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1  |  THE MAIN PL AYERS OF TAM 
SIGNALING: RECEPTORS AND LIGANDS

The TAM pathway is comprised of a unique family of transmem-
brane receptor tyrosine kinases, and together with their ligands 
growth-arrest-specific-6 (GAS6) and Protein S (PROS1), they play 
an essential role in regulating tissue and cellular homeostasis, 
especially in organs with high cellular turnover. The receptors 
TYRO3, AXL, and MERTK form the acronym “TAM,” and are ex-
pressed by almost every cell type across various tissues: These 
include the immune, reproductive, nervous, skeletal, and vascular 
systems.1 The fact that TAM receptors are functionally redundant, 

and commonly co-expressed in many cells, allows for different 
ligand–receptor combinations to activate various signaling cas-
cades, tailored to the specific biological context.2 Both TAM cog-
nate ligands GAS6 and PROS1 are secreted molecules, and may be 
produced either by TAM-expressing cells or by neighboring cells 
that do not express the TAM receptors, thus broadening the cell 
types involved in this pathway. Biologically, TAM signaling super-
intends various biological functions, among which are prolifera-
tion, migration, differentiation, cytoskeletal rearrangements, and 
anti-inflammatory signaling.1–4 Some of the functions mentioned 
above are also linked to the role of TAMs in phagocytosis, the sub-
ject of this review.
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Summary
TYRO3, AXL, and MERTK constitute the TAM family of receptor tyrosine kinases, acti-
vated by their ligands GAS6 and PROS1. TAMs are necessary for adult homeostasis in 
the immune, nervous, reproductive, skeletal, and vascular systems. Among additional 
cellular functions employed by TAMs, phagocytosis is central for tissue health. TAM 
receptors are dominant in providing phagocytes with the molecular machinery neces-
sary to engulf diverse targets, including apoptotic cells, myelin debris, and portions 
of live cells in a phosphatidylserine-dependent manner. Simultaneously, TAMs drive 
the release of anti-inflammatory and tissue repair molecules. Disruption of the TAM-
driven phagocytic pathway has detrimental consequences, resulting in autoimmun-
ity, male infertility, blindness, and disrupted vascular integrity, and which is thought 
to contribute to neurodegenerative diseases. Although structurally and functionally 
redundant, the TAM receptors and ligands underlie complex signaling cascades, of 
which several key aspects are yet to be elucidated. We discuss similarities and differ-
ences between TAMs and other phagocytic pathways, highlight future directions and 
how TAMs can be harnessed therapeutically to modulate phagocytosis.
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2  |  COMPONENTS OF THE TAM 
SIGNALING PATHWAY

Structurally, the TAMs comprise of two amino-terminal extracel-
lular immunoglobulin (Ig)-related domains used for ligand sensing 
and binding, followed by two fibronectin type III (FNIII) residues, 
and a single transmembrane domain (Figure  1).1,5–9 On the intra-
cellular carboxy-terminus, the TAM receptors bear their tyrosine 
kinase domains which, upon phosphorylation, trigger various in-
tracellular signaling cascades. The TAM receptors were discovered 
and isolated by independent groups, and subsequently underwent 
several changes in nomenclature.1 The identification of their com-
plete cDNA revealed sequence and structural homology,7,8,10 and al-
lowed their segregation in an independent category of RTKs.1 They 
remained orphan receptors for some time, until their ligands were 
identified in 1995.11 Although TAM ligands GAS6 and PROS1 share 
high structural and functional homology, there are also distinctions, 
including their binding affinities to the TAM receptors. While GAS6 
is an agonist for all three receptors, its affinity to AXL is highest, 
with significantly lower affinity to TYRO3 and MERTK.11–14 PROS1 
activates TYRO3 and MERTK, but not AXL.15,16 GAS6 and PROS1 
are large proteins (~70 kDa), and share similar structure with 42% 
homology. As shown in Figure 1, their amino-terminus encodes for a 
Gla domain, followed by four EGF-like repeats. The Gla domain, pre-
sent in a dozen proteins, is a ~45 amino acids long stretch,11,17,18 rich 
in glutamic acid residues (either 11 or 13 glutamic acid residues, de-
pending on the protein and species), which are post-translationally 
γ-carboxylated in a vitamin K-dependent manner (Figure  1).19,20 
This γ-carboxylation determines TAM ligand bioactivity,15,16 as ex-
plained in detail in the next paragraphs. The carboxy-terminus of 
PROS1 and GAS6 contains a “sex hormone-binding globulin” (SHBG) 
domain, itself composed of two laminin G domains. It is this SHBG 
domain that binds to the Immunoglobulin (Ig) extracellular domain 
of the TAM receptors (Figure 1).6,21–23 As receptor tyrosine kinases, 
the TAMs dimerize upon ligand binding, allowing for either homo- or 
heterodimerization. Similarly, GAS6 and PROS1 may bind their re-
spective TAMs contributing to active signaling either as homo- or 
hetero-dimers. To date, the specific ligand–receptor combinations 
and their respective downstream signaling pathways are mostly un-
determined. Being secreted ligands, they can activate TAMs both 
in an autocrine and paracrine manner. After ligand binding and 
TAM dimerization, the receptor's tyrosine intracellular domains 
are phosphorylated, exposing docking sites for several intracellular 
molecules carrying out signal transduction. The phosphoinositide 3 
kinase (PI3K)/AKT pathway, the phospholipase C, ERK1/2, Ras, and 
MAP kinase activation are commonly activated signaling cascades 
in most TAM-expressing cells. Moreover, the JAK/STAT signaling 
pathway may often prevail over the others, determining differential 
TAM bioactivity and functional diversity.9,24 TAM activation culmi-
nates in the regulation of several physiological processes, including 
cellular proliferation, survival and growth, immune functions such as 
cytokines and reactive oxygen species (ROS) release, phagocytosis 
and efferocytosis.1,9,25,26 Figure  1 presents a visualization of TAM 

receptor–ligand interactions, and the intracellular pathways driving 
phagocytosis, also elaborated below.

Loss of function of any of the TAM receptors in murine mod-
els does not lead to any major developmental issue, even in triple 
Knockout (KO) mice deleted for all three TAMs.4,27,28 Postnatal tri-
ple KO mice, however, develop male sterility, retinal degeneration, 
autoimmune-like disorders, and neurodegeneration,24,27–31 indicat-
ing that TAM signaling is necessary to preserve homeostasis in adult 
tissues. GAS6 mutants are generally healthy and do not develop the 
postnatal phenotypes mentioned for TAM triple KO mice. Reduced 
GAS6 levels even confer protection against thrombosis,32 liver dis-
ease,33 and cancer metastasis.34 The ability of PROS1 to activate 
the TAM receptors has been under debate for many years.14,35,36 It 
was the generation of Pros1 conditional KO (cKO) mice that identi-
fied PROS1 as a TAM agonist in vivo and allowed to reveal its role 
as a signaling molecule in several different tissues.31,37–40 PROS1 is 
mostly known as a potent blood anticoagulant, and, predictably, de-
leting Pros1 systemically causes prenatal death due to coagulopathy 
and impaired vasculogenesis, with severe hemorrhage.41,42 Despite 
the functional redundancy of TAM receptors and their ligands, how 
this pathway regulates extremely diverse cellular functions affecting 
numerous features of cellular physiology is still incompletely under-
stood. In the following paragraphs, we will focus on the role of TAMs 
in phagocytosis and inflammation—two important and functionally 
linked determinants of adult tissue well-being.

