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WITHIN-FIELD VARIABILITY IN GRANULAR  
MATRIX SENSOR DATA AND ITS IMPLICATIONS  

FOR IRRIGATION SCHEDULING 
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HIGHLIGHTS 
 Within-field variability was larger for individual depths than for the profile average across multiple depths. 
 Distributions of the profile average were approximately normal, with increasing variances as the soil was drying. 
 Probability theory was applied to quantify the effect of sensor set number on irrigation scheduling. 
 The benefit of additional sensors sets may decrease for longer irrigation cycles and for more heterogeneous fields. 

ABSTRACT. Even when located within the same field, multiple units of the same soil moisture sensor rarely report identical 
values. Such within-field variability in soil moisture sensor data is caused by natural and manmade spatial heterogeneity 
and by inconsistencies in sensor construction and installation. To better describe this variability, daily soil water tension 
values from 14 to 23 sets of granular matrix sensors during the middle part of four soybean site-years in the Mississippi 
Delta were analyzed. The soil water tension data were found to follow approximately normal distributions, to exhibit mod-
erately high temporal rank stability, and to show strong positive correlation between mean and variance. Based on these 
observations and the existing literature, a probabilistic conceptual framework was proposed for interpreting within-field 
variability in granular matrix sensor data. This framework was then applied to investigate the impact of sensor set number 
(i.e., number of replicates) and irrigation triggering threshold on the scheduling of single-day and multi-day irrigation 
cycles. If a producer’s primary goal of irrigation scheduling is to keep soil water adequate in a particular fraction of land 
on average, the potential benefit from increasing sensor set number may be smaller than traditionally expected. Improve-
ment, expansion, and validation of this probabilistic framework are welcomed for developing a practical and robust ap-
proach to selecting the sensor set number and the irrigation triggering threshold for diverse soil moisture sensor types in 
diverse contexts. 

Keywords. Irrigation scheduling, Probability, Sensors, Soil moisture, Soil water tension, Variability, Watermark. 

uch of the soil moisture sensor literature has 
been dedicated to evaluating and improving 
sensor calibrations (e.g., Thomson and Arm-
strong, 1987; Eldredge et al., 1993; Thomson 

et al., 1996; Irmak and Haman, 2001; Leib et al., 2003; Var-
ble and Chávez, 2011; Rudnick et al., 2015; Singh et al., 
2019; Chen et al., 2019). However, the elusive nature of uni-
versally accurate calibrations and of practical site-specific 
calibration methods is not the sole remaining technical chal-
lenge for the successful use of soil moisture sensors. 

Soil moisture sensor data are known to be spatially vari-
able (Hupet and Vanclooster, 2002; Wilson et al., 2004). 
Predictable patterns governed by soil forming factors (Lo 
et al., 2017), unpredictable deviations arising from mi-
croscale phenomena (e.g., preferential flow, root distribu-
tion; Logsdon, 2009), and disparities imposed intentionally 
or unintentionally by management (Coelho and Or, 1996) 
can all contribute to the spatial variability of true soil water 
status. Moreover, multiple units of the same soil moisture 
sensor can report unequal values given equal true soil water 
status because the physical and electrical properties of the 
sensor hardware (Kelleners et al., 2005) or the soil disturb-
ance from sensor installation (Rothe et al., 1997) is not iden-
tical. If the variability in soil moisture sensor data is too large 
within a supposedly uniform field, the difficulty of precisely 
estimating mean true soil water status can be a major obsta-
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cle to the successful use of soil moisture sensors. This prob-
lem can hinder researchers from discerning differences be-
tween treatments and can hinder practitioners from making 
informed decisions. 

The magnitude of variability in soil moisture sensor data 
within macroscopically homogeneous environments has 
been found to vary jointly with the sensor model and with 
the surrounding environment (Schmitz and Sourell, 2000; 
Evett et al., 2009; Rosenbaum et al., 2010; Lo et al., 2020). 
The limitations in design and manufacturing can differ 
among sensor models, whereas the prominence of mi-
croscale phenomena can change with the surrounding envi-
ronment. In turn, the interaction of both factors can dictate 
the susceptibility of a sensor model to the influence of mi-
croscale phenomena. Therefore, each model—or at least 
each type—of soil moisture sensor should be examined spe-
cifically to characterize its data variability in an appropriate 
range of field conditions. 

Granular matrix sensors (GMS) can be used to estimate 
soil water tension by measuring the moisture-dependent 
electrical resistance of the encased porous material because 
this material is hydraulically connected to and thus ex-
changes moisture with the surrounding soil (Scanlon et al., 
2002). Previous research has investigated the data variability 
among multiple units of the same GMS model in several 
macroscopically homogeneous environments—in a temper-
ature-controlled pressure plate apparatus (McCann et al., 
1992), in repacked soil tanks (Sui et al., 2019), in a repacked 
and grassed soil tank (Shock et al., 1998), under outdoor turf 
in a loamy sand (Schmitz and Sourell, 2000), and under 
greenhouse vegetables in a layered and medium textured soil 
(Thompson et al., 2006). However, in macroscopically ho-
mogeneous environments involving agronomic crop produc-
tion, the data variability among multiple units of the same 
GMS model has not been commonly reported. 

