ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 3

Autômatos Finitos Determinísticos

Profa. Ariane Machado Lima ariane.machado@usp.br

Aula passada

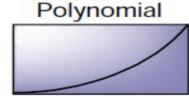
Linguagens, modelos computacionais (dispositivos, gramáticas) e suas complexidades

Turing machine Unrestricted Undecidable Recursively enumerable $Baa \rightarrow A$ languages Linear bounded Context Contextsensitive sensitive $At \rightarrow aA$ languages Context free

Contextfree languages



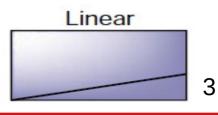
 $S \rightarrow gSc$



Regular languages Finite-state automaton

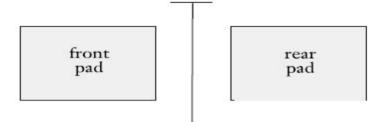
Regular

 $A \rightarrow cA$



⁹101a. Anane Wachauo Lima

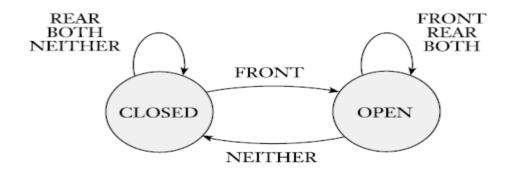
- O exemplo de um controlador de portas que abre (para trás) só para quem está chegando
- Um sensor na frente e outro atrás
- Quais são os estados possíveis da porta?
 - Aberta / Fechada



door

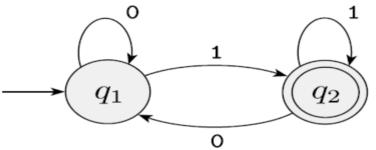
- Entradas possíveis vindas do sensor (presença de pessoas):
 - FRONT (tem gente só na frente)
 - REAR (tem gente só atrás)
 - BOTH (tem gente na frente e atrás)
 - NEITHER (ninguém na frente nem atrás)

O exemplo de um controlador de portas



	FRONT	REAR	вотн	NEITHER
OPEN	OPEN	OPEN	OPEN	CLOSED
CLOSED	OPEN	CLOSED	CLOSED	CLOSED

 Um AF pode ser definido por um diagrama de estados

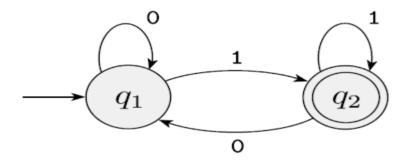


Círculos: estados

Círculos duplos: estados finais ou de aceitação

Seta sem início (somente uma): indica quem é o estado inicial

sobre a seta

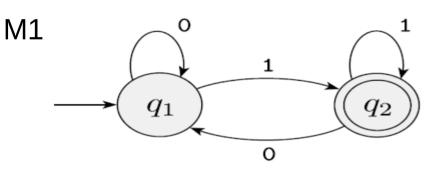


- Precisa guardar em memória:
 - Estado atual

RESPOSTA CORRENTE!!!

- Ex: reconhecer strings binárias (compostas por 0's e 1's) que terminem com 1, com tamanho pelo menos 1
 - 1, 01, 11, 001, 00000001, 1101111, ...

Diagrama de estados:



Processo de reconhecimento:

Dados um autômato M e uma cadeia w:

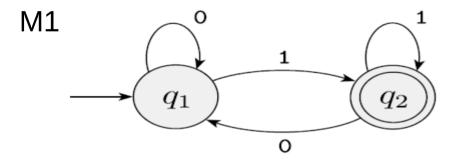
- comece pelo estado inicial
- faça a transição de estados a cada símbolo lido (da cadeia de entrada w)
- ao finalizar a leitura, se M parou em um estado de aceitação aceite, e rejeite

Exemplos de cadeias w aceitas pelo autômato M1:

1, 01, 11, 001, 00000001, 1101111, ...

Exemplos de cadeias w NÃO aceitas pelo autômato M1: 0, 10, 110, 000, 0001010, 11111110, ε, ... Cadeia vazia ("")

Diagrama de estados



O autômato:

- Aceita uma cadeia
- Reconhece uma linguagem

Resumo

- Um alfabeto Σ é um conjunto de símbolos
- Uma cadeia w é uma sequência (concatenação) de símbolos de um alfabeto Σ , incluindo a cadeia vazia ε (w ε Σ *)
- Uma linguagem L é um conjunto de cadeias sobre um alfabeto Σ (L é subconjunto de Σ*)
- A linguagem L reconhecida por um autômato M (denotado L(M)) é o conjunto das cadeias (de símbolos de entrada) aceitas pelo autômato

Exercício

Projete um AFD que reconheça cadeias binárias (compostas por 0's e 1's) que comecem e terminem com zero, com tamanho pelo menos 1

0, 00, 010, 000000, 0101110, ...