3  |  TAM RECEPTOR-MEDIATED 
PHAGOCY TOSIS:  THE MECHANISTIC S

Phagocytosis has been described and paralleled to a feast, where the 
phagocyte cell consumes its meal.43–45 Like in a feast, different din-
ers recognize and prefer different foods. After making a choice and 
intake of the preferred food, come satiation and digestion. These 
humanized terms translate molecularly into recognition, contact, 
uptake and recycling, with specific molecules involved in the rec-
ognition (find me signals), contact (eat me signals) and downstream 
“digestion” activities. Many forms of phagocytosis exist, from uptake 
of intruders such as bacteria (by neutrophils), through the localized 
and limited pruning of cell fractions as in photoreceptor outer seg-
ments (by retinal pigment epithelium, RPE) and neuronal synapses 
(by microglia), to ingesting cellular debris (e.g., myelin fragments by 
microglia) or entirely devouring dead cells (by macrophages). Each 
form of phagocytosis is not only tailored to the physiological context 
but also molecularly regulated and executed by specific proteins. In 
this context, the TAMs were identified for removing apoptotic cells 
(ACs), a type of phagocytosis termed efferocytosis,46 but are now 
also recognized in the localized pruning of portions from viable cells. 
Efferocytosis is mechanistically very similar to phagocytosis, but 
functionally very different. Phagocytosis engages molecular players 
and intracellular signaling cascades aimed at building up the immune 
response, with antigen presentation as well as release of pro-
inflammatory cytokines. On the contrary, efferocytosis is, from the 
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    |  9BURSTYN-­COHEN and FRESIA

immune point of view, a “silent” and counter-inflammatory form of 
clearance, that further signals tissue repair.47,48 This type of phago-
cytic engulfment is extremely important for tissues which cannot 

shed their dead cells to the environment, as done for skin keratino-
cytes or intestinal epithelium. This would be the case for clearing 
apoptotic neutrophils within tissues during the resolution phase of 

F I G U R E  1  TAM receptor–ligand structure, and signaling in phagocytosis. Both ligands and receptors present high structural homology. 
The TAM ligands GAS6 and PROS1 bind to phosphatidylserine, which has been externalized by apoptotic cells, via the Gla domain at their 
N-terminus. The Gla domain is followed by four EGF-like repeats, and a SHBG domain on their carboxy-terminus, which constitutes the 
binding site to the TAM receptors' Ig-domains, on their extracellular N-terminal portion. Subsequently the TAM receptors present two 
fibronectin type III (FNIII) repeats, the transmembrane spanning portion of the molecule, and the protein-tyrosine kinase (PTK) domains on 
the intracellular carboxy-terminus (Inset blow-up). The vitamin K-dependent post-translational γ-carboxylation of the Gla domain allows 
GAS6/PROS1 to dimerize and bind PtdSer on apoptotic cells, in a Ca2+-dependent reaction. GAS6/PROS1 initiate the phagocytic process 
by acting as bridging ligands between the apoptotic target, and the TAM receptors on the phagocyte. Ligand binding drives receptor 
dimerization, cross-phosphorylation of the tyrosine domains, and signal transduction via two distinct cascades leading to phagocytosis and 
anti-inflammatory signaling. Focal adhesion kinase (FAK), or Phospholipase C-γ (PLCγ) through phosphokinase C (PKC), drive CRKII/ELMO/
DOCK180-dependent activation of RAC1, in turn mediating actin cytoskeleton rearrangement necessary for phagocytic cup formation and 
engulfment of the target particle. Simultaneously, through the activation of the JAK/STAT kinases that block TLR, and the inhibition of NF-
kB, the TAMs signal for the release of anti-inflammatory and pro-resolving cytokines. TAM-mediated anti-inflammatory signaling diverges 
from that of phagocytosis and involves nuclear events. Created with BioRe​nder.com.
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10  |    BURSTYN-­COHEN and FRESIA

inflammation, and on a daily basis for organs with high cell turnover 
such as the testes and retina. The testis and retina are tissues with 
elevated rates of cell turnover at steady state and cannot afford to 
mount an inflammatory response on a regular basis.

The term “phagocytic synapse” was coined by Goodridge et al. 
to describe the point of attachment between the phagocyte and 
an AC to be engulfed, by analogy to the “immunological synapse” 
describing the specific requirements of contact between an antigen 
presenting cell (APC) and a T cell.49 Yet, two key differences exist 
between the immunological and phagocytic synapses: First, the im-
munological synapse is necessary to locally concentrate the soluble 
cytokines needed for effective signaling, whereas the phagocytic 
synapse is mainly generated by membrane-bound molecules, and 
it is still unclear whether a physical enclosure is necessary for suc-
cessful phagocytosis. Second, the immunological synapse is neces-
sary to cage the secreted cytokines and assists in increasing their 
local concentration to overcome a threshold necessary for a fruitful 
engagement. By contrast, phagocytosis is mediated by membrane-
bound molecules, and therefore, there is no need to concentrate 
the effector molecules. Finally, the immunological synapse does not 
usually culminate in the uptake of another cell moiety. Nevertheless, 
the semblance of the immunological and phagocytic synapses in fa-
cilitating both signaling and cell–cell communication is significant. 
As phagocytic receptors, the TAMs are part of the “phagocytic syn-
apse,” which is composed of (1) externalized phosphatidylserine 
(PtdSer), exposed by the moiety to be engulfed (ACs, myelin, synap-
tic boutons, photoreceptor outer segments); (2) the professional or 
non-professional phagocyte, expressing one or more TAM receptors 
on its outer membrane; (3) the TAM ligands GAS6 and/or PROS1, 
which act as bridging molecules indirectly linking the phagocyte 
and target moiety, and promote phagocytosis by stimulating TAM-
dependent intracellular downstream signaling (Figure 1).1,9,26 On the 
amino-terminal portion of GAS6/PROS1, the vitamin K-dependent 
gamma-carboxylation of their Gla domain drives ligand dimeriza-
tion, and binding to PtdSer, the bona fide “eat-me” signal.11,50–53 
This reaction rapidly occurs in a Ca2+-dependent manner and is 
aborted when calcium ions are removed.50,54–57 As mentioned 
above, the gamma-carboxylation of the Gla residues occurs post-
translationally, and is necessary for Ca2+ docking and the conforma-
tional change to catalyze PtdSer binding, as well as for TAM receptor 
activation. Ligands with non-carboxylated Gla domains, or Gla-less 
ligands where the Gla residues were altogether truncated, still allow 
for ligand binding, but not for activation of TAM receptors.15,16 On 
the carboxy-terminal, the SHBG domains of the TAM ligands bind 
to the Ig domains of their receptors, inducing their dimerization, 
and cross-phosphorylation of the intracellular tyrosine residues 
(Figure  1). TAM receptor activation triggers intracellular signaling 
cascades leading to actin cytoskeletal rearrangements necessary for 
formation of the phagocytic cup, as well as for the final internaliza-
tion of the target particle.1,26 Phagocytosis is, like many other bio-
logical systems, a multi-step process that constitutes an important 
regulatory mechanism to avoid off-target phagocytosis, ensure that 
only particles exposing “eat-me” signals take part in the phagocytic 

synapse, and ultimately that the TAMs are fully activated to effi-
ciently clear and degrade whatever must be engulfed. Interestingly, 
a rigorous density of PtdSer must be externalized on the particle 
membrane to fully activate the TAM system.58 Once TAMs initiate 
phagocytosis, a simultaneous series of anti-inflammatory signaling 
cascades are initiated in the phagocytes. Such TAM-dependent 
anti-inflammatory pathways were shown in dendritic cells (DCs) 
and macrophages, shifting their pro-inflammatory profile to an 
overall anti-inflammatory one. This included release of tissue repair-
inducing cytokines, inhibition of Toll-like receptors, and the arrest of 
the innate immune response .1,16,24,28,37,59–61