For agronomic crops, GMS are typically installed in sets, 
each of which consists of multiple sensors that are in close 
horizontal proximity but are distributed at different depths 
within the managed root zone profile. Producers are often 
recommended to schedule irrigation by delaying water ap-
plication until the GMS set(s) reported a profile average soil 
water tension value that is drier than a predetermined thresh-
old (Irmak et al., 2016; Henry et al., 2018). Yet, some studies 
such as Tollner et al. (1991) and Schmitz and Sourell (2000) 
have claimed based on probability theory that a large number 
of sensor sets is necessary for successful irrigation schedul-
ing. Notwithstanding, irrigation scheduling with just one 
sensor set has been reported to reduce applied irrigation 
while maintaining or even improving crop yield relative to 
producer practice (Bryant et al., 2017; Spencer et al., 2019). 
Such results are partly attributed to the vast disparity be-
tween optimal management and the current practice of some 
producers. Nonetheless, the experimental evidence moti-
vates a revisit of the pertinent probability theory. 

The first objective of this article is to describe the varia-
bility in GMS data within two macroscopically homogene-
ous, fine textured soybean fields. The second and more 
important objective of this article is to delve into the impli-
cations of within-field variability in GMS data for irrigation 

scheduling. Specifically, traditional and alternate assump-
tions in the interpretation of this variability are elucidated 
and then are compared in terms of effect on the choice of 
sensor set number and irrigation triggering threshold for 
achieving a target level of irrigation adequacy. 

FIELD STUDY 
DATA COLLECTION 
Research Sites 

This article relied on GMS data from a field study at the 
Mississippi State University Delta Research and Extension 
Center. This field study was conducted in 2018 and 2019 on 
two contiguous rectangular fields (33.403°N, 90.935°W), 
each with a cropped area of 6 ha. Both fields were mapped 
as a Sharkey soil (Very-fine, smectitic, thermic Chromic 
Epiaquerts) by the Natural Resources Conservation Service 
soil survey (Soil Survey Staff, 2020). Analysis by the Mis-
sissippi State University Extension Service Soil Testing La-
boratory (Starkville, Miss.) reported a textural composition 
of 2% sand, 47% silt, and 51% clay for the top 0.76 m of 
soil. Other soil physical properties have not been measured. 

Both fields had been precision graded to a 0.1% slope 
back in 2009. Since then, the fields have been furrow irri-
gated and have received tillage by a disk harrow and/or by 
an integral disk bedder whenever deemed beneficial. In both 
years and on both fields, soybeans were planted at a rate of 
346,000 seeds ha-1 in a twin row configuration following 
soybeans. The row spacing was 0.18 m within each pair of 
twin rows and 0.84 m between pairs. The planting dates were 
18 May 2018 and 24 May 2019 on the eastern field (hereafter 
“A”) and were 2 May 2018 and 30 April 2019 on the western 
field (hereafter “B”). 

Granular Matrix Sensors 
Usually around three or four weeks after planting each year 

(with the exception of field B in 2019 because of delays by 
flooding), a set of Watermark Model 200SS (Irrometer Com-
pany, Riverside, Calif.) GMS was installed halfway between 
a pair of interior twin rows in each of 24 plots per field (fig. 1). 
Along the crop row direction, the distance from the higher end 
of a field to each of its 24 sensor set locations was ½- ⅔ of the 
150-m total crop row length. The sensor set at each location 
consisted of three individual sensors—one at a depth of 
0.20 m, one at a depth of 0.40 m, and one at a depth of 
0.60 m—that were also 0.2 m apart from each other along the 
crop row direction. For installing each sensor after it had been 
glued to a section of polyvinyl chloride (PVC) pipe, an elec-
trically powered auger was first used to create a vertical hole 
with the same diameter as the sensor-PVC assembly. A slurry 
of local soil was then poured into the hole, and the sensor-
PVC assembly was finally inserted to place the center of the 
sensor at the desired depth. Several days after installation, all 
sensors were connected to a non-commercial wireless data-
logger network (Fisher and Gould, 2012). The dataloggers 
converted sensor electrical resistance to soil water tension ac-
cording to the Shock et al. (1998) calibration equation for the 
Watermark Model 200SS while assuming a constant sensor 
temperature of 25°C. At the start of each hour, the base station 
retrieved and recorded the instantaneous soil water tension 



 

36(4): 437-449 
 439 

value from each sensor. Throughout this article, tension refers 
to the additive inverse of soil water pressure, so tension in-
creases from low to high as a soil dries. 