Aula de Hoje

- Podem ser (os principais tipos):
 - Determinísticos
 - Não determinísticos

Um é mais eficiente, o outro é mais fácil de projetar....

- Podem ser (os principais tipos):
 - Determinísticos
 - Não determinísticos

Definição formal:

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o estado inicial, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

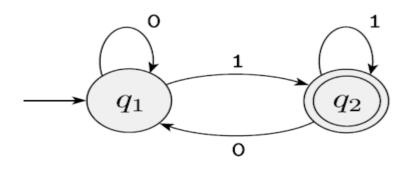
Definição formal:

Um autômato finito é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a *função de transição*, total (definida para cada ponto do domínio)
- **4.** $q_0 \in Q$ é o estado inicial, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

potencialmente vazio

 Dado um estado atual e um símbolo de entrada sabemos exatamente para onde ir (está determinado)

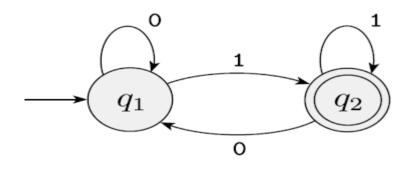


Um *autômato finito* é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o *estado inicial*, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

Para cada par (estado atual, próximo símbolo) está DETERMINADO qual é o próximo estado

 Dado um estado atual e um símbolo de entrada sabemos exatamente para onde ir (está determinado)



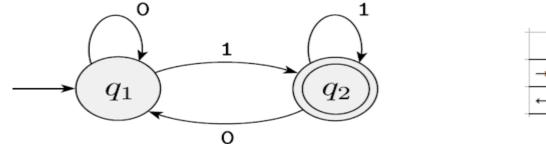
Um autômato finito é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta \colon Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o *estado inicial*, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

Note que para um AFD deve haver, saindo de cada estado, uma aresta para CADA símbolo do alfabeto 18

 Dado um estado atual e um símbolo de entrada sabemos exatamente para onde ir (está determinado)

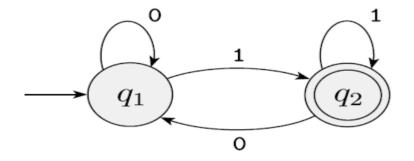
Por isso a tabela que define o AFD deve estar totalmente preenchida !!!



		0	1
→	q1	-	-
←	q2		

 Dado um estado atual e um símbolo de entrada sabemos exatamente para onde ir (está determinado)

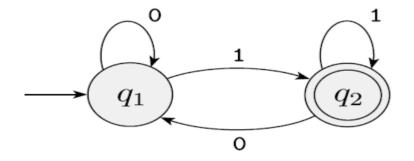
Por isso a tabela que define o AFD deve estar totalmente preenchida !!!



		0	1
→	q1	q1	_
←	q2		

 Dado um estado atual e um símbolo de entrada sabemos exatamente para onde ir (está determinado)

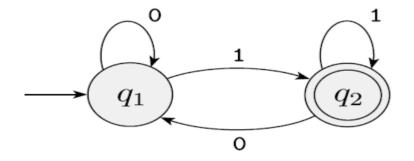
Por isso a tabela que define o AFD deve estar totalmente preenchida !!!



		0	1
→	q1	q1	q2
←	q2		

 Dado um estado atual e um símbolo de entrada sabemos exatamente para onde ir (está determinado)

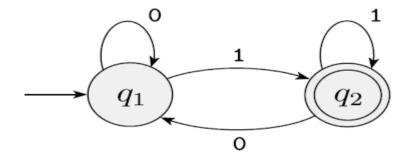
Por isso a tabela que define o AFD deve estar totalmente preenchida !!!



		0	1
→	q1	q1	q2
←	q2	q1	

 Dado um estado atual e um símbolo de entrada sabemos exatamente para onde ir (está determinado)

Por isso a tabela que define o AFD deve estar totalmente preenchida !!!