It is noteworthy to mention that while PtdSer is required for rec-
ognition of the apoptotic particles, its exposure alone is not sufficient 
to promote engulfment by macrophages. Segawa et al. generated vi-
able cells which overexpress and present PtdSer at comparable levels 
to those of ACs. They showed that these viable cells—exposing PtdSer 
to the same level of ACs—are not recognized by macrophages and not 
internalized until apoptosis was induced in these cells (Figure  2).62 
These results point to additional factors other than PtdSer, which 
allow macrophages to identify and recognize ACs, avoiding massive 
off-target phagocytosis of viable cells. On the contrary, even exposure 
of PtdSer in the presence of TAMs and their ligands would not guar-
antee engulfment. For example, bacteria and fungi present PtdSer, 
which was shown to promote their virulence,63 but TAM-expressing 
immune cells encountering such pathogens do not exploit TAMs 
for bacterial or fungal uptake and elimination (Figure 2).64,65 Ligand 
availability is not assumed to be a limiting factor, as TAM ligands ef-
fectively function to activate TAM receptors in tissues and in vitro 
in the presence of other PtdSer-presenting particles. Moreover, TAM 
receptors expressed on the surfaces of macrophages, lymphocytes, 
endothelial cells, microglia, and many other cell types which are con-
tinuously exposed to TAM agonists are not constitutively activated, 
indicating this pathway is tightly regulated. Part of this regulation oc-
curs at the ligand level by means of biochemical modifications, such 
as the as the vitamin K dependent γ-carboxylation of Gla domains. 
Another biochemical modification that is thought to lend specificity 
in the context of ACs is ligand oxidation and oligomerization. Uehara 
and Shacter showed that upon binding to PtdSer, PROS1 undergoes 
oxidation of cysteine residues, and this reaction promotes formation 
of intermolecular disulphide bonds and oligomerization of PROS1. 
This sequence of events leads to more effective MERTK activation 
on macrophages.66 Together, the requirement for a series of complex 
and localized post-translational modifications contributes to the regu-
lation and fine tuning of TAM signaling. It may be reasonable to spec-
ulate that additional unknown factors guide the decision of whether 
or not to activate TAM signaling (Figure 2).

4  |  TAMS COUPLE PHAGOCY TOSIS WITH 
ANTI- INFL AMMATORY SIGNALING

Among the multitude of cellular functions they supervise, the TAMs 
are also infallible participants of immune homeostasis maintenance 
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    |  11BURSTYN-­COHEN and FRESIA

and restoration. The TAM system lies in between the innate and 
adaptive immunity, suppressing the build-up of immune responses 
by releasing tissue repair mediators.60 One of the anti-inflammatory 
activities of the TAMs is clearance of ACs,64,67–69 which would induce 
inflammation if the cell corpses remain in the tissue. Evolution has 
provided TAM signaling with the ability to simultaneously promote 
efferocytosis by signaling cytoskeletal rearrangements to form the 
phagocytic cup as well as to curb the inflammatory response through 
the release of the anti-inflammatory and resolving cytokines IL-4, 
IL-10, IL-13, and TGF-β.3,59,70 This way, the same receptor mediates 
two seemingly independent cellular functions, which are in fact co-
ordinated to maintain immune homeostasis and tissue health. At the 
molecular level, Tibrewal et al. found that for MERTK, the phospho-
rylation of tyrosine residue 867 (MERTKTyr867) controls cytoskeletal 
rearrangements that are required for phagocytosis. Mutating tyros-
ine 867 abrogated engulfment, but did not affect MERTK-dependent 

anti-inflammatory function following LPS stimulation, thereby 
providing a molecular basis for dissociating engulfment from anti-
inflammatory functions. This study further demonstrated that the 
MERTK-dependent anti-inflammatory pathway is a post-nuclear 
event, involving transcriptional suppression of NFκB-dependent re-
sponses.71 Thus, the active inhibition of inflammatory signaling, as 
well as efferocytic signaling by TAMs are distinct both functionally 
and at the molecular level. Engulfment-associated cytoskeletal rear-
rangement also depends on MERTK phosphorylating and activating 
focal adhesion kinase at Tyr861 (FAKTyr861), driving its binding to the 
intracellular domain of the β5 subunit of integrin αvβ5. Like MERTK, 
integrin αvβ5 functions as a transmembrane engulfment receptor, 
activated by MFGE8 (Milk Fat Globule and EGF Factor 8) which, like 
GAS6 and PROS1 binds PtdSer on ACs, essentially functioning as 
a bridging ligand.72 MERTK also induces p130CAS phosphorylation 
in a αvβ5-dependent manner, to further activate the downstream 

F I G U R E  2  Biochemical regulation and specificity of TAM-mediated phagocytosis. Engulfment of different PtdSer-expressing particles 
employs distinct signaling molecules which have opposite effects, and are tailored to their specific biological contexts. The “eat-me” signal 
PtdSer functions in a versatile manner and is able to trigger different biological responses in phagocytes, depending on the type of target 
that exposes PtdSer, and the desired physiological outcome. Under healthy conditions (left), TAMs mediate engulfment of apoptotic cells 
(ACs) by phagocytes in a mechanism that is biochemically tightly regulated. The post-translational γ-carboxylation on the Gla domain of 
GAS6 and PROS1, and the presence of calcium ions lead to PtdSer binding and ligand dimerization, and is also necessary for TAM receptor 
activation. Further, it was shown that PtdSer induces oxidation of PROS1 cysteine residues, leading to oligomerization through disulphide 
bond formation. These biochemical (and possibly additional unidentified) modifications provide local regulation and allow for TAM ligands to 
bridge and bind the apoptotic moiety and the phagocyte, while activating TAM signaling at the same time. TAM activation in phagocytes not 
only leads to clearing ACs, but also activates anti-inflammatory signals, which help to maintain homeostasis, suppressing elevated immune 
responses. However, when the PtdSer-expressing molecules are expressed by infectious agents (right) such as bacteria or fungi, TAMs are 
not engaged. Instead, the toll-like receptors (TLR) and other pro-inflammatory responses are recruited, activating the immune system, even 
in the presence of TAM receptors and ligands. Created with BioRe​nder.com.
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12  |    BURSTYN-­COHEN and FRESIA

effectors CrKII/Dock180/ELMO/Rac1 leading to cytoskeletal re-
arrangements and phagocytosis73 (Figure 1). Thus, PtdSer-induced 
MERTK and PtdSer-induced αvβ5 downstream pathways converge 
intracellularly and synergize to activate, perhaps amplify, the cy-
toskeletal rearrangements necessary for engulfment.

