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Solutions and Hints to Selected Problems
The Cartoon Guide to Calculus

1. all t ≠ ⁄.

2. all b except b = 4 and b = –9.

3. all x ≠ ±1

4. the interval [–2, 2]

5. all ˇ ≠ ±(√Øπ)/3

6. all x ≠ 0

7. the interval (–ˆ, 0)

8. all real numbers

9. the interval (1, ̂ )

10a. 

d

c

d

c

10d. 

d

c
y = f(x–c)

y = –f(x)

y = f(2x)

10e.

Chapter 0. 11b. deepest inside: w(x) = x2 – 1;
     middle: v(w) = ln w
  outside: u(v) = √Øv
 h(x) = u(v(w(x)))

11c. inside: g(x) = ex ; 
 outside: f(x) = 4t3 + t2 + 6t – 99
 h(x) = f(g(x))

12. let y = x + c.  then

    P(y) = b0 + b1(x + c) + b2(x + c)2... + bn(x + c)n

expanding all the binomials and collecting like terms 
results in a polynomial

    a0 + a1x + a2x2... + anxn 

this is P(x + c), so

    P(x) = a0 + a1(x – c) + a2(x – c)2... + an(x – c)n 

note that an = bn.

13. sorry, but this quasi-incoherent problem should 
be ignored. try it with this function instead, which is 
what I intended to write (sigh...):

f(x) = x2  for  0 < x ≤ 1
 
f(x) = (x – 1)2 – 1   for  1 < x < 2

this function is one-to-one but not increasing 
on its whole domain.

14.

1

x

ˇ

15. doubling time is 
ln 2  years.

                        Ø r
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Chapter 1.
1. limit is 6

2. limit is 6 + C

3. limit is 1/4

4. limit is –ˆ

5. limit is 6

6. limit is 0, as the denominator goes to ˆ.

7. substituting y = 1/(x – 1) makes the 
expression (after much simplification) equal to

13. choose the interval J so that if x is in J, then

8. v'(t) = tan t sec t

9. F'(x) =    –1
             Øx(lnx)2  

11. Q'(x) = –529    2x3 – x2 + 1
                     Ø(x3 – x2 – x – 1)2

13a. velocity at time t is A'(t) = –9.8t + 30. plug 
in t = 3 to get A'(3) = (–9.8)(3) + 30 = 0.6 m/
sec.

13b. here A'(t) = –9.8t + 45. the hint suggests 
that at the top of its flight, the ball’s velocity is 
zero. set A'(t) = 0 and solve for t. you should 
find that the ball reaches its highest point at 
around t = 4.6 seconds. Plug that into A(t) to 
find the maximum height. the total time of flight 
is 9.2 seconds: 4.6 seconds going up, and 4.6 
seconds coming down.

14a. very sorry! solving this depends on material 
in the next chapter! the derivative of T is

12. take I to be any interval around L of 
radius < |L|/2. by definition of the limit, 
there must be an interval J around a on 
which |f(x) – L| < |L|/2. but

|L| – |f(x)| ≤ |f(x) – L|  so

|L| – |f(x)| < |L|/2  from which

|f(x)| > |L| – |L|/2 = |L|/2

|f(x)| > |L|/2  and  |f(x) – L| < ´L2
                                                             Ø 2

Chapter 2.
1. f'(x) = 3x2 + 5

3. P'(x) =   1  (1 + ⁄ln x)
             Ø√Øx

5. h'(x) = –sin x + 5 x–4/3

                        Ø3

6. R'(x) =    –2
             Ø(x – 1)2

3 +  1
      Øy

the limit as yåˆ is 3.

8. limit is 2

9. limit is ˆ

10.  x sin 1  ≤ |x|
            Øx

     x sin 1  ≥ –|x|
            Øx
limit as xå0 must be 0.

T'(t) = (250)(0.46) e–0.46t = 115e–0.46t

plug in values of t to find the rate of 
heating. for instance,

T'(100) = 115e–46, a very small number!