		0	1
→	q1	q1	q2
←	q2	q1	q2

Exercício

Verifique se o diagrama de estados que você implementou como exercício da aula 2 (slide 61 : do autômato que aceita cadeias binárias que comecem e terminem com zero, com tamanho pelo menos 1), atende aos requisitos de um AFD. Se não atender, descreva tal diagrama como um AFD.

Exercício

Projete um AFD que reconheça cadeias binárias (compostas por 0's e 1's) que comecem e terminem com zero, com tamanho pelo menos 1

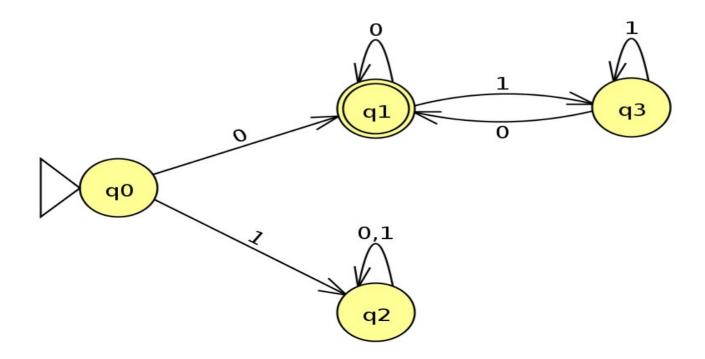
0, 00, 010, 000000, 0101110, ...

Exercício 1 - resposta

Não mude o slide sem tentar fazer antes!

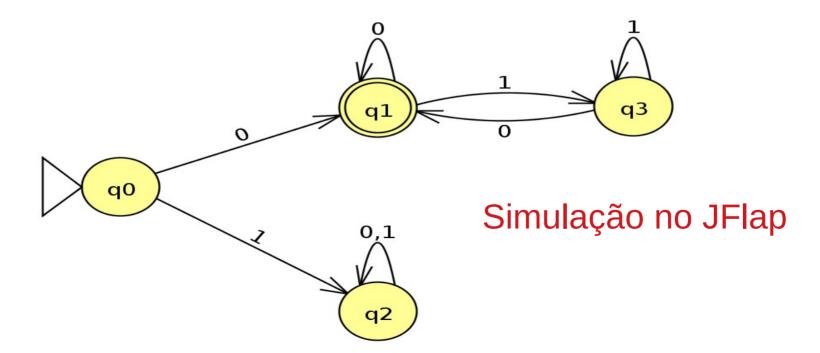
Exercício 1 - resposta

...que comecem e terminem com zero, com tamanho pelo menos 1 0, 00, 010, 000000, 0101110, ...



Exercício 1 - resposta

...que comecem e terminem com zero, com tamanho pelo menos 1 0, 00, 010, 000000, 0101110, ...



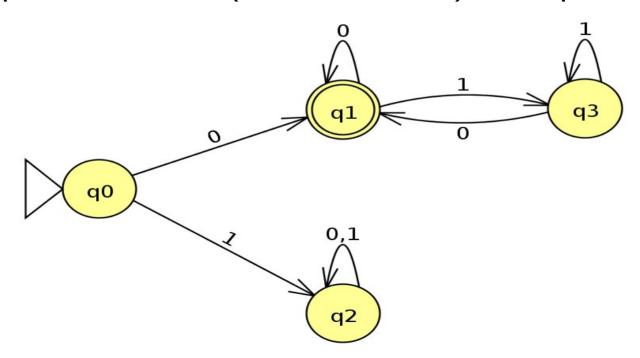
Qual a complexidade (tempo) de análise de uma cadeia por um AFD?

Qual a complexidade (tempo) de análise de uma cadeia por um AFD?

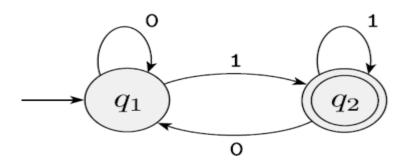
• O(n) – n sendo o tamanho da cadeia de entrada. Por quê?

Qual a complexidade (tempo) de análise de uma cadeia por um AFD?

O(n) – n sendo o tamanho da cadeia de entrada
 Porque um símbolo (EXATAMENTE) é lido por transição)

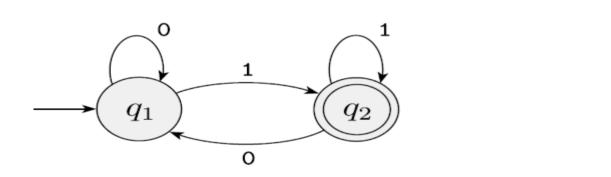


Qual a definição formal do autômato M1?



- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o *estado inicial*, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

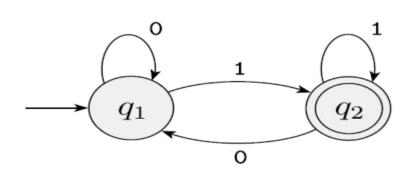
Qual a definição formal do autômato M1?



Q =

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o *estado inicial*, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

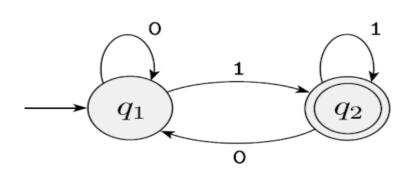
Qual a definição formal do autômato M1?



$$Q = \{q1, q2\}$$

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o *estado inicial*, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

Qual a definição formal do autômato M1?



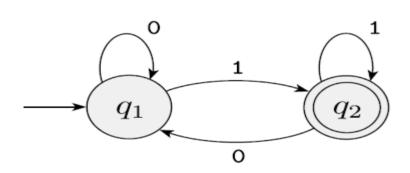
$$Q = \{q1, q2\}$$

$$\Sigma = \{0, 1\}$$

δ

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o *estado inicial*, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

Qual a definição formal do autômato M1?



$$Q = \{q1, q2\}$$

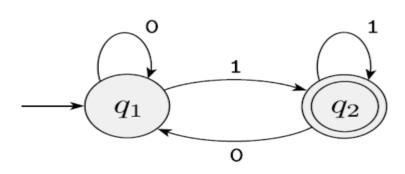
$$\Sigma = \{0, 1\}$$

$$\delta(q1, 0) = q1$$

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- **4.** $q_0 \in Q$ é o *estado inicial*, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

Autômatos Finitos Determinísticos (AFD)

Qual a definição formal do autômato M1?



Um autômato finito é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- 4. $q_0 \in Q$ é o estado inicial, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

$$Q = \{q1, q2\}$$

$$\Sigma = \{0, 1\}$$

$$\delta(q1, 0) = q1$$

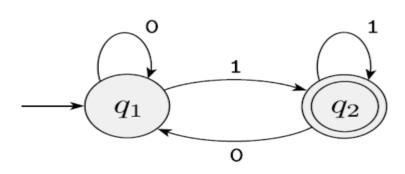
$$\delta(q1, 1) = q2$$

$$\delta(q2, 0) = q1$$

$$\delta(q2, 1) = q2$$

Autômatos Finitos Determinísticos (AFD)

Qual a definição formal do autômato M1?



Um autômato finito é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- 4. $q_0 \in Q$ é o estado inicial, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

$$Q = \{q1, q2\}$$

$$\Sigma = \{0, 1\}$$

$$\delta(q1, 0) = q1$$

$$\delta(q1, 1) = q2$$

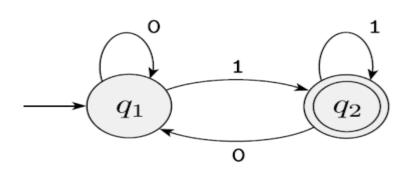
$$\delta(q2, 0) = q1$$

$$\delta(q2, 1) = q2$$

$$q0 = q1$$

Autômatos Finitos Determinísticos (AFD)

Qual a definição formal do autômato M1?



Um autômato finito é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito conhecido como os estados,
- 2. Σ é um conjunto finito chamado o *alfabeto*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ é a função de transição, 1
- 4. $q_0 \in Q$ é o estado inicial, e
- 5. $F \subseteq Q$ é o conjunto de estados de aceitação.²

$$Q = \{q1, q2\}$$

$$\Sigma = \{0, 1\}$$

$$\delta(q1, 0) = q1$$

$$\delta(q1, 1) = q2$$

$$\delta(q2, 0) = q1$$

$$\delta(q2, 1) = q2$$

$$q0 = q1$$

$$F = \{q2\}$$

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $w=w_1w_2\cdots w_n$ seja uma cadeia onde cada w_i é um membro do alfabeto Σ . Então M aceita w se existe uma seqüência de estados r_0,r_1,\ldots,r_n em Q com três condições:

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $w=w_1w_2\cdots w_n$ seja uma cadeia onde cada w_i é um membro do alfabeto Σ . Então M aceita w se existe uma seqüência de estados r_0,r_1,\ldots,r_n em Q com três condições:

- 1. $r_0 = q_0$,
- 2.
- 3. $r_n \in F$.