While the anti-inflammatory function can be triggered by TAMs 
without prior particle internalization,24,74 it is not clear whether 
AC uptake in vivo would necessarily be coupled to and stimulate 
anti-inflammatory signaling. Furthermore, whether phagocytosis 
of different moieties such as ACs, myelin, the outer segments of 
photoreceptors, or apoptotic bodies would result in similar anti-
inflammatory engagement remains unknown. Rothlin et al. showed 
that in DCs, the anti-inflammatory function of AXL is dependent 
on the type I interferon receptor and STAT1 (IFNAR/STAT1) sig-
naling, highlighting that TAM heterodimerization with non-TAM 
receptors can influence TAM function.24 Future research may re-
veal that heterodimerization with other receptors, or interactions 
with other modifying proteins present in their vicinity in lipid rafts 
may guide in steering downstream TAM pathways. In this respect, 
AXL also signals as a heterodimer with epidermal growth factor 
receptor (EGFR), promoting drug resistance and survival in head 
and neck cancer.75

When triple KO mice lacking all TAM receptors were first re-
ported in 2001, these mice exhibited severe autoimmunity and 
hyper-inflammation, even in the absence of experimental inflam-
matory stimulus.28 However, more recent studies have found that 
some of these spontaneous inflammatory phenotypes, such as ar-
thritis, are not as prominent,76 possibly due to improved cleanliness 
of modern institutional vivariums. This suggests that TAM receptors 
act in response to specific inflammatory stimuli rather than con-
stantly regulating inflammation. In agreement, most in vitro studies 
have investigated the TAM anti-inflammatory function using pre-
stimulated cells. For instance, CpG, poly(I:C), or LPS are commonly 
used in vitro to prime DCs and macrophages, to demonstrate TAM 
activation dampens inflammation. This enforced the concept that 
TAMs come into action mediating their anti-inflammatory function 
following a stimulus that has breached homeostasis. However, the 
notion that TAMs may continuously function “backstage” to regu-
late inflammation even at steady state and without any prior stim-
ulation is supported by two recent independent studies. Maimon 
et al. showed that ablating PROS1 from macrophages was enough 
to abstain MERTK activation in naïve macrophages in vitro, render-
ing BMDMs hyper-inflamed at the cell level. This seems to be the 
case also in vivo, where ablation of PROS1 from myeloid cells led to 
inflamed lungs in otherwise healthy, non-challenged mice.74 A more 
recent report by Mercau et al. (further discussed below) revealed 
that MERTK inactivation leads to retinal inflammation even before 
the onset of high retinal turnover, indicating that in the absence of 
prior challenge, continuous action of TAMs is needed in order to 
maintain homeostasis. Moreover, because the high retinal turnover 
commences only later in life, this early time window allowed to dif-
ferentiate between the anti-inflammatory and phagocytic functions 
of TAMs in vivo.77

5  |  TAM SIGNALING IN HOMEOSTATIC 
PHAGOCY TOSIS

In a human body, several hundred billion cells undergo programmed 
cell death, or apoptosis, on a daily basis, in the effort of getting rid 
of old, poorly functional, or simply superfluous cells.72 This type 
of cellular death is preponderant in the homeostatic turnover of 
tissues, and beneficial for making room for younger and healthier 
cells.52,72 Life-long, high cell turnover routine processes include 
spermatogenesis, adult neurogenesis, and hematopoiesis, when 
millions of cells become apoptotic before completing their dif-
ferentiation into mature sperm cells, neurons, and immune cells, 
respectively. In order to prevent disease, ACs must be approached 
and engulfed by tissue-resident phagocytes, which are also in 
charge of suppressing the inflammatory response at the same 
time.78 The importance of TAM-mediated phagocytosis to the 
healthy maintenance in these tissues is discussed in the next sec-
tions and summarized in Figure 3.

6  |  TAM-MEDIATED PHAGOCY TOSIS BY 
SERTOLI CELL S

An impressive apoptotic rate is observed in the epithelium of the 
seminiferous tubules of the testes, where spermatogenesis yields 
hundreds of millions of immature germ cells, of which less than one-
third complete maturation and become functional spermatozoa.79 
The entire spermatogenesis process is sustained by the multifunc-
tional Sertoli cells, which “nurse” the spermatogenic cells through-
out their development by maintaining hormonal and ion balance, 
providing nutrition and metabolism regulation.80 Importantly, the 
Sertoli cells are also the phagocytes specific to the testes. They 
engulf those germ cells that present abnormalities and failed to 
differentiate, as well as foreign antigens.81,82 One Sertoli cell is 
often in contact with 30–40 germ cells at different developmen-
tal stages. Therefore, the massive apoptotic wave observed dur-
ing spermatogenesis is essential not only to eliminate excess germ 
cells, but also to maintain a healthy germ-Sertoli cells ratio.79,82–84 
Unsurprisingly, efficient phagocytosis by Sertoli cells is fundamen-
tal for healthy spermatogenesis and male fertility,79,81,82 and this 
mechanism is driven by the TAM receptors in a PtdSer-dependent 
way.27,81,85 In the testis, Sertoli cells express all three TAM recep-
tors while another cell type in the testes, the Leydig cells, are the 
source of the ligands GAS6 and PROS1.27,86 This creates a network 
of cell interactions that includes Sertoli, Leydig, and germ cells, and 
maintains the correct functionality of the male reproductive sys-
tem (Figure 3).87

Among the first observed phenotypes of TAM-dependent 
faulty phagocytosis was male infertility.1,27 Approximately 107 
sperm cells per gram of testicular tissue are produced daily, of 
which around 75% die before reaching maturity. While necessary 
to maintain a balanced sperm Sertoli cell ratio,79,83 the products of 
such massive apoptosis must be rapidly cleared to avoid release 
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of toxins and reactive oxygen species which would affect healthy 
spermatogenesis.81,88 The simultaneous deletion of all three TAM 
receptors causes infertility due to their inactivation in Sertoli 
cells. In mice lacking functional TAM signaling, seminiferous tu-
bule cell architecture is damaged, sperm and spermatogenesis are 
absent, testes are shrunk and present heightened inflammation 
characterized by increased infiltration of T-cell lymphocytes and 
inflammatory macrophages (Figure 4).88,89 As uncleared apoptotic 
cells accumulate in the testes, certain phenotypes progressively 
worsen over time. These include inflammation, the presence of 

autoantibodies against germ cell antigens, and the breach of the 
blood-testicular barrier. Zhang et al. characterized the time course 
of the inflammatory phenotype within the testis of TAM-deficient 
mice.88 Notably, these inflammatory and autoimmune features 
were absent prior to apoptotic spermatid accumulation, suggesting 
that inflammation is a secondary reaction to the failed clearance 
of apoptotic germ cells.88 Interestingly, single or double ablation 
of any combination of TAMs is not enough to cause sterility, indi-
cating that the three receptors are either functionally redundant, 
or must work together to maintain spermatogenesis.27,89 However, 

F I G U R E  3  TAM-mediated phagocytosis in homeostasis. A schematic summary of unceasing phagocytic events undertaken by TAM 
signaling to maintain steady state. Depicted are the variety of phosphatidylserine (PtdSer)-presenting phagocytic targets in different tissues 
and their corresponding TAM-expressing phagocytes in the context of their ultimate biological function, along with the reporting studies. 
Synaptic pruning by microglia and astrocytes, as well as POS trimming differ, as they present engulfment of portions of live cells, whereas 
the other events involve the uptake of bona fide apoptotic elements. RPE, retinal pigment epithelium, POS, photoreceptor outer segments. 
Created with BioRe​nder.com.

 1600065x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/im

r.13267 by U
niv of Sao Paulo - B

razil, W
iley O

nline L
ibrary on [23/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://biorender.com


14  |    BURSTYN-­COHEN and FRESIA

ablating Mertk together with either Axl or Tyro3 (Tyro3−/−Mertk−/− 
or Axl−/−Mertk−/−) is enough to cause a major reduction in testis 
weight and sperm counts. This suggests that MERTK may be 
the dominant TAM member mediating Sertoli cell phagocytosis, 
though its ablation alone is not sufficient by itself to cause infertil-
ity.27,89 A gene expression array performed in murine Sertoli cells 

deficient for all TAMs revealed that compared to TAM-expressing 
controls, Cd36 was among the significantly downregulated genes, 
and found to be implicated in phagocytosis by Sertoli,90 as well 
as other cell types.91,92 Together with N-cadherin, an important 
mediator of Sertoli cell-spermatid adhesion,93 these genes were 
identified as the main candidates to contribute to infertility.89 The 
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discovery of the critical role fulfilled by TAMs and their ligands in 
the testes paved the road for further studies on their mediation of 
phagocytosis in other organs.