14b. this can be solved without differentiating. 
the answer is

t = ln 250  é 12 minutes
     Ø 0.46

15a. double-sorry! taking this derivative also 
requires the chain rule, covered in chapter 3. 
the trail’s slope, A'(x), is

A'(x) = 0.3 + (0.3)sin( x  ) + (0.3 )cos( x  )
                           Ø20      Ø20      Ø20

17b. assume f is even. then 

f'(–x) = Ô f(–x + h) – f(–x)
                Ø        h 

        = Ô f(x – h) – f(x)
                 Ø       h 

        = Ô f(x + h) – f(x)  = –f'(x)
                 Ø      –h
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Chapter 3.
1. h(u) = f(g(u)) = cos2 u,  v(x) = g(f(x)) = cos(x2)

   h'(u) = –2sin u cos u,   v'(x) = –2xsin (x2)

3a. f'(t) = ⁄(2t + 1)(1 + t + t2)–1/2

3b. g'(x) = –100sin x cos x (cos2x – sin2x)24

3d. P'(r) = 20r(r2 + 7)9

3h. F'(x) = ⁄e
x–a

                          
Ø 2

3i. error! should be u(t)! 

    u'(t) = 6t3(t4 + 7)1/2

3k. R'(x) = – 10(t + 1)4

                 Ø (t – 1)6

5a. ln f(x) = 5ln x + x – ‹ln(1 + x)

 f'(x) =  5  + 1 –     1
 Øf(x)     Øx          Ø1 + x

f'(x) = ( 5  + 1 –     1    ) x5e x(1 + x)–1/3

           Øx          Ø1 + x

        =  x2 + 13x + 15  x5e x(1 + x)–1/3

           Ø  3x(x + 1)

5b. g'(x) =   1  (⁄ln x + 1)x√Øx

               Ø√Øx

6a. f–1(y) = arcsin (y – 2)

6c. f–1(y) = 1 ± √Øy

7. g(f(x)) = 1/f(x)

9a. flea  b. mouse, not flea  c. neither  
d. mouse, not flea  e. mouse, not flea   
f. neither   g. mouse, not flea   h. flea

Chapter 4.

1. h' =  π(R – h)2 – V'
         Ø      πR2

3. start with the basic circle relations:

C = 2πr,   A = πr2

from these,

C2 = 4πA,   so   A' = CC'/2π

4. when y = 12, y' = 3/4 meters per second.

5. 

d

x

25

B

C

let x be the snail’s distance from corner B. 
the problem states that x'(t) = –1 (negative 
because the distance is getting smaller). also:

d2 = x2 + 252    so

dd' = xx'

when x = 15, then,

d = √Ø225 + 625 = √Ø950 ,   and

d' = –    15     é  0.49 cm/sec. 
         Ø√Ø950
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Chapter 5.
1a. x = –⁄ is a minimum.

1c. h'(t) = 6t2 – 6t – 36, which can be factored:

    h'(t) = 6(t – 3)(t + 2)

t = 3 is a minimum, t = –2 a maximum. 

1e. F'(ˇ) = cosˇ – sin ˇ. this is zero when 
cosˇ = sinˇ, i.e., when the angle ˇ is either 
π/4, (π/4) + 2π, (π/4) + 4π, etc., where

sinˇ = cosˇ = ⁄√Ø2 , or 5π/4, (5π/4) + 2π, 
etc., where sinˇ = cosˇ = –⁄√Ø2 .

F'' = –F, so

F''(π/4) = –√Ø2 ,  F''(5π/4) = √Ø2

so the maxima are the points

ˇ = (π/4) ± 2πn,  n = 0, 1, 2, ...

and the minima are the points

ˇ = (5π/4) ± 2πn,  n = 0, 1, 2, ...

1f. try implicit differentiation for this one!

5. you were asked for the lowest-cost route 
across a pond from (1, 0) to (–1, 0), when 
construction on land is cheaper than building 
across water.

(–1, 0)

P

D
ˇ

(1, 0)
x

=cos ̌

the problem is something of a trick question, as 
we’ll see. there are two basic ways to solve it, 
and the difference between them illustrates an 
important point about how to approach math 
problems.