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $w=w_1w_2\cdots w_n$ seja uma cadeia onde cada w_i é um membro do alfabeto Σ . Então M aceita w se existe uma sequência de estados r_0,r_1,\ldots,r_n em Q com três condições:

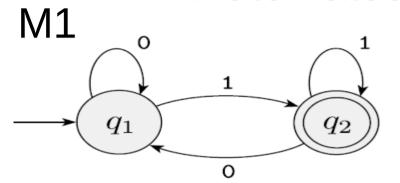
- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, para $i = 0, \ldots, n-1$, e
- 3. $r_n \in F$.

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $w=w_1w_2\cdots w_n$ seja uma cadeia onde cada w_i é um membro do alfabeto Σ . Então M aceita w se existe uma sequência de estados r_0,r_1,\ldots,r_n em Q com três condições:

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, para $i = 0, \ldots, n-1$, e
- 3. $r_n \in F$.

Um autômato:

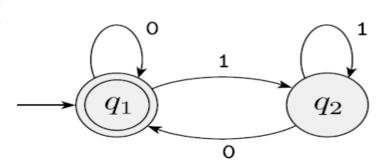
- aceita ou não aceita uma cadeia
- reconhece ou não reconhece uma linguagem

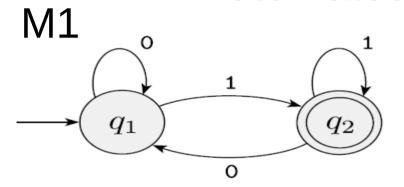


$$L(M1) = \{ w \in \{0,1\}^* \mid w \text{ termina com } 1 \}$$

Que linguagem o autômato M2 reconhece? (apenas mudou o estado final)

M2

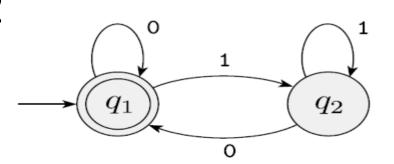




$$L(M1) = \{ w \in \{0,1\}^* \mid w \text{ termina com } 1 \}$$

Que linguagem o autômato M2 reconhece? (apenas mudou o estado final)

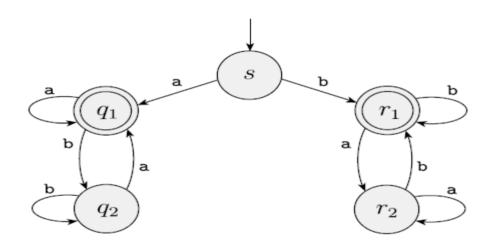
M2



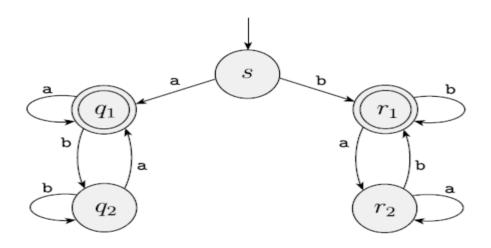
 $L(M2) = \{w \in \{0,1\}^* \mid w \in a \text{ cadeia} \}$ vazia ou termina com 0 $\}$ ou...

L(M2) = {w \in {0,1}* | w NÃO termina com 1}

• Que linguagem esse autômato reconhece?



Que linguagem esse autômato reconhece?



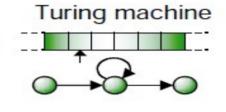
 Cadeias sobre o alfabeto {a,b} que comecem e terminem com o mesmo símbolo

Linguagem Regular

 Definição: Uma linguagem é chamada linguagem regular se algum autômato finito determinístico a reconhece

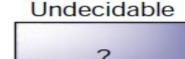
Linguagens, modelos computacionais (dispositivos, gramáticas) e suas complexidades