Only a subset of the original dataset in each site-year was 
appropriate for analyzing within-field variability in GMS 
data (table 1). This subset began at least a week after sensor 
installation to allow sensors to equilibrate with surrounding 
soil. This subset ended the day before the first irrigation of 
that site-year because the various sensor sets received differ-
ent irrigation treatments in the field study. Carryover of irri-
gation treatment effects between years was not a concern 
because rainfall was abundant during the off-season and the 
early season. A sensor set was omitted entirely if its data 

were determined to be blatantly unrealistic or contained 
multi-day gaps owing to problems in the wireless datalogger 
network. To simplify comparisons amidst sub-day data gaps, 
the remainder of the article focused on the maximum tension 
value of each sensor on each calendar date, noting that the 
daily maximum is typically the most important value for ir-
rigation scheduling. Throughout this article, the profile av-
erage tension of a sensor set was calculated as the 
unweighted arithmetic mean of the tension values reported 
by its three sensors (at 0.20, 0.40, and 0.60 m, respectively). 
All computations were performed in Excel 2010 (Microsoft 
Corporation, Redmond, Wash.). 

Weather Conditions 
Weather conditions during the analyzed part of each site-

year are summarized in table 1. Daily rainfall was measured 
by a manual rain gauge at the northwest corner of field B. 
Daily short reference evapotranspiration (ETo; Allen et al., 
1998) was calculated by the Mississippi State University 
Delta Agricultural Weather Center (http://deltaweather.ex-
tension.msstate.edu) from its Stoneville manual weather sta-
tion located 4 km northeast of the two fields. In both 2018 
and 2019, the GMS data from field A could be divided into 
two distinct drying periods. The rain events on 19 and 
21 June separated the two periods in 2018, whereas the rain 
events on 14-16 July separated the two periods in 2019. In 
both years, the GMS data from field B consisted of essen-
tially one drying period. 

DATA DESCRIPTION 
Temporal Trends 

The temporal trends in the GMS data matched the expec-
tations that tension should decrease with rainfall and in-
crease with crop water use (fig. 2-3). Light rains decelerated 
the rate of tension increase, whereas heavy rains decreased 
tension sharply. More frequently at shallower depths, ten-
sion at all locations would fall within a narrow tension range 
between 8 and 12 kPa in response to a heavy rain, resulting 
in very low within-field variability. As drying resumed, the 
tension differences among locations began to expand. The 
daily rate of tension increase at some locations deviated 
drastically from the field average daily rate, sometimes even 
by a factor of two (faster or slower), which caused within-
field variability to widen. 

Temporal Stability 
To examine the temporal stability of the within-field var-

iability in GMS data, Spearman’s rank correlation coeffi-
cient was calculated between the location rankings by depth-
specific tension on each date and the location rankings by 
depth-specific tension on the date with the highest profile 
average tension. This driest date was the final date of the da-
taset in all site-years except field A in 2019, when it occurred 
on 14 July at the end of the first drying period. If tension 
tended to be higher at some particular locations and lower at 
some other particular locations, then the rankings on most 
dates would be similar to the rankings on the driest date, 
which would result in rank correlation coefficient values ap-
proaching 1. 

 

Figure 1. Diagram of sensor set locations in the field study; each rec-
tangular cell represents an 8.1 m wide × 150 m long plot, and sensor
sets that were included and excluded from analysis were indicated with
“Y” and “N”, respectively. 
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Table 1. The subset of granular matrix data from each site-year that was used in this article. 
Site-Year Field A in 2018 Field A in 2019 Field B in 2018 Field B in 2019 
First day 16 June 22 June 5 June 21 June 
Last day 3 July 25 July 12 June 9 July 
Total sensor sets 14 15 23 16 
Average ETo (mm d-1) 5.2 5.1 5.5 5.1 
Dates with rainfall > 2.5 mm 19 June (16 mm) 24 June (119 mm) None 24 June (119 mm) 

 21 June (18 mm) 29 June (4 mm)  29 June (4 mm) 
 29 June (6 mm) 4 July (5 mm)  4 July (5 mm) 
  7 July (7 mm)  7 July (7 mm) 
  14-16 July (114 mm)   

 
Field A in 2018 Field A in 2019 

  

  

  

  

Figure 2. Soil water tension at the three sensor depths individually (subfigures a-f) and averaged (subfigures g-h) within field A among 14 locations 
in 2018 and among 15 locations in 2019; lower tension values are wetter, and higher tension values are drier. 
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Except within several days after a heavy rain, Spearman’s 
rank correlation coefficient was generally above 0.5 for all 
depths (fig. 4). The coefficient was especially high within a 
few days before the driest date but was increasing over time 
even during drying periods that did not culminate in the dri-
est date. The depth exhibiting the highest temporal stability 
was inconsistent among the four site-years. Overall, the re-
sults suggest that deviations from the field mean by sensor 

locations were moderately systematic within a site-year. Fur-
ther research could explore whether the tendency for 
above/below average tension at a sensor location carries over 
between years (Van Pelt and Wierenga, 2001). 