First, let’s take the direct approach, using the 
formulas and techniques laid out in recent 
chapters. warning: hairy algebra ahead!

the cost per unit length over land was given as 
$4, and over water as $5. to make the algebra a 
little simpler, let r be the ratio of land cost per 
unit to water cost per unit: in this case r = 4/5. 
we can always assume r < 1. otherwise, just build 
straight across the water!

the problem can be set up with either x or ˇ 
as the variable. let’s use the angle, as was 
suggested in the book.

we can write the cost as 

C(ˇ) = rˇ + D

because D is the length of road over water, and 
ˇ is the length of the arc. (actually, C is only 
1/5 of the cost, but minimizing this will minimize 
the cost also, won’t it?)

by the pythagorean theorem,

(1)   D2 = 2 + 2cosˇ

we seek critical points of the cost, i.e., values of 
ˇ such that C'(ˇ) = 0. now

(2)  C'(ˇ) = r + D'(ˇ)

Find D' by implicit differentiation of equation (1).

(3)  D' = –sinˇ
            Ø  D

A2 = 4 – x2,  so  AA' = –x,  A' = – x
                                             ØA

this can be zero only when x = 0, and it is 
fairly obvious that this must be a maximum.

1h. same maxima and minima as problem 1e.

3. if one side of the rectangle is x, and 
the perimeter is P, then the adjacent side is 
(P/2) – x, and the area, as a function of x, is

A(x) = x(P – x)
            Ø2

this has a maximum when x = P/4.

4a. T = v0sinˇ
           Ø 9.8

4b. D'(ˇ) = v0
2  

(cos2ˇ – sin2ˇ)
               Ø4.9

this is zero when cos ˇ = ±sin ˇ, i.e., when

ˇ = π/4, 3π/4, etc., in other words, when the 
catapult is aimed upward at half a right angle. 
Note that this does not depend on v0!!
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At a critical point, then, where C' = 0,

(4)  D'(ˇ) = –r   or   
–sinˇ  = –r   or

                             Ø  D
(5)  sinˇ = rD

now we solve for ˇ. squaring (5) gives

sin2ˇ = r2D2

now substitute for D2 from (1):

sin2ˇ = r2(2 + 2cosˇ)   or

1 – cos2ˇ = r2(2 + 2cosˇ)   or

cos2ˇ + 2r2cosˇ + (2r2– 1) = 0

this is a quadratic equation in cos ˇ. 
applying the quadratic formula gives

cosˇ = ⁄(–2r2 ± √Ø4r4 – 4(2r2 – 1) ),

which, to my immense relief, simplifies to

       = –r2 ± √Ø(r2 – 1)2 

       = –r2 ± (r2 – 1)

the plus sign gives the boring solution 
cosˇ = –1, D = 0, which corresponds to 
going all the way around by land. (in fact, 
D' isn’t defined when D = 0. see why?) let’s 
look at the solution with the minus sign. 
in that case, at the critical point,

(6)  cosˇ = 1 – 2r2

                    
is it a maximum or a minimum? let’s try the 
second derivative test. r is a constant, so 
the second derivative is (apparently) 
simple. from (2),

C''(ˇ) = D''(ˇ)

and D'' comes from (3):

D'' = –Dcosˇ + D'sinˇ   
or

       Ø         D2

(8)   D2D'' = –Dcosˇ + D'sinˇ

(D2 is positive, so this has the same 
sign as D''.)

luckily, by now we can find all those numbers. 
at our critical point ˇ, from (4) and (6),

(9)   D' = –r   and  cosˇ = 1 – 2r2

we find D by substituting 1 – 2r2 for cosˇ in (1):

D2 = 2 + 2(1 – 2r2)

and sinˇ from the usual trig identity:

sin2ˇ = 1 – (1 – 2r2)2

working these out, you should find

(10)  D = 2(1 – r2)⁄   sinˇ = 2r(1 – r2)⁄

at the critical point, then, we can plug these values 
into (8), and after an annoying amount of algebra in 
which we must be very careful to keep track of our 
minus signs, we find

(11)  D2D'' = –2(1 – r2)3/2

note a couple of things here: first, it’s O.K. to take 

the square root, because r < 1. second, (1 – r2)3/2
 is 

positive. that is, equation 11 says that the second 
derivative is negative. this critical point is not a 
minimum at all: it’s the point where the cost of 
building the road is a local maximum!!!

