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Review

Introduction

Glioblastoma  (GBM) is the most aggressive form of 
malignant brain cancer. Despite continuous advances in 
the development of therapies, prognosis remains dismal.[1] 
Extensive recent sequencing studies of GBM have uncovered 
novel immunological targets and provided rationale for 
immunotherapy to be developed along with surgery, radiation, 
and chemotherapy as the fourth arm of GBM treatment. Due 
to extensive molecular heterogeneity[2] in GBMs and severe 
immunosuppressive conditions in the tumor,[3] classical 
immunotherapeutic approaches for the treatment of GBM 
have been less than promising. Therefore, new approaches to 
immunological management of GBM are continuously being 
tested. Recent developments in understanding the role of γδ 
T cells in immuno‑oncology have kindled interest in these T 
cells for GBM immunotherapy.

γδ T cells are a group of “unconventional” T cells with distinct 
γ and δ chain T‑cell receptors  (TCRs) on their surface, as 
opposed to classical CD4+  and CD8+ T cells that express 
α and β TCRs.[4] γδ T cells make up no more than 10% of 
T‑cell repertoire in peripheral blood,[5‑7] but are enriched in 

epithelial and mucosal tissues such as skin, gut, and liver where 
they are thought to serve as the first line of defense against 
immunogenic challenge.[8] In addition to these unique TCRs, 
γδ T cells also express natural killer (NK) group 2D (NKG2D), 
an NK receptor,[9] and a variety of natural cytotoxicity 
receptors such as NKp30 and NKp44.[10] Functionally, this 
subgroup of T cells plays a unique role in immunological 
responses as they function at the interface of innate and 
acquired immune responses.[11,12] They can induce cytotoxic 
activity by production of cytokines  (interferon‑γ  [IFN‑γ], 
interleukin  [IL]‑17, tumor necrosis factor‑α  [TNF‑α]) 
and cytolytic enzymes  (perforin and granzymes)[13‑15]; or 
through the activation of innate immune responses by 
interacting with epithelial cells, monocytes,[16] dendritic 
cells  (DCs),[17] B cells[18] and also by priming CD4+  and 
CD8+ T cells.[19] In cancer, γδ T cells have been reported to 
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play a dichotomous role. Depending on how the naïve γδ T 
cells are activated, these cells can exhibit either pro‑tumor 
or anti‑tumor activity.[8,20] There are abundant reports of γδ 
T cells that secrete IL‑17, express forkhead box P3 (FoxP3) 
and recruit immunosuppressive myeloid‑derived suppressor 
cells  (MDSCs) in tumors,[21,22] the majority of studies have 
confirmed significant antitumor effects of γδ T cells. These 
T cells can recognize cancer stress‑related proteins such as 
Major histocompatibility complex (MHC) class‑I chain‑related 
proteins  (MIC‑A/B) and human cytomegalovirus  (CMV) 
membrane glycoprotein‑binding proteins (ULBPs) by TCRs 
and NKG2D in an MHC independent fashion,[23,24] leading 
to abundant cytokine secretion and sufficient cytotoxic 
responses. These characteristics make γδ T cells an attractive 
candidate for cancer immunotherapy.[25] Moreover, resistance 
to activation‑induced T‑cell death (AICD) makes γδ T cells 
preferable to conventional T cells for sustained antitumor 
responses.[26] Recent developments in methods for robust 
expansion of γδ T cells[7] and discovery of activation with 
phosphoantigens and T‑cell cytokines such as IL‑2 and 
IL‑15[27] has made it easier to produce sufficient cells for cancer 
immunotherapy. In the majority of clinical trials conducted 
in several cancers, such as renal cell carcinoma, malignant 
leukemia, and advanced lung cancer, γδ T cells have been 
shown to be well tolerated and safe.[8]

Although circulating γδ T cells were purified and expanded 
from the blood of GBM patients as early as 1997,[28] 
immunotherapeutic potential of these cells was reported only in 
2009.[29] Since then, some exciting research has been performed 
to identify the potential of these cells in GBM immunotherapy. 
In this review, we will discuss the biology of γδ T cells, its role 
in cancer immunotherapy and state of the research on the use 
of these cells in GBM immunotherapy.