Probability Distribution 
Fitting the within-field variability in GMS data to a 

known type of probability distribution would benefit the de-
scription of this variability. As the variability on the driest 

 
Field B in 2018 Field B in 2019 

  

  

  

  

Figure 3. Soil water tension at the three sensor depths individually (subfigures a-f) and averaged (subfigures g-h) within field B among 23 locations 
in 2018 and among 16 locations in 2019; lower tension values are wetter, and higher tension values are drier. 
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date is expected to be most similar to the variability on an 
actual irrigation decision date, a quantile-quantile plot was 
constructed to evaluate the normality of the GMS data on the 
driest date of each site-year (fig. 5). For field A in 2018 and 
2019, the fit was generally satisfactory (R2 > 0.95), with the 

largest discrepancies occurring at intermediate values of cu-
mulative probability (i.e., near the field mean). For field B 
in 2018 and 2019, the fit was quite good (R2 > 0.98). Overall, 
within-field variability in GMS data appeared to be approx-
imately normal. Approximate normality of tension data was 
reported by Schmitz and Sourell (2000) on most measure-
ment dates and by Van Pelt and Wierenga (2001) on some 
measurement dates. 

Mean-Variance Relationship 
A normal distribution can be specified using just two pa-

rameters—its mean and its variance. If a relationship was 
found between the mean and the variance of GMS data, then 
the normal distribution of GMS data could be predicted from 
the mean alone. Indeed, sample variance in tension increased 
with increasing sample mean tension for every depth and for 
the profile average in every site-year (fig. 6). This observa-
tion agrees with figures 2-3, where the spread in tension data 
widened as drying progressed. Positive association between 
mean and variance in tension was also reported by Schmitz 
and Sourell (2000), Van Pelt and Wierenga (2001), and 
Thompson et al. (2006). In the present field study, the rela-
tionship was generally linear, but the exact slope and inter-
cept differed among depths and among site-years. The 
magnitude of the regression slope in figure 6d is about ⅓-½ 
the magnitude of the regression slopes in figures 6a-c, so the 
within-field variability in profile average tension was clearly 
smaller than the within-field variability in tension at individ-
ual depths. 

 

  

  

Figure 4. Spearman’s rank correlation coefficient between the location rankings by soil water tension on each measurement date and the location
rankings by soil water tension on the driest date (marked by the vertical dashed line) in a site-year; the coefficient approaches 1 as the two sets of 
rankings become more similar. 

 

Figure 5. Scatterplot of expected cumulative distribution (assuming
normality) vs. observed cumulative distribution (according to Weibull
plotting position) for profile average soil water tension among sensor
set locations on the driest date in each site-year; datasets that follow
closely the dashed 1:1 line appear to be normally distributed. 
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To obtain a preliminary idea of whether the regression 
equations that were fitted to pooled data across site-years 
were valid, literature values of standard deviation in tension 
were used for comparison. At a mean tension of 30-40 kPa 
at a depth of 0.30 m, Hendrickx et al. (1994) reported stand-
ard deviation values of 4.3-12.3 kPa among 15-34 locations. 
The regression equations in figure 6a and 6b for depths of 
0.20 and 0.40 m predict standard deviation values of 12.2 
and 17.6 kPa given a mean of 35 kPa. At a mean profile av-
erage tension of 45-55 kPa across three depths, Van Pelt and 
Wierenga (2001) reported standard deviation values of 10.1-
12.9 among 52-57 locations. The regression equation in fig-
ure 6d for the profile average across three depths predicts a 
standard deviation of 12.2 kPa given a mean of 50 kPa. Alt-
hough such checks could not be performed at higher mean 
tension because the pertinent previous studies were con-
ducted using tensiometers, the regression equations seem to 

provide reasonable estimates of variance in tension for mac-
roscopically homogeneous fields. 

IMPLICATIONS FOR IRRIGATION 

SCHEDULING 
CONCEPTUAL FRAMEWORK 
Relevant and Irrelevant Variability 

The implications of within-field variability in soil mois-
ture sensor data for irrigation scheduling hinge on the inter-
pretation of this variability. Evett et al. (2009) explained and 
demonstrated how this variability consists of 1) variability 
that is relevant to the purpose of measurement and 2) varia-
bility that is irrelevant to this purpose. This concept is high-
lighted in equation 1. For the purpose of irrigation 
scheduling, relevant variability refers to variability at the 
spatial scale where nonuniformity in soil water status affects 

 

  

  
Figure 6. Within-field variance versus within-field mean of soil water tension for the three sensor depths individually (subfigures a-c) and for the 
profile average (subfigure d). 
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crop yield. Relevant variability is a property of the environ-
ment being measured and is thus independent of the sensor 
model being used. Lumping together all remaining variabil-
ity—regardless of attribution to phenomena at finer spatial 
scales, to intrinsic issues of a sensor model, and/or to any 
interactions between the two factors—irrelevant variability 
is dependent on both the environment being measured and 
the sensor model being used. 