7  |  TAM-MEDIATED PHAGOCY TOSIS IN 
HEMATOPOIETIC ORGANS

The thymus and bone marrow are another relevant example of or-
gans with elevated cell turnover. Massive apoptotic cell death occurs 
in the developing thymus, in a process known as negative selection 
of the T cells.94,95 During the clonal expansion of thymocytes, auto-
reactive T cells must be eliminated to prevent autoimmune disorders, 
as well as hypo-reactive and inert T cells, as these are incompetent 
to carry out an immune response.61,96–98 Though to a lesser extent, 
the negative selection in the thymus continues for a small window of 
time postnatally, as the organ reduces its size and function. With pu-
berty, both in humans and in mice the thymus undergoes involution, 
loses its cellular architecture, and produces less T cells as the or-
ganism ages.99–101 The TAM system, although prevalently regulating 
adult homeostatic mechanisms,1 was recently found to be critical for 
the clearance of the negatively selected thymocytes during murine 
postnatal development (Figure  3). Jimenez-García and colleagues 
demonstrated that loss of MERTK and AXL results in decreased 
phagocytic activity of macrophages, resulting in dramatic accumu-
lation of dead T cells. Furthermore, Axl/Mertk double mutant mice 
display a 50% reduction in F4/80+CD11blo macrophages, which nor-
mally express MERTK and are highly efferocytic in the bone mar-
row and thymus, impairing apoptotic thymocyte clearance.61 These 
macrophages are also responsible for continuously phagocytosing 
erythrocytes and their heme-iron components. In the absence of 
AXL and MERTK, the remaining macrophage subpopulations down-
regulate engulfment molecules such as CD163, further aggravating 
their phagocytic inefficiency.61 These data highlight the previously 
unrecognized role of TAM signaling in maintaining the health and 
function of hematopoietic organs.

8  |  TAM-MEDIATED PHAGOCY TOSIS BY 
RETINAL PIGMENT EPITHELIAL CELL S IN 
THE E YE

In the retina, phagocytosis is performed by the retinal pigment 
epithelial (RPE) cells. In addition to their phagocytic properties, for 
which RPE are considered professional epithelial phagocytes, they 
undertake numerous functions necessary for retinal viability.102 
However, instead of engulfing ACs, RPE cells ingest and metabolize 
the outer segments of viable photoreceptors (Figure  3). The pho-
toreceptor outer segments (POS) constitute the outermost layer 
of the retina, responsible for light absorption.103 This phagocytosis 
is programmed to occur daily with light onset on a circadian basis, 
throughout life. POS are subjected to high intensity light during the 
day, inducing photo-deterioration of proteins and lipids and generat-
ing toxic oxidative products of phototransduction. Like for clearing 
apoptotic spermatids, the uptake of POS by RPE cells is thought to 
be extremely important for removal of these toxic waste products, 
and to maintain healthy conditions for photoreceptor viability allow-
ing vision.102–104 Lu et al. were the first to report that TAM triple 
mutant mice were blind due to massive photoreceptor degeneration 
(Figure 4).27 A couple of years later, Mertk was appointed as the sole 
accountable gene causing visual loss in the Royal College of Surgeons 
(RCS) rat model of retinitis pigmentosa,105 as well as in mice,30,105 
and humans.106,107 MERTK was found to be expressed on the apical 
microvilli of RPE cells, where it functions as an essential regulator of 
POS phagocytosis. TYRO3 acts similarly; however, its deletion alone 
is not enough to cause blindness, and its complete expression de-
pends on MERTK levels.108 With respect to the ligands, the observa-
tion that only the removal of both GAS6 and PROS1 recapitulates 
Mertk−/− phenotypes was a major breakthrough in the TAM field for 
two main reasons: First, it provided the very first in vivo evidence 
of PROS1 being a functional ligand of TAMs, ending a hot debate as 
to the relevance of PROS1 as a TAM agonist.14,35,36 Second, GAS6 
and PROS1 seem to act interchangeably, but are absolutely re-
quired for POS engulfment by RPE cells, and for maintaining retinal 

F I G U R E  4  Ramifications of TAM-mediated phagocytosis in disease. (A) In neurodegenerative disorders, phagocytosis through the 
TAMs has different implications. In Alzheimer's disease (AD), microglial engulfment of Aβ plaques results in the formation of dense-core 
plaques in the phagocytes, which are either unable to process them, or die and release the load. On the contrary, in Parkinson's disease 
(PD), phagocytosis promotes the clearance of α-synuclein protein aggregates, and absence of TAM signaling speeds up Lewy bodies 
formation in the substantia nigra. In multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), defective myelin uptake 
exacerbates autoimmunity and inflammation, which inhibits remyelination and aggravates disease progression. (B) In the retina, retinal 
pigment epithelium (RPE) cells trim the outer segments of rods and cones through TAMs. Ablating TAM receptors results in early elevated 
RPE inflammation and degeneration of photoreceptors, leading to vision loss in mice and retinitis pigmentosa in humans. (C) In the tumor 
microenvironment, elevated cell turnover attracts TAM-mediated phagocytosis by macrophages, but also activates anti-inflammatory 
agents, thereby creating conditions favorable for tumor growth and progression. (D) In hypercholesterolemic (HCL) conditions, TAM-
mediated LDL uptake leads to lipid accumulation in macrophages that turn into foam cells and drive the formation of atherosclerotic plaques 
in blood vessels. This mechanism is further aggravated by immune cell activation, infiltration, and accumulation, leading to atherosclerosis, 
and in severe cases to myocardial infarction. (E) Systemically, altered phagocytosis due to TAM loss of function leads to accumulation of 
cellular debris, persistent inflammation, and autoimmune disorders, as in systemic lupus erythematosus (SLE). Absence of TAM signaling 
was found to develop into Lupus-like clinical manifestation in mice. (F) In a mouse model of peripheral nerve injury, Schwann cells perform 
autophagy by using the TAMs to uptake degraded myelin. (G) Sertoli cells of the testes utilize the TAMs to phagocytose unviable sperm cells 
during spermatogenesis. Disruption of such signaling leads to apoptotic sperm cells accumulation, reduced testes size, and infertility. Created 
with BioRe​nder.com.
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homeostasis.31 The involvement of TAMs in RPE-mediated uptake 
of ROS diverts from the mainstream theme where TAMs uptake ACs 
which expose PtdSer. However, the molecular basis remains, with 
the outer segments of photoreceptors locally externalizing PtdSer in 
a circadian rhythm, thereby providing PtdSer availability for PROS1 
and GAS6 to bridge between the POS presenting PtdSer and the 
TAM-expressing RPE in a viable cell.109 Hence, TAM function in the 
retina diverges from their traditional role in efferocytosis (Figure 3).