Biology of γδ T Cells

Background
γδ T cells are a select subgroup of T cells that are defined by 
the expression of heterodimeric TCRs composed of γ and δ 
chains. They represent  <10% of peripheral blood immune 
cells but are present in significantly higher proportions in 
epithelial and mucosal tissues. There are two major subsets 
of γδ T cells that are identified by their Vδ chain. Vδ1 T cells 
are predominant in the normal human epithelia, skin, liver, and 
spleen, while Vδ2 T cells are mostly present in the blood.[30] 
Two other lesser known subsets include Vδ3 and Vδ5.[8] These 
δ chain TCRs form combinational heterodimers with several 
subsets of γ chain to form γδ T cells.[31] Majority of γδ T cells 
in human peripheral blood express Vγ9 and Vδ2 TCRs and 
are commonly referred to as Vγ9 Vδ2 T cells[32] [Table 1]. Vγ9 
Vδ2 T cells can inhibit cancer cell proliferation, angiogenesis, 
lymphangiogenesis, and also increase cancer cell apoptosis.[8,33] 
Vδ1 T cells are associated with distinct innate recognition 
and regulatory properties, possess powerful tumoricidal 
activity, and do not preferentially pair with any specific Vγ 
chain.[26] Vδ1 T cells show reduced susceptibility to AICD, 

and tumor‑reactive T cells have been shown to persist in the 
circulation.[34] Vδ1 T cells can also exhibit immunosuppressive 
and regulatory properties.

These T cells recognize phosphoantigens, in a γδ TCR‑dependent 
but MHC‑independent manner.[20] Most potent phosphoantigens 
are (E)‑4‑hydroxy‑3‑methyl‑butenyl pyrophosphate generated 
by bacteria and parasites. Vγ9 Vδ2 T cells can also be activated 
by metabolic intermediates of the mevalonate pathway 
(such as isopentenyl pyrophosphate [IPP]) that accumulate in 
stressed or transformed vertebrate cells.[35,36] Due to metabolic 
dysregulation, IPP is often accumulated by cancer cells. Vδ1 
T cells cannot be activated by IPP but recognize markers 
of cellular stress, resulting from infection  (ULBPs), or 
tumorigenesis (MIC‑A/B).[23,24] Stress surveillance performed 
by γδ T cells is thought to depend not only on TCRs but 
also on costimulatory signals from NK receptors, especial 
NKG2D.[37] Vδ1+ T cells, but not Vγ9 Vδ2 T cells, notably 
enhance expression of natural cytotoxicity receptors, especially 
NKp30, NKp44, and NKp46 on following in vitro stimulation 
with strong TCR agonists and cytokines.[10] CD94/NKG2A 
and CD94/NKG2C expressed on γδ T cells can be activated 
by nonclassical MHC class  I molecule human leukocyte 
antigen (HLA)‑E, their only known ligand. HLA‑E is massively 
overexpressed in GBMs.[38] Finally, γδ T cells also recognize 
lipid antigens presented by CD1d.[39] Significant expansion 
of pure cultures of γδ T cells can be achieved by incubation 
with IL‑2 and commercially available bisphosphonates such 
as zoledronate or pamidronate. Bisphosphonates act through 
induced accumulation of IPP in the target cells, which are in 
turn recognized by the γδ T cells. These γδ T cells that are 
activated by the effect of bisphosphonates on the target cells 
are cytotoxic against a variety of tumors.[27,40]

Plasticity of γδ T‑cell function
Human γδ thymocytes are functionally immature, but 
depending on the stimuli these cells have the plasticity 
to  different ia te  into  e i ther  pro‑ inf lammatory or 
immunosuppressive phenotypes upon stimulation by distinct 
cytokines[41] which have profound effects on the role of γδ T 
cells in cancer immunotherapy.