 
-       

    

Within Field Variability in Sensor Data

Relevant Variability Irrelevant Variability




 (1) 

Simplifications 
Regrettably, it is infeasible in practice to partition sensor 

data variability into relevant and irrelevant variability for 
each sensor model in each environment through thorough 
experimentation. Without prior knowledge, a user might 
adopt one of two simplifying assumptions. The traditional 
view on sensor data variability is exemplified by the discus-
sion in Schmitz and Sourell (2000). It assumes relevant var-
iability to be negligible and treats all sensor data variability 
as irrelevant variability. Thus, this view concludes that there 
is one relevant profile average tension value (or volumetric 
water content) in a field at a given time, which can be more 
precisely estimated by using a larger number of sensor sets. 
An alternate view is completely the opposite. It assumes ir-
relevant variability to be negligible and treats all sensor data 
variability as relevant variability. Thus, this view concludes 
that relevant profile average tension (or volumetric water 
content) is a spatial distribution (rather than a single value), 
which itself is uninfluenced by sensor set number but whose 
mean can be more precisely estimated by using a larger num-
ber of sensor sets. 

General Case 
The chosen interpretation, in turn, dictates how sensor set 

number and irrigation triggering threshold are thought to af-
fect irrigation adequacy when scheduling irrigation. The 
general case, described by equation 2 and figure 7a, covers 
the full range of possibilities spanned by the traditional view 
on one extreme and the alternate view on the opposite ex-
treme. Readers should note that this article adheres to the 

convention that uppercase symbols represent random varia-
bles whereas lowercase symbols represent specific values. In 
the conceptual framework of this article, the magnitude by 
which the irrigation triggering threshold xn is lower than the 
critical water stress threshold c acts as insurance against 
within-field variability in sensor data and serves as the crop 
water supply during multi-day irrigation cycles. 

 
2

1 2sensor
n relevantA F c | F P | x , ,

n


         
 (2) 

where 
A  =  expected probability distribution of the area  
  fraction (unitless) with adequate soil water  
  under the irrigation system, 
F(x|y,z)  =  function returning the cumulative probability  
  (unitless) of a random variable being less than  
  the value x if this variable follows a normal  
  distribution with mean y and variance z, 
c  =  critical water stress threshold (kPa), 
F-1(p|y,z)  =  function returning the value (same units as y)  
  corresponding to a cumulative probability p for  
  a normal distribution with mean y and variance z, 
P  =  a random variable (unitless) that follows a 
  uniform distribution bounded between 0 and 1, 
n =  total number (unitless) of sensor sets, 
xn  =  sample mean profile average tension (kPa)  
  among n sensor sets, at which irrigation is  
  triggered, 
σ2

sensor  =  within-field variance in profile average tension  
  (kPa2) as reported by sensor data, 
σ2

relevant  =  within-field variance in profile average tension  
  (kPa2) at the relevant spatial scale (i.e., the  
  scale at which tension nonuniformity affects  
  crop yield). 

Traditional And Alternate Views 
With the traditional view, the assumption of σ2

relevant = 0 
transforms equation 2 and figure 7a into equation 3 and fig-
ure 7b, respectively. Mathematically, A in equation 2 be-
comes a discrete distribution where the probability of A = 1 
equals a in equation 3 and where the probability of A = 0 
equals 1 – a. The expected value of A is then equal to a in 

       

Figure 7. Conceptual diagrams for a) the general case and b) the traditional view of within-field variability in soil water tension data; subfigure a
also describes the alternate view. 
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equation 3. Conceptually, the traditional view allows only 
two possible scenarios at a given point in time. In the ab-
sence of relevant variability, the land under an irrigation sys-
tem is either entirely adequate in soil water (i.e., all below 
the critical water stress threshold c) or entirely inadequate in 
soil water (i.e., all above the critical water stress threshold 
c). Therefore, a in equation 3 represents the likelihood of ad-
equacy and is increased by increasing sensor set number if 
xn < c and by lowering the irrigation triggering threshold xn. 

 
2
sensor

na F c | x ,
n

 
   

 
 (3) 

where a = likelihood (unitless) of the adequate area fraction 
equaling 1 under the irrigation system 

The alternate view shares figure 7a with the general case. 
Substituting the assumption of σ2

relevant = σ2
sensor into equation 

2, equation 4 is obtained for the alternate case. Lowering the 
irrigation triggering threshold shifts the curve and the grey 
band all to the left, which shifts the distribution A higher. 
Increasing sensor set number reduces uncertainty in mean 
relevant tension and thus shrinks the width of the grey band 
and the spread in A. However, the shape of the curve and of 
the grey band is controlled by relevant variability and cannot 
be modified by sensor set number. 