Retinitis pigmentosa is a group of genetic disorders leading to 
the degeneration of rod and cone photoreceptors. As a result, light 
cannot be detected and transformed into visual information.110 
This leads to peripheral blindness, which progressively advances 
to tunnel vision and central vision loss.111,112 Mertk is highly ex-
pressed by RPE cells,108 and is a major regulator of POS phagocy-
tosis.105,107,108,113 The retinal degeneration associated with MERTK 
mutants observed in rat, mice, and humans shaped the concept that 
failed phagocytosis of POS leads to retinal degeneration. For this 
reason, retinitis pigmentosa in MERTK-deficient patients has been 
largely attributed to the impaired phagocytosis by RPE. However, 
not all rodents and humans carrying mutations in the Mertk gene 
showed similar blindness severity, and in some cases showed no 
phenotype at all, hinting at the possibility that genetic variants of 
Mertk, or potentially of Tyro3 which is also expressed by RPE may 
modify the disease course.114,115 In support of this hypothesis, a 
careful analysis of the popularly studied Mertk−/− mice27 (henceforth 
referred to as Mertk−/−V1, according to Akalu et al.)115 revealed hypo-
morphic expression of Tyro3 in the RPE, and identified variability 
among different genetic backgrounds.114–116 Two new Mertk mu-
tants that were generated (Mertk−/−V2 and Mertk−/−V3) did not exhibit 
retinitis pigmentosa, unless crossed to Tyro3 mutant mice (Mertk−/−V2 
Tyro3−/−V2 mice), identifying TYRO3 as a disease modifier affecting 
early-onset photoreceptor degeneration.114,115

A major breakthrough in understanding the role of Mertk in 
the pathophysiology of retinal degeneration was recently made by 
Mercau et al., after observing elevated inflammation in the RPE of 
Mertk−/−V2 mice as early as postnatal Day 10 (P10), a time point at 
which there are no signs of retinal degeneration, and, most impor-
tantly, phagocytosis of POS is minimal. In their work analyzing P10 
mice, Mercau et al. show that MERTK deficiency causes early and 
unresolved inflammation manifested by monocytes infiltration and 
pronounced microglial activation.116 Moreover, when RPE phagocy-
tosis is severely inhibited in integrin β5 null mice, no gross retinal 
degeneration was observed,117 suggesting that lack of phagocyto-
sis alone is not sufficient to drive retinal degeneration, and pointing 
to the observed RPE inflammation as a potential cause for retinal 
degeneration (Figure  4). The authors hypothesized that if inflam-
mation would underlie retinal degeneration in Mertk−/−V1 mice, then 
pharmacological treatment curbing this inflammation is expected to 
ameliorate retinal degeneration. To test their speculation, Mercau 
et al. characterized inflammation in the RPE of Mertk−/−Tyro3−/− defi-
cient mice, and found elevated pro-inflammatory intracellular path-
ways culminating with the release of interleukin-6 (IL-6), type I and 
II interferons (IFNs) and tumor necrosis factor–α (TNF-α), which are 

mediated by the Janus kinase 1/2 (JAK1/2). Indeed, treating these 
mice with the anti-inflammatory drug Ruxolitinib, a JAK1/2 inhibitor, 
partially protected the retina from degeneration, further validating 
inflammation as the driving cause of the retinitis pigmentosa-like 
retinal degeneration observed in Mertk−/− mice.116 Thus, rather than 
improving phagocytosis, targeting the mediators of inflammation 
which are activated in the absence of TAM signaling should be inves-
tigated as a better approach and important therapeutic line to help 
retinitis pigmentosa patients. Hence, by characterizing the different 
time points at which inflammation and phagocytosis occur, Mercau 
et al. show that the retina provides an in vivo model to segregate the 
anti-inflammatory function of MERTK from its phagocytic role, and 
provides new evidence for a net anti-inflammatory role for MERTK 
until POS engulfment becomes evident, at P10.

9  |  TAM-MEDIATED PHAGOCY TOSIS IN 
THE BR AIN

Although accounting for only 10%–15% of total brain cells, microglia 
are the first-line guardians of the central nervous system (CNS).118 
They perform innate immune functions including phagocytosis and 
host defense from pathogens,118,119 as well as strictly glial-related 
activities, such as support for neurons and their circuits.120–122 
Microglia function as sentinel cells and continuously scan the 
brain parenchyma both in homeostasis and disease.118,123 In ho-
meostatic conditions, microglia are busy phagocytosing newborn 
neurons that do not complete their maturation, and are therefore 
excluded from developing functional synapses. Indeed, among all 
the neurons that are generated during neurodevelopment and adult 
neurogenesis, only a fraction is incorporated within the neural net-
works.124 The remaining undergo apoptosis and are rapidly cleared 
by microglia.119,124,125 A similar mechanism is observed in the adult 
brain, when neurogenesis decreases significantly, but is retained 
and confined in two neurogenic niches, the subgranular zone of 
the hippocampus, and the subventricular zone, lateral to the ventri-
cles.126,127 This clearance of apoptotic newborn neurons by micro-
glia is mediated by AXL and MERTK in both adult neurogenic niches 
(Figure 3).128 Moreover, mature synapses are continuously remod-
eled by experience and learning, sometimes generating connections 
that are no longer used.129,130 Supernumerary synapses are there-
fore eliminated as synaptic bodies that are engulfed by microglia in 
order to maintain proper signal transduction, and strengthen new or 
existing neural circuits.131,132 Microglia are commonly defined as the 
macrophages specific to the CNS, and although during acute inflam-
mation peripheral monocytes infiltrate the brain and become mor-
phologically indistinguishable from the local resident microglia, these 
two populations still retain genetic and molecular differences.133 In 
the attempt to identify such differences, Butovsky et al. performed 
gene expression analysis and reported that the TAM signaling genes 
Gas6, Pros1, and Mertk were significantly enriched in murine micro-
glia compared to peripheral monocytes. Similarly, these three genes 
were exclusively expressed by human adult, and, though to a lower 
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extent, fetal microglia, and absent in other immune cells,134 suggest-
ing the dominance of TAM signaling in regulating different aspects 
of microglial function. Microglia use MERTK to ingest synapses, in 
a mechanism that is not only confined to the mere digestion of the 
synapse, but in turn negatively regulates neurogenesis through their 
phagocytic secretome, creating a feedback loop that ultimately reg-
ulates adult hippocampal plasticity and maintains brain homeostasis 
(Figure 3).135

Microglia are the professional phagocytes for the CNS,118 but 
are not the only cell type performing phagocytosis in the brain. 
Interestingly, astrocytes have been reported to engulf synapses 
too.136 Most abundant among glial cells,137 astrocytes are key to 
brain homeostasis by maintaining blood–brain barrier integrity, ion 
balance, synaptic transmission, neurotransmitters uptake, and syn-
aptogenesis.138–140 Synapse elimination by astrocytes occurs during 
development and in adulthood, and is driven by the PROS1/ MERTK 
pathway, in parallel to the MEGF10 pathway, also initiated by PtdSer. 
Inhibition of both pathways had a stronger effect on astrocyte en-
gulfment, indicating these two PtdSer pathways are distinct and 
function in parallel, allowing for developmental and adult synaptic 
pruning and neural network refinements136 (Figure 3).

Another important source of PtdSer in the brain is myelin, a lipid-
rich membrane ensheathing neuronal axons, both protecting axonal 
tracts and allowing for rapid movement (saltatory conduction) of 
the neural impulse.141 Free myelin results from disrupted synapses, 
dead neurons, and the degeneration of the myelin-producing oli-
godendrocytes. The clearance of such debris is crucial to promote 
homeostatic synapse refinement and synaptogenesis. The presence 
of PtdSer in myelin licenses myelin as membrane targets for TAM-
mediated phagocytosis in the CNS.142,143 Similarly, the Schwann cells 
and oligodendrocytes of the peripheral nervous system (PNS) use 
the TAM pathways to phagocytose myelin, though more in an injury 
context rather than during homeostasis (Figure 4).144

Diseases in the nervous system generate degraded myelin, 
as in the case of the autoimmune disease multiple sclerosis (MS) 
(Figure  4). MS patients produce autoantibodies against their own 
myelin sheaths,145 progressing with infiltration of T cells, activation 
of microglia and astrocytes, and further entry of monocytes.146 
Immune responses lead to inflammation and demyelination, loss 
of oligodendrocytes, and degeneration of axonal and motor neu-
rons,146–148 also culminating in accumulation of myelin debris. These 
must be rapidly cleared to prevent further inflammation, allow for 
tissue repair, and promote remyelination.149–151 The professional 
phagocytes in the inflamed brain comprise of the local proliferating 
and activated microglia, as well as monocyte-derived macrophages 
(MDMs) that infiltrate the CNS from the vasculature.118,123,152,153 
Mertk expression was altered in MS patients' myeloid cells, resulting 
in defective myelin phagocytosis by MDMs and a pro-inflammatory 
environment in human brains.143,154 Consistent with decreased 
MERTK activation, lower levels of PROS1 were found in the plasma 
of MS patients.155 MERTK-mediated engulfment of myelin by human 
microglia was maximal following their exposure to TGF-β, also ac-
companied by a significant upregulation of MERTK, PROS1, and 