the optimal road will always be either straight 
across or the long way around, whichever is cheaper. 
when r = 4/5, as given here, it’s cheapest to go 
straight across, at a cost of (5)(2) = 10, rather 
than the long way, which would cost 4π é 12.57.

so... was all this math a waste of time? maybe, maybe 
not! we certainly got a calculus workout in the 
process, and learned something about chords in a 
circle...

on the other hand, we could have started by making 
a crude graph (or using a graphing calculator). then 

we’d have seen that C(ˇ) = (4/5)ˇ + (2 + 2cosˇ)⁄ 

has roughly this shape:

and we’d have known 
ahead of time that 
there was no point in 
looking for a cheaper 
path going partway 
around the circle. the 
lesson is: get to know 
your function before 
you attack it!
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Chapter 5 (cont'd).
6.

3

4

ˇ

ˇ
L

this one is far 
easier to solve 
using an anglular 
variable. I get 
this answer:

ˇ = arctan ıØ(3/4) é 0.7375 radians

L = (4/cosˇ) + (3/sinˇ) é 9.86 meters

Chapter 6.

2. √Ø67 é √Ø64 +    1    (67 – 64) = 8 Ø
3

                      Ø2√Ø64                  16

4. arctan (1.1) é arctan 1 +    1    (0.1)
                                  Ø1 + 12

                  = π +  1
                     Ø4     Ø20 

5. limit is Ó   2x    cos(x)2 = –2.
                  Ø–sin x

7. limit is 4.

9. limit is 0.

12. l’hôpital’s rule does not apply.

13c. P(x) = 1 – x2
 +  x

4
  – x6

 + x
8

                   Ø2!     Ø4!     Ø6!     Ø8!
                
Chapter 7.

 1.  f(2) – f(0)  =  15 – 3  = 6
    Ø  2 – 0          Ø  2

     f'(x) = 3x2 + 2

set f'(x) = 6 and solve for x. answer = 2/√Ø3

    8    = 3
    or

 Ø4 – x2     Ø2

(4 – x2) = 16
              Ø 3

this has two solutions, but only one of them is on 

the interval [0, 2]. the answer is c = 4 – (4/√Ø3 ).

5. note that the function is even.

6. c = arccos (±√Ø(a/tan a) )
7. the function is increasing, and therefore can cross 
the x-axis at most once. it does, in fact, cross once, 
as you can see by considering the function’s values 
when x is very small and very large.

8a. the derivative P'(x) is zero at only one point, 
so there can be at most two points a and b with 
P(a) = P(b) = 0.

8b and 8c follow by bootstrapping one degree 
at a time.

10. f(b) ≤ 7(b – a) + 2

11. the function is not continuous at x = 2.

12. apply the mean value theorem to the 
function f – g.

2. c = ln (e–3 – e) – ln 4

3. you should find this equation to solve for x:

Chapter 8.
1.  Elow = 0 + 3(1)2 + 3(2)2 + 3(3)2 = 42

2. Ehigh = 3(1)2 + 3(2)2 + 3(3)2 + 3(4)2 = 90

3.  ⁄(Ehigh + Elow) = 66

4. 3(( 1 )2
+ ( 3 )2+ ( 5 )2

+ ( 7 )2) = 63 
       Ø2        Ø2        Ø2        Ø2

5. s(t) = t3, and s(4) – s(0) = 64

6. using heights at the midpoints of the intervals:

2( 1 + 1 + 1  + 1  +  1  +  1  + e2 – 7 ) é 1.964
   Ø3    Ø5     Ø7     Ø9     Ø11    Ø13     Øe2 + 7
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Chapter 9.

2.  2 x5 + C
    Ø15

4.    –1   + C
    Ø1 – x

6.  ln(9 + x2) + C

7.  ⁄arcsin( x ) + C
              Ø2

9.  sin2x + C

12. note that 3x2 = ∂(x3 + 1).

the antiderivative is ⁄e(x3 + 1) + C.

