 1000 differemhodels is however provided by the analysis of the full dis-
realizations of the networks. It is worth remarking that while tribution of the various quantities, that should reproduce the
the fitness model generates a connected network, both tlssale-free features of the real Internet.

GBA and the MR model yield disconnected networks. Thisis The betweenness distributign,(b) of the three models
due to the rewiring process in the GBA model, while thegive qualitatively similar results. The integrated betweenness
disconnect nature of the graph in the MR model is an inherdistribution P,,(b) obtained is plotted in Fig.(8). Both the

ent consequence of the connectivity exponent being largeVlR and the fitness models follow a power-law decay
that 2[47]. In these two cases we therefore work with graphsp,(b) ~b~¢ with an exponeniy=2, in agreement with the
whose giant componerithat is, the largest cluster of con- value obtained from the AS maps. The GBA model shows an
nected nodes in the netwofR7]) has a size of the ordéN.  appreciable bending that, nevertheless, is compatible with
It is important to remind the reader that we are working withthe experimental Internet behavior. These results are in
networks of a relatively small size, chosen so as to fit the sizagreement with the numerical prediction in RE30] and

of the Internet maps analyzed in the previous sections. In thisupport the conjecture that the exponést2.2 is a universal
perspective, all the numerical analysis that we shall perfornguantity in all scale-free networks with<2y<3. In order to

in the following serve only to check the validity of the mod- further inspect the betweenness properties, we plot in Fig.
els as representations of the Internet as we know it, and d@&(b) the average betweenndssas a function of the connec-
not refer to the intrinsic properties of the models in the ther4ivity. In this case, the MR and GBA models yield an expo-
modynamic limitN— oo, nent8=1, compatible with the AS maps, while the fithess

As a first check of the connectivity properties of the mod-model exhibits a somewhat larger exponent, close to 1.4.
els, in Fig. 8 we have plotted the respective integrated conAlso in this case, we have that the finite size logarithmic
nectivity distributions. For the MR model we recover the corrections present in the fithess model could play a deter-
expected exponengyr=2.20, since it was imposed in the minant role in this discrepancy.
very definition of the model. For the GBA model we obtain ~ While properties related to the betweenness do not appear
numerically ygga=2.19 for the giant component, in excel- to pinpoint a major difference among the models, the most
lent agreement with the value predicted by Eth) for the  striking test is provided by analyzing the correlation proper-
asymptotic network. For the fithess model, on the other handjes of the models. In Figs. 10 and 11, we report the average
a numerical regression of the integrated connectivity districlustering coefficient as a function of the connectivity,
bution yields an effective exponemf.s<=2.4. This value is  and the average connectivity of the neighbdks,,), respec-
larger than the theoretical prediction 2.26 obtained for theively. The data from the Internet maps show a nontrikal
model[46]. The discrepancy is mainly due to the logarithmic structure that, as discussed in previous sections, is due to
corrections present in the connectivity distribution of thisscale-free correlation properties among nodes. These proper-
model. These corrections are more evident in the relativelyies depend on their turn upon the underlying hierarchy of
small-sized networks used in this work and become progreghe Internet structure. The only model that renders results in
sively smaller for larger network sizes. qualitative agreement with the Internet maps is the fitness

In Table IV we report the average values of the connecimodel. On the contrary, the MR and GBA models completely
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10° g ; ; 10°
a) D) o-oMr 2| FIG. 9. (a) Integrated between-
ot L i_i gBA / ness distribution for the MR,
1tness GBA, and fitness models, com-
pared with the result from the
= 10? AS98 map. The full line has a
o slope —1.1, corresponding to the
. o MR Internet map(b) Betweennes$,
107 ¢ A GBA as a function of the node’s con-
v Fitness nectivity k corresponding to the
P el . previous results. The full line has
T 10’ 10° 10° a slope 1.0.
b/N k

fail, producing quantities that are almost independenkon links or connects new links, following in this last case the
The reason of this striking difference can be traced back t@referential attachment rule. With these three elements, the
the lack of correlations among nodes, which in the MRmodel described in Ref49] recovers a connectivity expo-
model is imposed by constructidithe model is a random nent and clustering coefficient comparable with the values
network with fixed connectivity distribution and in the found in the present work, while yielding a functidk,,,)
GBA model it is due to the destruction of correlations by thedecreasing wittk as a power-law, in close analogy with the
random rewiring mechanism implemented. The general anaehavior we have reported for real AS maps.