GAS6. Myelin uptake also led to reduced inflammation through the 
release of IL-10,143 pointing to mechanistic similarities to the uptake 
of ACs.156 Moreover, studies in mice treated with the demyelin-
ating agent Cuprizone show that Gas6 KO mice develop more se-
vere demyelination lesions, and fail to efficiently remyelinate upon 
Cuprizone withdrawal, indicating that GAS6 is protective against de-
myelination, most likely through MERTK and AXL.157–159 In line with 
these findings, administration of GAS6 enhanced clearance of my-
elin debris and improved remyelination.158 These findings are of high 
relevance for the amelioration of MS symptoms: The pharmacolog-
ical manipulation of MERTK to exploit its anti-inflammatory activity 
through phagocytosis may be employed to boost remyelination in 
MS patients. The challenge will be to find an effective treatment to 
promote debris clearance while maintaining the right balance be-
tween immune stimulation and suppression.

A common pathological hallmark of neurodegenerative disor-
ders is the aggregation of insoluble and indigestible oligomers and 
larger protein aggregates, which, if left uncleared, contribute to the 
development of chronic inflammation and oxidative stress, driving 
mechanisms of neurodegeneration.160,161 Alzheimer's disease (AD) 
(Figure  4) is a neurodegenerative disorder characterized by the 
progressive accumulation of such insoluble protein oligomers and 
aggregates known as Amyloid beta (Aβ) plaques. Patients show 
dementia, memory loss, and inability to communicate and perform 
daily tasks.161 Although the contribution of Aβ plaques to AD is still 
under debate,162 their association with disease focuses effort on 
understanding their role in AD pathogenesis. Aβ plaques are en-
riched in exposed PtdSer,163 anticipating a role for the TAM ligands 
and receptors. AXL has been associated with AD pathogenesis: 
RNA-sequencing (RNA-seq), and single-cell RNA-seq (scRNA-seq) 
revealed upregulated Axl expression in microglia associated with 
human Aβ plaques and in the microglia of the 5xFAD murine AD 
model, respectively.164,165 AXL's soluble ectodomain (sAXL) bound 
to GAS6 in the cerebrospinal fluid (CSF) is a biomarker and prog-
nostic factor in AD patients.166 Moreover, using the APP/PS1 mouse 
model of AD, Huang and colleagues demonstrated that microglia 
employ the TAM system to detect and phagocytose Aβ plaques, 
mainly through MERTK and AXL, with GAS6 as the putative bridging 
ligand. Axl−/−Mertk−/− microglia are unresponsive to Aβ fibrils, lack-
ing recognition, proliferation and motility orientation, and ultimately 
also lack phagocytic clearance.163 Contrary to expectations, the au-
thors observed that faulty TAM-mediated microglial phagocytosis of 
Aβ correlated with the deposition of fewer dense-core plaques.163 
This unexpected observation may be explained by three indepen-
dent studies which show that functional microglia contribute to Aβ 
plaque compaction: The first reports that Aβ engulfed by microg-
lia are released as packed clusters to the extracellular space due to 
toxicity and death of the microglia, and this deposition contributes 
to Aβ plaque growth.167 Two additional studies find that microglia 
depletion reduces accumulation of Aβ plaques,168,169 thus support-
ing an active role for TAM-mediated microglial phagocytosis of Aβ in 
AD pathology. PROS1 was recently identified as a novel microglia-
derived biomarker in the hippocampi and serum of AD model mice, 
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also found at elevated levels in the sera of AD patients.170 It is not 
clear whether PROS1 is involved in AD pathology or is upregulated 
as part of an intrinsic anti-inflammatory and repair mechanism to 
restore homeostasis. More research is needed to clarify how the in-
volvement of TAMs and their ligands in amyloid plaque engulfment 
and in regulating inflammation is linked to AD.

Parkinson's disease (PD) (Figure 4) is another neurodegenerative 
disease where alpha-synuclein (α-SYN) forms small soluble oligo-
mers and larger aggregates within subcellular inclusions called Lewy 
bodies.171 Inflammation and gliosis also come into play in PD, often 
with deleterious consequences,172 raising the question of impaired 
TAM function. In a mouse model of PD, induced by the introduc-
tion of human α-SYN in Nrf2−/− mouse brains, disease progressed 
as α-SYN aggregates accumulated. This was accompanied by mi-
croglial inflammation and attenuated expression of Mertk and Axl.172 
Another study in mice which utilized a late-onset hereditary form of 
PD, driven by a point mutation of the human α-SYN gene (SNCAA53T) 
reports the upregulation of both AXL and its soluble form (sAXL), 
documented to be markers of inflammation.128 Interestingly, such 
upregulation was exclusively coupled with an increase in expression 
of the microglial activation marker IBA1, especially in the spinal cord, 
but also in the brain. Survival of PD mice carrying the SNCAA53T mu-
tation was slightly extended following Axl and Mertk ablation. This 
was explained by the possible TAM-dependent phagoptotic engulf-
ment, worsening the disease.128

10  |  THE TAM RECEPTORS PERFORM 
PHAGOPTOSIS

In the previous paragraphs, the importance of TAM-dependent 
phagocytosis in preventing secondary necrosis, elevated inflam-
mation, and the development of serious disorders was discussed. 
Nonetheless, like many biological mechanisms, phagocytosis must 
be regulated to avoid uncontrolled cell clearance, including that of 
viable cells. As a general rule, phagocytosis is secondary to initiation 
of cell death, as externalization of the classic eat-me signal PtdSer is 
induced by apoptotic pathways.51 However, possibly due to a sub-
toxic insult, live cells may express “eat me” signals, or lose the ex-
pression of “don't eat me” signals, promoting their engulfment. This 
type of primary phagocytosis was characterized for the first time by 
Brown et al., and named phagoptosis. Phagoptosis may lead to the 
clearance of stressed, but otherwise viable cells, and further exac-
erbate disease development.173 For example, after brain ischemia, 
the affected regions suffer from low-oxygen levels and excessive 
glutamate release, which cause extensive neuronal death.174 In such 
a scenario, uptake of those dead neurons within the area of ischemia 
is crucial, and beneficial for tissue repair. In the neighboring areas, 
however, neurons may be stressed, yet functional. In such subtoxic 
conditions, cells can transiently expose PtdSer,175 and be engulfed 
alive, causing severe neuronal loss.174 Surprisingly, sparing these 
stressed, but viable neurons from clearance has proved to be benefi-
cial, with rats showing reduced motor deficits and overall improved 

outcome in a brain ischemia/stroke model.176 The transient up-
regulation of Mertk in microglia and macrophages at the same time 
phagoptosis occurred, suggested MERTK may be involved in this 
process. Consistently, the uptake of stressed neurons was reduced 
by 60% in Mertk mutants, which showed reduced brain atrophy 
and improved motor functions. In parallel, in vitro studies demon-
strated that Mertk mutant microglia engulfed a smaller number of 
glutamate-stressed neurons. Taken together, these data suggest 
that MERTK-mediated phagoptotic cell clearance may constitute a 
new driver of brain pathology.176 Therefore, inhibiting MERTK to 
prevent the engulfment of stressed, yet viable neurons may help the 
recovery after mild ischemia. Similarly, Fourgeaud et al., showed that 
ACs clearance through the TAMs not always prevents disease devel-
opment and point to phagoptotic engulfment of stressed, but live 
motor neurons by AXL and MERTK as a possible mechanism worsen-
ing PD symptoms, and speeding animal death.128 In conclusion, the 
TAM receptors are components of the phagocytic mis-targeting that 
characterizes phagoptosis. Therefore, exploiting the TAM system 
at specific physiological contexts is an interesting therapeutic ap-
proach to improve symptoms and prevent neurodegeneration.