15.  ln|x + 1| + C

16.  do a partial fraction 
decomposition to get

⁄ln|x – 1| – ⁄ln|x + 1| + C

17. trivial

19.  ‹sin3ˇ – ‹cos3ˇ + C

21.  ln|t3 – t2 + 1| + C

23.  –x2 + C  when x ≤ 0
       x2 + C  when x ≥ 0

25.  ln|f(x)| + C

Chapter 10.
1. here is the graph y = g(x) with shaded regions showing the 
definite integral. squares above the x-axis cancel those below 
the x-axis. therefore, the integral is equal to the area of the 
one excess square above the axis minus the two slivers at 
either end.

answer is 1 – 0.086 – 0.358 = 0.556

2. there’s an error in the book. in the summation, 1/n should 
be T/n. then Sn becomes
 

∑( iT )2( T ) = T
3  

∑ i3 = T3(2n3 + lower order terms )
       Ø n     Øn      Øn3                 Ø           6n3

and the limit as nåˆ is ‹T3.

4. on any subinterval containing x = 2, the function is 
unbounded, i.e., its values åˆ as xå2, so there can 
be no maximum value on that interval. 

Chapter 11.
1.  120 + 18 + 138

3.   1  (251 – 1)
    Ø51

5.  (–1)n

    Øn + 1

6. ⁄(arcsin 1 – arcsin (√Ø2 ))
                           Ø2
   = ⁄(π/2 – π/4) = π/8

8.  –1

10.  ⁄e9

12. this depends on the fact that |™ f(x) dx| ≤ ™|f(x)| dx. since 

M(b – a) is an upper sum of |f(x)| on the interval, it follows that

™|f(x)| dx ≤ M(b – a) 

and the other inequality follows.

14.  π  =  1  –  1  +  1  –  1  +  1  –  1   +  .......
     Ø4            Ø3     Ø5     Ø7     Ø9     Ø11

isn’t that a beauty? (not to mention almost unbelievable.)
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Chapter 12.
2.  ⁄(1 + x2)–1 + C by substitution

4.  –ln|cos u| + C  or  ln|sec u| + C

5. substitute y = 3x – 1

6. substitute x = sinˇ. then dx = cosˇdˇ and

∫ √Ø1 – x2  dx = ∫ cos2ˇ dˇ

which was evaluated in the book (or rather,  

∫ sin2x dx was, and cos2x = 1 – sin2x).

7. substitute y = 2x + 5.

8. integrate by parts twice to get

 
ex

(sin x – cos x) + C
 Ø2

10. integrate by parts twice to get

(x(ln x)2 – 2x ln x + 2x)| 1

5

= (5ln 5)2 – 10 ln 5 + 8

= 56.662880725164843...

12.  xarctan x – ⁄ ln(1 + x2) + C

Chapter 13.
1. note: strictly speaking, the volume, being 
“south of the equator,” should be negative... 
but we don’t like that, so we compensate by 
integrating in the negative direction, from 
zero downward, to produce a positive result.

by the pythagorean theorem, the radius of a 

slice at height y is √ØR2 – y2 , so the slice’s 

area is πy2 or

π(R2– y2)

which produces the integral given in the 
problem. it works out to

V = πRD2 – ‹πD3

you can also work out the volume of water directly. 
put the hemisphere in positive territory, with its 
base resting on the origin. at height y, a slice of 

water has radius √ØR2– (R – y)2 SO THE WATER up to 
height h HAS THis volume:

the volume of the hemisphere above the 
water level.

π∫
0

h
 R2– (R – y)2 dy

which gives

π(R2h – ‹(R3 – (R – h)3)))

2. the integral equals –1. 

3. here the radius 
of a cylinder is r,
and its height is
H – ar2. as in the 
glue blast example, 
we treat a thin 
cylindrical shell as 
a rolled-up rec-
tangle, so its 
volume is

H

r √ØH/a

ar2

y = ax2

2πr(H – ar2) dr

integrating gives the total volume:

V = 2π∫
0

√ØH/a
rH – ar3 dr  = π( H2

– ⁄ H
2
) = πH2

                                     Øa      Øa       Ø2a

4. ∫
1

ˆ
π  dx  = π

       Øx2

5. measuring from the bottom up, a horizontal 
line across the dam at height t has length

L(t) = 200 + t  meters
                  Ø2

and the total force is given by the integral

F = ∫
0

175

(9.8)(200t) + 4.9t2 dt