 
2

1 2sensor
n sensorA F c | F P | x , ,

n


         
 (4) 

Additional Assumptions 
The present analysis assumed that within-field variability 

in tension sensor data follows normal distributions. As re-
viewed in the previous section, approximate normality in 
tension sensor data is commonly reported in the literature. 
This assumption also removes the need to check for normal-
ity using the small number of sensors that are prevalent in 
practice. The overall conceptual framework is compatible 
with any type of probability distribution, but the specific 
equations would obviously need to be modified if within-
field variability in tension sensor data followed non-normal 
distributions. 

The present analysis also assumed that the relevant 
within-field variance in tension sensor data can be predicted, 
which is like power analysis in experimental design. This as-
sumption is especially convenient because it avoids the prob-
lem of estimating variances using a small number of sensors 
and also allows the use of the normal (i.e., z) distribution ra-
ther than the Student’s t distribution. Preliminary results in 
the previous section suggest that predicting variances might 
be feasible. Nevertheless, further research on the within-
field variance in tension sensor data—with different combi-
nations of sensor models and environments—would be re-
quired to support fully the operational prediction of these 
variances. 

APPLICATION 
Procedures 

Equations 3 and 4 were applied to assess the quantitative 
impact of sensor set number and irrigation triggering 

threshold on irrigation adequacy when scheduling irrigation 
using GMS. The value a in equation 3 was computed 
directly, while the distribution A in equation 4 was computed 
using a 10000-point approximation for the distribution P. 
The value of σ2

sensor was estimated using the regression 
equation in figure 6d, which is reproduced below as equation 
5. For σ2

sensor in equation 3 and for the first instance of σ2
sensor 

in equation 4, the sample mean tension xn was plugged into 
equation 5. Yet for the second instance of σ2

sensor in equation 
4, each result of the inverse cumulative distribution function 
F-1—representing a possible relevant mean tension value—
was plugged into equation 5. Extrapolating equation 5 
beyond the range of tension from which it was developed 
(<84 kPa) could be risky. However, figure 6a, which 
witnessed a wider range of tension (<131 kPa), suggests that 
the linear relationship between mean and variance should 
continue at higher tension values. The critical water stress 
threshold was assumed to be 100 kPa loosely based on 
Bryant et al. (2017). 

 2 3 92 47sensor . x    (5) 

where x = mean profile average tension (kPa) 

Traditional View of Variability 
Figure 8a illustrates the impact of sensor set number and 

irrigation triggering threshold on irrigation adequacy 
assuming single-day irrigation cycles and the traditional 
view of GMS data variability. Adequacy likelihood 
increases at a decreasing rate as the irrigation triggering 
threshold decreases away from the critical water stress 
threshold. Adequacy likelihood increases most with 
increasing sensor set number when sensor set number equals 
1 and irrigation triggering threshold is moderately below the 
critical water stress threshold. The curves in figure 8a are 
slightly asymmetrical because the variance was modeled to 
increase with the mean (eq. 5). 

Alternate View of Variability 
Figures 9a-c illustrate the impact of sensor set number 

and irrigation triggering threshold on irrigation adequacy 
assuming single-day irrigation cycles and the alternate view 
of GMS data variability. Expected mean adequacy increases 
at a decreasing rate as the irrigation triggering threshold 
decreases away from the critical water stress threshold. The 
expected adequacy distribution is widest when sensor set 
number equals 1 and irrigation triggering threshold is near 
the critical water stress threshold. Sensor set number exerts 
a slight increasing effect on expected mean adequacy when 
the irrigation triggering threshold is moderately below the 
critical water stress threshold. This effect is attributed to the 
strong left skew of the expected adequacy distribution within 
this range of irrigation triggering thresholds. As sensor set 
number increases, expected mean adequacy is consequently 
influenced more dramatically by the reduction in the long 
tail of low adequacy values than by the reduction in the short 
tail of high adequacy values. Expected mean adequacy is up 
to 0.07 higher for 10 sensor sets than for 1 sensor set within 
this range of irrigation triggering thresholds. 
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Single-Day Comparisons 
The two opposing views of within-field variability in 

GMS data could be compared in terms of how sensor set 
number (n) changes the irrigation triggering threshold for 
achieving a target value of irrigation adequacy. A higher 
irrigation triggering threshold for the same irrigation 

adequacy is desirable because irrigation costs and 
overirrigation risks are reduced when depleting more stored 
soil water and leaving more capacity for holding future 
rainfall. Assuming the traditional view, increasing sensor set 
number from 1 to 10 increases the irrigation triggering 
threshold from 86 to 95 kPa for an adequacy likelihood of 
0.80, from 79 to 93 kPa for an adequacy likelihood of 0.90, 

 
 single-day irrigation cycles  14-day irrigation cycles  

                                     