Recursively enumerable languages

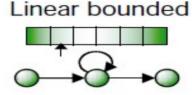


Unrestricted

 $Baa \rightarrow A$

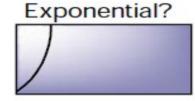


Contextsensitive languages

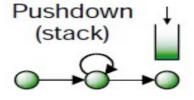


Context sensitive

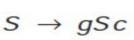
 $At \rightarrow aA$

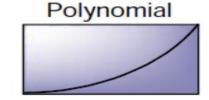


Contextfree languages

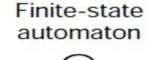


Context free



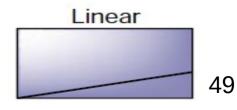


Regular languages



Regular

$$A \rightarrow cA$$



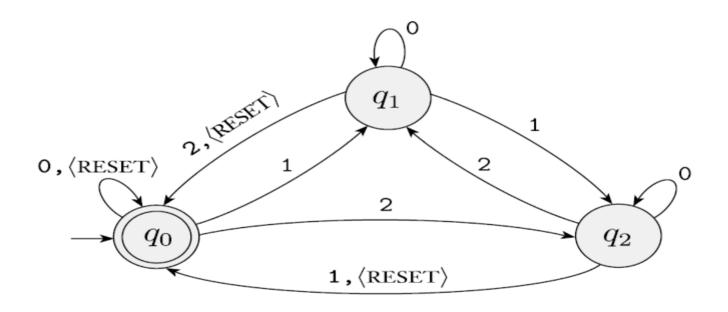
Projetando autômatos

- Pense que você é um autômato
- A cadeia de entrada pode ser arbitrariamente grande
- O número de estados é finito
- A transição se dá dados apenas o estado atual e o próximo símbolo de entrada
 - O estado atual é toda a memória que você tem
- Você recebe um símbolo por vez, e não sabe quando a cadeia vai acabar nem pode ler símbolos antecipadamente (você precisa ter sempre uma "resposta corrente" - qual a resposta se o último símbolo for este que acabei de ler?)

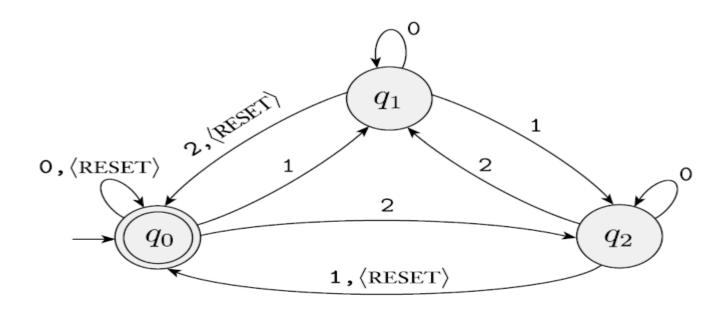
Exercício

Projete um AFD (diagrama de estados) que, dado Σ = {0,1,2,<RESET>}, aceita a cadeia de entrada se a soma dos números for igual a 0 módulo 3 (ou seja, se a soma for um múltiplo de 3). <RESET> zera o contador. Cadeia vazia também é aceita.

Exercício - solução



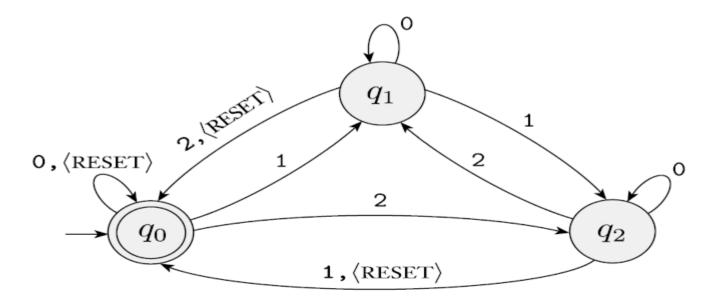
Como seria um autômato que reconhece exatamente o contrário (se a soma NÃO for igual 0 módulo 3)?



Como seria um autômato que reconhece exatamente o contrário (se a soma NÃO for igual 0 módulo 3)?