Protumor roles of γδ T cells
Tumor microenvironment (TME) plays an important role in 
the protumor polarization of γδ T cells.[42] TME can disable 
antitumor components of the immune system through 
recruitment of immunosuppressive cells or secretion of 
immunosuppressive factors.

Table 1: Subsets of γδ T‑cells

Structure subset Paired Vγ gene Distribution
Vδ1 Vγ2, Vγ3, Vγ4, 

Vγ5, Vγ8, Vγ9
Peripheral blood, skin, 
gastrointestinal tract, spleen, liver

Vδ2 Vγ9 Peripheral blood
Vδ3 Vγ2, Vγ3 Peripheral blood, liver
Vδ Vγ4 Peripheral blood
Adapted from Zhao et al.[8]
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Peripheral γδ T cells can polarize after exposure to IL‑1 β, 
IL‑6, IL‑23, and transforming growth factor‑β  (TGF‑β) in 
the TME, toward IL17+ IFNγ− T17 γδ T cells, which play 
an immunosuppressive role in cancer and promotes cancer 
progression.[43] γδ T cells can transform into FOXP3+ γδ 
T regulatory cells  (γδ Tregs) under immunosuppressive 
stimulation. [22] These γδ Tregs function similarly as 
CD4+CD25+FoxP3+ αβ T regulatory cells and suppress the 
proliferation of activated peripheral blood mononuclear 
cells.[44] γδ Tregs have been shown to suppress DC maturation 
in cancer vaccination experiments.[45] Vδ1 γδ T cells have more 
regulatory potential than αβ T regulatory cells.[46] High levels 
of TGF‑β have been reported to be secreted by Vδ1 T cells.[47] 
Depending on IL‑17 production, Vδ1 T cells are involved in 
inflammation‑induced cancer progression.[48] In the presence 
of IL‑4, Vδ1 T cells secrete significantly higher IL‑10, and 
express lower NKG2D, compared with Vδ2 T cells.[49]

γδ Tregs cells can inhibit DC maturation and their 
antigen‑presenting cell functions and induce DC senescence, 
thus impairing naïve αβ T‑cell activation and differentiation 
into effector T cells.[50] It has also been discovered that 
tumor‑derived γδ T regs can suppress naïve and effector T cells 
by inducing cell cycle arrest of responder T cells.[8]

T17 γδ T cells also promote tumor progression by 
IL‑17‑mediated recruitment of immunosuppressive MDSCs in 
TME[51] leading to MDSC‑mediated CD8+ T‑cell exhaustion,[52] 
and angiogenesis.[21,43] MDSCs also suppress antitumor 
functions of Vδ2 T cells.[53] Intratumoral exosomes, under 
hypoxic conditions, induce HSP‑70 dependent enhancement 
of immunosuppressive effects of MDSC on γδ T cells.[54] 
Coculture of IL‑3 and CpG‑activated plasmacytoid DCs with 
Vγ9 Vδ2 T cells induces immunosuppressive polarization of 
the T cells.[55]

Neutrophils have been shown to synergize with T17 γδ T cells 
to create an immunosuppressive TME. T17 γδ T cells can 
stimulate the expansion and polarization of tumor‑induced 
neutrophils, which acquire the ability to suppress CD8+ T 
lymphocytes facilitating tumor metastases, and also suppress 
peripheral Vγ9 Vδ2 T‑cell function.[56,57]

Cancer‑associated fibroblasts, which are major components 
of TME, are also known to induce pro‑tumoral polarization 
of γδ T cells.[58]