Figure 8. Adequacy likelihood for different numbers of sensor sets (n) assuming a critical water stress threshold of 100 kPa and the traditional
view of within-field variability in granular matrix sensor data. 

 
single-day irrigation cycles 

   
14-day irrigation cycles 

   
Figure 9. Expected mean and middle 80% of irrigation adequacy for different numbers of sensor sets (n) assuming a critical water stress threshold
of 100 kPa and the alternate view of within-field variability in granular matrix sensor data. 
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and from 66 to 87 kPa for an adequacy likelihood of 0.99 
(fig. 8a). Assuming the alternate view, increasing sensor set 
number from 1 to 10 increases the irrigation triggering 
threshold from 81 to 85 kPa for an expected mean adequacy 
of 0.80, from 72 to 78 kPa for an expected mean adequacy 
of 0.90, and from 54 to 64 kPa for an expected mean 
adequacy of 0.99 (figs. 9a and 9c). The increases in irrigation 
triggering threshold from increasing sensor set number are 
roughly twice as large assuming the traditional view than 
assuming the alternate view. This finding may seem 
counterintuitive initially but can be explained as follows. 
According to the traditional view that there is only one 
relevant tension value, a large sensor set number provides a 
precise estimate of this particular value and enables near-
perfect irrigation scheduling. Yet according to the alternate 
view that there is a spatial distribution of relevant tension 
values, increasing sensor set number provides a more precise 
estimate of the mean but never eliminates the presence of 
high relevant tension values that always drag down expected 
mean adequacy. 

Multi-Day Comparisons 
In production settings, multi-day irrigation cycles are 

common. The graphs representing single-day irrigation 
cycles (figs. 8a and 9a-c) can be used to develop graphs 
representing multi-day irrigation cycles. Given an irrigation 
triggering threshold at the start of the multi-day cycle and an 
expected daily rate of tension increase over the k days of the 
cycle, a series of k relevant tension values (traditional view) 
or mean relevant tension values (alternate view) can be 
generated, each of which is the effective irrigation triggering 
threshold on its corresponding day. By superimposing the 
single-day adequacy likelihood (traditional view) or 
expected adequacy distribution (alternate view) for each of 
the k irrigation triggering thresholds, the cycle-wide 
likelihood or distribution can be calculated. Here, the length 
of the irrigation cycle was assumed to be 14 days, and the 
expected daily rate of tension increase was assumed to be 5 
kPa d-1 loosely based on the field study. If the irrigation 
triggering threshold at the start of the cycle was 20 kPa, for 
example, the 14 associated daily irrigation thresholds were 
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, and 85 kPa. 

Figures 8b (traditional view) and 9d-f (alternate view) 
illustrate the impact of sensor set number and irrigation 
triggering threshold on irrigation adequacy assuming 14-day 
irrigation cycles. Assuming the traditional view, increasing 
sensor set number from 1 to 10 increases the irrigation 
triggering threshold from 45 to 47 kPa for an adequacy 
likelihood of 0.80 and from 33 to 39 kPa for an adequacy 
likelihood of 0.90. Assuming the alternate view, increasing 
sensor set number from 1 to 10 increases the irrigation 
triggering threshold from 42 to 44 kPa for an expected mean 
adequacy of 0.80 and from 28 to 32 kPa for an expected 
mean adequacy of 0.90. The increases in irrigation triggering 
threshold from increasing sensor set number are smaller for 
14-day cycles than for single-day cycles, especially if 
assuming the traditional view. Because a long cycle is 
typically paired with a low irrigation triggering threshold, a 
substantial portion of a long cycle is associated with 
relatively low variability (eq. 5) and relatively high 

adequacy likelihood (traditional view) or expected mean 
adequacy (alternate view) regardless of sensor set number. 
By including such days when the impact of sensor set 
number on adequacy is minimal, the cycle-wide adequacy 
likelihood or expected mean adequacy becomes relatively 
insensitive to sensor set number. Interestingly, the 
differences in irrigation triggering threshold between the 
traditional and alternate views are also smaller for 14-day 
cycles than for single-day cycles. 