Bastaria inverter a situação de cada estado como final ou não final

(Isso vale para qualquer linguagem → linguagem complementar)



Autômatos finitos

- Pode ser mais conveniente projetar o autômato usando a definição formal ao invés do diagrama de estados
- Ex: generalização do autômato anterior para aceitar somas múltiplas de i, mantendo o mesmo alfabeto (linguagem Ai)

Autômatos finitos

- Pode ser mais conveniente projetar o autômato usando a definição formal ao invés do diagrama de estados
- Ex: generalização do autômato anterior para aceitar somas múltiplas de i, mantendo o mesmo alfabeto (linguagem Ai)

autômato finito B_i , reconhecendo A_i . Descrevemos a máquina B_i formalmente da seguinte forma: $B_i = (Q_i, \Sigma, \delta_i, q_0, \{q_0\})$, onde Q_i é o conjunto de i estados $\{q_0, q_1, q_2, \ldots, q_{i-1}\}$, e desenhamos a função de transição δ_i de modo que para cada j, se B_i está em q_j , a soma corrente é j, módulo i. Para cada q_j faça

$$\delta_i(q_j, 0) = q_j,$$

 $\delta_i(q_j, 1) = q_k, \text{ onde } k = j + 1 \text{ módulo } i,$
 $\delta_i(q_j, 2) = q_k, \text{ onde } k = j + 2 \text{ módulo } i, e$
 $\delta_i(q_j, \langle \text{RESET} \rangle) = q_0.$

JFlap

Ferramenta Java para desenhar e simular autômatos, gramáticas, máquinas de Turing...

MUITO ÚTIL como recurso de estudo:

www.jflap.org

Menus File e Input

Lista MÍNIMA de exercícios do Sipser (2ª ed)

Exercícios 1.1, 1.2, 1.3, 1.5 e 1.6

Obs: Os exercícios 1.6 que contém "ou" no enunciado da linguagem são os mais difíceis: podem tentar fazer, mas será mais fácil fazer depois das próximas aulas

Dica: Nos exercícios 1.5 (e alguns do 1.6) você pode usar o "truque" de como reconhecer a linguagem complementar

No 1.5:

*: 0 ou mais vezes

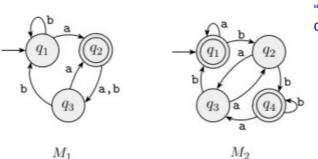
+: 1 ou mais vezes

U: união (ou)

Ex: (ab+)* U b*

Lista mínima da mínima (o que está em vermelho). Aconselhável fazer todos.

The following are the state diagrams of two AFDs, M_1 and M_2 . Answer the following questions about each of these machines.



- Difícil por enquanto... espere a aula sobre
 - "fechamentos" se não conseguir

- What is the set of accept states?
- What sequence of states does the machine go through on input aabb?
- d. Does the machine accept the string aabb?
- e. Does the machine accept the string ε ?

What is the start state?

- (R1.2) Give the formal description of the machines M_1 and M_2 pictured in Exercise 1.1.
- 1.3 The formal description of a AFD M is $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\}),$ where δ is given by the following table. Give the state diagram of this machine.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

- 1.5 Each of the following languages is the complement of a simpler language. In each part, construct a AFD for the simpler language, then use it to give the state diagram
 - of a AFD for the language given. In all parts $\Sigma = \{a, b\}$. ^Ra. $\{w \mid w \text{ does not contain the substring ab}\}$
 - c. {w | w contains neither the substrings ab nor ba}

Rb. $\{w | w \text{ does not contain the substring baba}\}$

- **d.** $\{w | w \text{ is any string not in } a^*b^*\}$
- e. $\{w \mid w \text{ is any string not in } (ab^+)^*\}$
- **f.** $\{w | w \text{ is any string not in } a^* \cup b^* \}$ |w| w is any string that doesn't contain exactly two a's
- $\{w | w \text{ is any string except a and b}\}$
- 1.6 Give state diagrams of AFDs recognizing the following languages. In all parts the alphabet is {0,1}
 - **a.** $\{w \mid w \text{ begins with a 1 and ends with a 0}\}$
 - **b.** $\{w | w \text{ contains at least three 1s} \}$ c. $\{w | w \text{ contains the substring 0101, i.e., } w = x0101y \text{ for some } x \text{ and } y\}$
 - **d.** $\{w \mid w \text{ has length at least 3 and its third symbol is a 0}\}$
 - e. {w | w starts with 0 and has odd length, or starts with 1 and has even length}
 - f. $\{w \mid w \text{ doesn't contain the substring 110}\}$
 - $\{w | \text{ the length of } w \text{ is at most } 5\}$ $\{w \mid w \text{ is any string except 11 and 111}\}$
 - $\{w | \text{ every odd position of } w \text{ is a 1} \}$
 - $\{w | w \text{ contains at least two 0s and at most one 1}\}$
 - {w | w contains an even number of 0s, or contains exactly two 1s}
 - The empty set
 - n. All strings except the empty string