Antitumor functions of γδ T cells
Vγ9 Vδ2 T cells can secrete cytolytic enzymes perforin and 
granzyme that can directly lyse cancer cells.[59,60] T1/T17 
γδ T cells, produced from stimulation of naïve γδ T cells 
with stimulatory cytokines, can also eliminate cancer cells 
through the ligands TRAIL and FasL.[61‑63] In addition, γδ 
T cells kill cancer cells directly through CD16‑mediated 
antibody‑dependent cellular cytotoxicity of malignant B cells. 
CD16 can also be up‑regulated on γδ T cells, depending on the 
precise biological situation.[64] Cytotoxic type 1 (T1 γδ) T cells 
can be generated from naïve T cells upon stimulation through 

TCR and NKG2D ligands along with IL‑12 and IL‑15. T1 
γδ T cells can also enhance antitumor immunity by secreting 
IFN‑γ and TNF‑α.[65‑67]

In a recent review, Siegers and Lamb discussed in detail the 
antitumor effects of Vδ1 T cells.[26] Circulating Vδ1 T cells 
have been shown to target leukemia and Non‑Hodgkin’s 
lymphoma through the expression of ULBPs on the tumor 
cells.[68] Circulating Vδ1 T cells have been also shown to 
be cytotoxic to neuroblastoma and epithelial colon tumor 
cells.[69,70] Polyclonal Vδ1 T cells derived from melanoma with 
an effector phenotype that secrete TNF‑α and IFN‑γ have been 
shown to kill melanoma cell lines.[71]

The stimulation of Vγ9 Vδ2 T cells with TCR ligands and 
IL‑21 polarizes the cells toward IL‑4, IL‑10 and CXCL13 
expressing follicular B‑helper γδ T cells  (γδ Tfh cells) that 
helps B cells to boost antibody in vitro.[72] γδ T cells can also 
perform the role of antigen‑presenting cells for priming αβ 
T cells. Levels of CD69, HLA‑DR, and T‑cell costimulatory 
molecules are increased in stimulated γδ T cells.[19] High 
levels of CD36, a scavenger receptor usually present on 
macrophages, helps in the uptake of apoptotic tumor cells by 
γδ T cells and through their antigen‑presenting cell function 
induce a cancer antigen‑specific CD8+ T‑cell response.[73] γδ 
T cells can also trigger DC maturation.[17] Matured DCs can 
induce the activation and proliferation of γδ T cells, exhibiting 
that both DC and γδ T cells can either act on their own or 
interact synergistically to remove cancer cells.[8] γδ T cells can 
also induce anti‑cancer immunity through NK cell‑mediated 
cytotoxicity by engagement of CD137 on NK cells and enhance 
NK cell cytotoxicity to NK‑resistant cancers[74] [Figure 1].

γδ T Cells in Glioblastoma Immunotherapy

Immunotherapeutic approaches to manage GBM have shown 
a mixed response, generally disappointing. The unique 
immunological landscape of the brain coupled with the 
immunosuppressive microenvironment of GBM presents 
a substantial challenge to effective immunotherapy.[3,75] 
Immunosuppressive cytokines such as TGF‑β and IL‑10,[76,77] 
overexpression of indoleamine 2,3‑dioxygenase,[78] signal 
transducer and activator of transcription 3,[79] and programmed 
death‑ligand 1 on tumor cells and tumor‑infiltrating 
lymphocytes, infiltration of MDSCs[80,81] and other factors 
limit immunological responses by preventing DC maturation, 
antigen presentation, and cytotoxic T lymphocyte cell 
activation. Moreover, inherent antigenic heterogeneity in GBM, 
both between patients and within individual tumors, has made 
it difficult for adoptive T‑cell strategies, especially chimeric 
antigen receptor T‑cell (CAR‑T) therapy, which otherwise has 
been shown to be useful in hematological tumor management, 
to replicate its success against GBM.[82] Therefore, any 
immunotherapeutic approach to GBM management must 
overcome these challenges.