Expected 10th Percentile Adequacy 
Thus far, target irrigation adequacy had been specified in 

terms of expected mean adequacy when assuming the 
alternate view. Because some users may be most concerned 
about the potential for low adequacy when scheduling 
irrigation, specifying target adequacy in terms of expected 
10th percentile adequacy was also explored. For single-day 
cycles, increasing sensor set number from 1 to 10 increases 
the irrigation triggering threshold from 75 to 88 kPa for an 
expected 10th percentile adequacy of 0.60 and from 61 to 
73 kPa for an expected 10th percentile adequacy of 0.80 
(figs. 9a and 9c). For 14-day cycles, increasing sensor set 
number from 1 to 10 increases the irrigation triggering 
threshold from 41 to 54 kPa for an expected 10th percentile 
adequacy of 0.60 and from 25 to 38 kPa for an expected 10th 
percentile adequacy of 0.80 (figs. 9d and 9f). Here, the 
increases in irrigation triggering threshold from increasing 
sensor set number were similar between single-day cycles 
and 14-day cycles. Additionally, these increases based on 
expected 10th percentile adequacy are distinctly larger than 
the increases based on expected mean adequacy. Increasing 
sensor set number reduces the spread of the expected 
adequacy distribution regardless of irrigation cycle length, 
which explains the consistent benefit of larger sensor set 
numbers to irrigation scheduling based on expected 10th 
percentile adequacy. 

Final Thoughts on the Two Views 
The article has not championed either the traditional view 

or the alternate view of within-field variability in GMS data. 
Instead, it has faithfully clarified both views and the 
respective implications on irrigation scheduling. Proving the 
irrelevance of all sensor data variability is just as difficult as 
proving the relevance of all sensor data variability. Data 
variability among GMS has been reported to be similar to 
data variability among tensiometers (Thompson et al., 
2006), and doubling the surface area of regular tensiometer 
cups decreased the standard deviation in single-depth 
tension by less than 0.5 kPa on average (Hendrickx et al., 
1994). The scarce evidence suggests that at least some of the 
GMS data variability within macroscopically homogeneous 
fields might be relevant for irrigation scheduling, so the 
reality is most likely partway between the two extreme 
views. 

CONCLUSION 
This article reported a few key findings regarding the 

implications of within-field variability in GMS data for 
irrigation scheduling. If all sensor data variability is assumed 
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to be irrelevant for irrigation scheduling, the benefit of 
additional sensor sets decreases dramatically as irrigation 
cycles lengthen (see sub-subsection “Multi-Day 
Comparisons”). For shorter irrigation cycles and adequacy 
targets based on averages, the benefit of additional sensor 
sets is smaller if all sensor data variability is assumed to be 
relevant rather than irrelevant for irrigation scheduling (see 
sub-subsection “Single-Day Comparisons”). If all sensor 
data variability is assumed to be relevant for irrigation 
scheduling, the benefit of additional sensor sets does not 
decrease with lengthening irrigation cycles when adequacy 
targets are based on possible lows rather than averages (see 
sub-subsection “Expected 10th Percentile Adequacy”). 

While a large number of sensor sets is certainly helpful to 
provide redundancy and enhance precision, just one sensor 
set per irrigation system can still be an extremely worthwhile 
initial step for irrigation scheduling in many contexts. A 
significant portion of irrigated agronomic crops are grown in 
medium to fine textured soils (i.e., lower water stress 
sensitivity per unit of tension) and under irrigation systems 
with multi-day cycles. Assuming multiple measurement 
depths and partial relevance of sensor data variability, the 
irrigation triggering threshold to achieve an expected mean 
adequacy target might be just slightly lower for one sensor 
set than for a large number of sensor sets. Therefore, on-farm 
investments in the purchase, installation, and maintenance of 
numerous sensor sets might be difficult to justify for 
resource conservation alone in the absence of substantial 
financial and/or legal penalties for overirrigation. Because 
many producers do not yet use any irrigation scheduling tool, 
promoting the adoption of the first set of soil moisture 
sensors per irrigation system may be a higher priority than 
promoting the adoption of additional sensor sets. 

There is an important caveat though. In this article, data 
from all suspicious sensor sets in the field study were 
carefully eliminated. In practice, such quality control 
requires the user and/or service provider to possess sufficient 
expertise and to pay sufficient attention. Problems can 
generally be caught long before the irrigation season if 
installations are permanent or occur shortly after crop 
emergence. Without timely assessment and corrective action 
(e.g., repair, replacement, relocation), the resulting data will 
be misleading rather than beneficial for irrigation 
scheduling. 

Extra considerations would be needed to construct a 
comprehensive decision support tool to inform the selection 
of an appropriate sensor set number and an appropriate 
irrigation triggering threshold for a specific situation. First, 
the within-field variability of soil moisture sensor data 
should be evaluated for more sensor models in more 
environments (Lo et al., 2020). Second, how the method and 
nonuniformity of irrigation applications alter this variability 
(Saddiq et al., 1985; Clemmens, 1991) should be better 
understood. Third, any significant temporal changes in the 
critical water stress threshold as a result of weather and/or 
growth stage (Sadras and Milroy, 1996; Thompson et al., 
2007; Pringle et al., 2019) should be modeled. Fourth, a 
profit response curve that includes irrigation costs and both 
underirrigation and overirrigation yield losses should be 
incorporated. All colleagues are invited to build on the 

probabilistic conceptual framework in this article to advance 
practical irrigation scheduling. 
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