lytic study of connectivity correlations in growing networks  The fitness model is able to reproduce the nontrivial cor-
models has been discussed in H82], and the conditional relation properties because of the fitness parameter of each
probability p.(k’|k) has been computed for a deterministic node that mimics the different hierarchical, economical, and
scale-free network mod@#8]. However, it is worth noticing  geographical constraints of Internet growth. Since the model
that ak structure in correlation functions, as probed by theis embedding many features in one single parameter, we
quantity(k,,), does not arise in all growing network models. have to consider it just as a very first step towards a more
In this perspective we can use correlation properties as onealistic modeling of the Internet. In this perspective, models
of the discriminating feature among various models thain which the attachment rate depends on both the connectiv-
show the same scale-free connectivity exponent. Interestty and the real space distance between two nodes has been
ingly, a stochastic network modgt9] has been recently pro- studied in[13,41]. These models seem to give a better de-
posed, in the spirit of the scenario advanced in R&d], that  scription of the Internet topology. In particular, the model of
appears to capture the correlation function properties preRef.[13] includes a new element, the inclusion of geographi-
sented here. This model is defined in terms of three elemergal constraints, that was not considered previously. This
tary rules. At each time stedi) The number of nodes is model describes the Internet in terms of an evolving network
increased by a constant fraction of the nodes present in thie which the added nodes have a geographical position,
previous time step; the newly added nodes are connected forming a scale-invariant fractal set with a fractal dimension
one or two previously present nodds.) Each vertex in- compatible with the value found in a real router-level map.
creases its connectivity by a constant factor, the new link\Iso, the probability of the addition of new links is regulated
being connected following the preferential attachment rule,

Eq. (13). (iii) Each vertex randomly disconnects existing i o ' . ' 'Rde
-0
o anaaLRRRARABOCOO8800 2, |
. 10° ¢ .
) v
10 -
—~ V.
§
£
107 o vy
& 101 | [ © MR V»VVV m |
a- - AGBA VvVV-VvV
B v ---v Fitness Vovy
0° L eeMR P, | = ASO8
&---A GBA g . . .
v — -V Fitness Y 100 10° 102 103
m AS98
10—4 0 I1 IZ 3 k
10 10 10 10
k FIG. 11. Average connectivity of the nearest neighbors of a node

as a function of the connectivitg for the MR, GBA, and fithess
FIG. 10. Clustering coefficient, as a function of the connec- models, compared with the result from the AS98 map. The AS98
tivity k for the MR, GBA, and fitness models, compared with the data have been binned for the sake of clarity. The full line has a
result from the AS98 map. The full line has a slop®.75. slope—0.5.
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by two competing mechanisms, being directly proportionalonly in models that take into account several other ingredi-
to the connectivity of the nodes and inversely proportional teents, such as the nodes’ hierarchy, resource constraints and
the physical distance between nodes. While the path openagtographical location. Other ingredients that should be in-
by this model seems quite promising, a comparison with reatluded in the Internet modeling concern the possibility of
data is more difficult because Internet maps at the AS levehcluding the wiring among existing nodes and age effects
generally lack geographical and economical information. that our analysis show to be an appreciable feature of the
Internet evolution. The results presented in this work show
that the understanding and modeling of the Internet is an
interesting and stimulating problem that needs the coopera-

In summary, we have shown that the Internet maps exhibifiye efforts of data analysis and theoretical modeling.
a stationary scale-free topology, characterized by nontrivial

connectivity correlations. An investigation of the Internet dy-
namics confirms the presence of a preferential attachment
behaving linearly with the nodes’ connectivity and identifies  This work has been partially supported by the European
two different dynamical regimes during the nodes’ evolution.Commission — Fet Open Project No. COSIN IST-2001-
We have compared several models of scale-free networks @88555. R.P.-S. acknowledges financial support from the Min-
the experimental data obtained from the AS maps. While alisterio de Ciencia y Tecnolog(Spain and from the Abdus
the models seem to capture the scale-free connectivity distrBalam International Center for Theoretical PhyqiSTP),
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