γδ T cell‑based immunotherapy may be perfectly positioned 
to fit into the void left by traditional GBM immunotherapy. 
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Malignant gliomas, including GBM stem cells, are known for 
their constitutive expression of self‑antigens or stress‑response 
antigens such as MIC‑A, MIC‑B, and ULBP proteins.[83] 
γδ T cells can recognize these molecules by their γδ TCR 
as well as through NKG2D expressed on these cells using 
MHC‑independent mechanisms.[23,24,84] Long‑term human 
glioma cell lines, as well as Grade  IV GBMs, have been 
reported to express massive over‑expression of nonclassical 
MHC Class  I molecule HLA‑E, the only known target 
for CD94/NKG2A and CD94/NKG2C expressed on γδ T 
cells.[38] Moreover, stress‑induced ligands for γδ T cells are 
not expressed in brain tissues (healthy as well as irradiated or 
temozolomide [TMZ] treated) which makes γδ T‑cell therapy 
safe for brain tumor patients.[85] These factors, together with 
the increased resistance to AICD and long‑term persistence 
of Vδ1 T cells,[26] and resistance to dexamethasone‑mediated 

lymphopenia,[86] may render this unique group of T cells 
suitable for GBM adoptive T‑cell therapy.

The presence of γδ T cells in GBM was reported as early as 
1997 by Fujimiya et al.[28] Peripheral blood γδ T cells from 
GBM patients, activated in cultures in the presence of IL‑2, 
IL‑12, as well as IL‑15 and solid phase anti‑CD3 significantly 
increased the cytotoxicity of γδ T cells against autologous 
GBM targets in  vitro.[7,28,87] Years later, in 2009, Bryant 
et al.[29] showed that γδ T cells from GBM patients exhibited 
less potential than those from healthy donors in proliferation 
and killing GBM cells, suggesting the importance of this 
subgroup of T cells in allogeneic immunotherapy. They also 
showed that the absolute count of Vδ2 T cells, but not Vδ1 
T cells, declined progressively in GBM patients throughout 
the treatment period, due to their sensitivity to AICD. In 
another study, stereotactic injections of allogenic Vγ9 Vδ2 T 
cells in orthotopic xenograft GBM model showed that these 
cells participated in immunosurveillance and eliminated 
infiltrative GBM cells.[88] In an intracranial GL261 syngeneic 
mouse model, circulating γδ T‑cell count showed an initial 
increase followed by a sharp decline as the tumor progressed. 
Circulating γδ T cells showed neither regulatory nor cytotoxic 
phenotype.[89]

Ex vivo expansion of γδ T cells activated by traditional methods 
with OKT‑3[29,90] or by the effect of zoledronic acid on glioma 
cells[91] resulted in expression of effector/memory phenotype 
and mediated killing of new or established GBM xenografts 
and reduced tumor progression through recognition of ULBPs 
on or accumulation of IPPs in glioma cells respectively. The 
effect of zoledronic acid on enhancing the cytotoxicity of γδ 
T cells against GBMs was further confirmed by Nakazawa 
et al.[92] Expansion of allogeneic Vγ9 Vδ2 T cells with IL‑21 
showed increased elimination of GBM tumor cells in an 
orthotopic GBM model.[93]

γδ T cells were first used for immunogene therapy by Friese 
et  al.[83] Human glioma xenografts as well as syngeneic 
tumors over‑expressing MIC‑A  (plasmid‑mediated or 
adenovirus‑mediated overexpression) were treated with γδ 
T cells. However, loss of MIC‑A expression and progression 
of MIC‑A negative tumors suggested strong selection against 
MIC‑A overexpression in  vivo. Furthermore, rejection of 
MIC‑A overexpressing tumors in the syngeneic model 
resulted in protective immunity. However, vaccination of 
syngeneic animals with MIC‑A overexpressing tumor cells 
and subsequent challenge with wild‑type tumors resulted in 
inhibition of tumor growth and activation of both NK cells 
and γδ T cells. Similar results were observed when ex vivo 
expanded Vδ1 T cells from CMV seropositive and seronegative 
patients were tested for their cytotoxic efficacy against GBM 
cells since malignant glioma often contains CMV genetic 
material.[94] It was observed that independent of serological 
status, expanded Vδ1 T cells killed wild‑type tumor more 
efficiently than tumors that were artificially infected with 
CMV.[95] The authors observed that artificial infection reduced 

Figure 1: Receptor‑ligand recognition and antitumor response of γδ T 
cells. γδ T cells express a variety of receptors recognizing a wide‑range 
of ligands inducing a wide‑range of antitumor immune response. HMB-
PP: (E)-4-hydroxy-3-methyl-butenyl pyrophosphate, IPP: Isopentenyl 
pyrophosphate, ULBP: Glycoprotein-binding protein, NKG2D: Natural 
killer group 2D, MIC: Major histocompatibility class-I chain-related 
protein, NKp30: Natural cytotoxicity triggering receptor 3, NKp44: Natural 
cytotoxicity triggering receptor 2, B7-H6: Natural cytotoxicity triggering 
receptor 3 ligand 1, MLL5: Mixed lineage leukemia 5, TCR: T cell receptor, 
DC: dendritic cell
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the expression of NKG2D ligands ULBP and MIC‑A/B in 
GBM cells.

TMZ, the primary chemotherapeutic agent used for GBM, 
increases expression of stress‑associated NKG2D ligands on 
GBM cells rendering them vulnerable to γδ T cells.[96] TMZ 
is highly toxic to lymphocytes, especially T cells.[97] Lamb 
et al.[98] engineered TMZ‑resistant γδ T cells which showed 
increased cytotoxicity to TMZ‑resistant GBM cell lines treated 
with TMZ, suggesting that TMZ‑resistant γδ T cells can be 
generated without impairing their antitumor functions in the 
presence of high concentrations of TMZ. More recently, it 
has been shown that combination therapy with checkpoint 
inhibitors augments the cytotoxic effects of TMZ‑resistant γδ 
T cells in a patient‑derived GBM xenograft model.[99]

Conclusion

Unique immunological properties of γδ T cells have made 
these cells distinctive from the more abundant αβ T cells. 
Pro‑inflammatory antitumor effects of these cells far outweigh 
the immunosuppressive properties of γδ T cells, making them 
a favorable tool, where conventional immunotherapy has failed 
or shown lower efficacy. Nonrequirement of MHC‑mediated 
antigen presentation to the γδ TCR and the opportunities of 
using several non‑TCR receptors for activating these T cells are 
added advantage for using these cells in cancer immunotherapy. 
A higher threshold of AICD and the ability to expand these 
cells in culture conditions using cytokines and phosphoantigens 
like zoledronates has also made these cells favorable for 
immunotherapy. Further, the resistance of γδ T cells to induce 
graft‑versus‑host diseases has made these cells important in the 
development of allogeneic T‑cell therapy.[100] γδ T cells have 
been shown to be highly responsive in GBM immunotherapy, 
especially where chemotherapy has failed. TMZ‑resistant 
GBMs are known to produce several stress‑related molecules 
such as ULBPs and MIC‑A/B which are novel ligands to γδ 
T cells. Combination therapies of γδ T cells with TMZ and/or 
checkpoint inhibitors have shown superior tumor killing efficacy 
over the use of traditional immunotherapies. More recently, 
γδ T cells have been engineered to express CARs against 
hematological cancer antigens. Considering the availability of 
several antigen receptors to modify on these cells, unique γδ 
CAR‑Ts have been designed showing more substantial effects 
over the traditional second of third generation CAR‑Ts.[101‑103] 
Conventional immunotherapies, including CAR‑T cells, are 
yet to show significant potency in GBM management because 
of the immunosuppressive TME and antigenic heterogeneity, 
which mediate immune escape. Due to its inherent properties of 
resistance to immunosuppression, and its allure to stress‑induced 
self‑ligands, γδ T cells can fill in the positions where traditional 
immunotherapy has failed to treat GBMs.
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