11  |  C ARDIOVA SCUL AR DISE A SES

Atherosclerosis is the most frequent type of cardiovascular diseases 
(CVD) and leading cause of death worldwide.177 It is caused by the ac-
cumulation of cholesterol in the arteries, creating masses of inflamed 
lipid material that builds up atherosclerotic lesions. With time, these 
become big enough to obstruct the blood flow leading to myocardial 
infarction (MI) and stroke.177,178 Both tissue-resident and monocyte-
derived macrophages play an important role in the development, or 
recession, of atherosclerotic plaques.177 When low-density lipopro-
tein (LDL) levels are high (hypercholesterolemia, HCL), tissue-resident 
macrophages are unable to handle the heavy load of lipids through 
canonical pathways (autophagy or storage), leading to lipid aggrega-
tion and atherosclerosis initiation. The overloaded tissue-resident 
macrophages try unsuccessfully to discharge the lipid overload, and 
become so called “foam cells”,179 which subsequently undergo apop-
tosis and necroptosis.177,180 In the early stages of this process, effe-
rocytosis by other macrophages prevents plaque growth. However, 
in later stages, foam cells downregulate Mertk, rendering efferocy-
tosis inefficient (Figure 4).181 As a consequence, MDMs are recruited 
by pro-inflammatory stimuli, and atherosclerotic plaques grow.177,181 
Grafting Mertk+/+ or Mertk−/− BM into atherosclerotic mice showed 
that macrophages derived from Mertk−/− BM were unable to effi-
ciently clean up ACs, increasing necrosis and speeding up lesion de-
velopment.182,183 Similarly, Knock-down (KD) of Mertk in a model of 
advanced atherosclerosis showed increased formation of necrotic 
plaques due to defective MERTK-dependent efferocytosis of ACs.184 
Mechanistic studies suggested that tissue-resident macrophages may 
be unable to perform efferocytosis in advanced stages of lesion forma-
tion due to their increased expression of Ca2+/calmodulin-dependent 
protein kinase γ (CaMKIIγ), which suppresses ATF6, a transcription 
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factor regulating liver X receptor-α (LXRα), which is a Mertk-inducing 
transcription factor. This study reveals a macrophage CaMKIIγ/ATF6/
LXRα/MERTK pathway as key in development of cardiovascular dis-
ease, and highlights that MERTK inactivity not only leads to ACs ac-
cumulation, but also prevents the phagocytosis-dependent release 
of resolving cytokines.185 This pathway has been recently targeted 
in a pre-clinical model study by Tao et al.: Introducing small inter-
fering RNA (siRNA) nanoparticles targeting murine CaMKIIγ, Mertk 
expression in macrophages increased. This resulted in efficient ACs 
phagocytosis and reduced necrotic plaques, constituting a promising 
targetable pathway.186 In human patients, the titer of the soluble form 
of MERTK (sMERTK) may serve as a marker for cardiovascular dis-
ease, as it was found to positively correlate with necrosis of plaques 
and symptoms typical of ischemia and stroke.183 Taken together, 
these studies highlight the importance of MERTK-mediated effero-
cytosis within atherosclerotic plaques, and identify novel therapeutic 
targets to prevent atherosclerosis progression.

12  |  SYSTEM-WIDE IMPLIC ATIONS OF 
DEFEC TIVE TAM RECEPTOR-MEDIATED 
PHAGOCY TOSIS

Given that the TAM receptors are implicated both in clearing phago-
cytic cells in numerous organs, and in engulfing different moieties, 
some implications of TAM-driven phagocytosis are system-wide. This 
is the case for autoimmune diseases such as systemic lupus erythe-
matosus (SLE), rheumatoid arthritis (RA), and Sjogren syndrome (SS). 
SLE is characterized by chronic inflammation triggered by defective 
clearance of ACs in the lymph nodes germinal center, and the produc-
tion of autoantibodies against nuclear antigens and double-stranded 
DNA. It affects several different organs including skin, joints, brain, 
blood vessels, lungs, and kidneys187 (Figure 4). Predictably, TAM re-
ceptor KO mice develop lupus-like clinical manifestations, including 
systemic autoimmunity and enlarged lymph nodes.28,67 Plasma levels 
of secreted forms of AXL and MERTK (sAXL and sMERTK, respec-
tively), as well as GAS6, are reported to be increased in adult onset 
SLE patients, and to correlate with renal symptoms severity, specifi-
cally glomerulonephritis.188,189 Similarly, sMERTK levels, although not 
sAXL, sTYRO3 and GAS6, were found to correspond to active dis-
ease in Juvenile SLE (JSLE) patients.190 Elevated levels of the cleaved 
forms of TAM receptors imply they may bind their ligands and func-
tion as competitors with cell-bound TAMs, inhibiting phagocytosis.191 
Moreover, high titers of autoantibodies against PROS1 were found in 
SLE patients, which may neutralize PROS1 from activating MERTK-
mediated efferocytosis.192–194 Taken together, these data on human 
patients show that sTAM levels in serum may serve not only as new 
biomarkers for SLE activity and prognosis, but also represent great 
therapeutic targets.191 RA is the most common autoimmune disorder, 
manifesting itself as chronic synovial fluid inflammation, and result-
ing in cartilage and bone damage.195 TAM receptors are expressed 
in several locations of the synovial tissue. Akin to SLE pathogenesis, 
recent findings similarly revealed that sTYRO3, sMERTK and sAXL 

levels are elevated in the synovial fluids of RA patients. However, 
no differences were found in GAS6 expression.196,197 Interestingly 
sTYRO3 levels positively correlated with increased secretion of pro-
inflammatory cytokines in the joints, identifying TYRO3, among the 
other TAM components, as an important potential candidate pro-
moting RA pathogenesis and severity.196 In SS, autoimmunity affects 
salivary and lacrimal glands, where elevated apoptosis and defec-
tive efferocytosis are observed. Monocytes isolated from SS model 
mice exhibit decreased MERTK signaling and defective efferocytosis, 
with elevated levels of sMERTK in plasma, and similar inflammatory 
profiles to Mertk−/− mice.198 Despite the lack of evidence of TAMs 
involvement in SS, several studies reported low levels of TAM recep-
tors mRNAs in mononuclear cells of SS patients' blood, together with 
high sMERTK and autoantibodies titter.199 Interestingly, monocytes 
isolated from SS patients were reported to perform inefficient effe-
rocytosis compared to those from healthy controls, hinting at their 
involvement in SS through defective cell clearance and reduced in-
hibition of IFN signaling.200 Such conditions contribute to defective 
efferocytosis and a pro-inflammatory environment that ultimately 
exacerbates autoimmunity.

If the TAM anti-inflammatory ability is favorable in the context 
of most pathologies discussed so far, it is not always beneficial in 
cancer. The tumor microenvironment (TME) is characterized by 
high cell turnover and is therefore abundant with PtdSer-expressing 
cells: intra-tumor ACs, but also viable PtdSer-expressing tumor 
cells and tumor-associated endothelial cells.57,201 PROS1 and GAS6 
are attracted to the high presence of PtdSer, bridging between 
PtdSer-expressing cells and TAM-expressing phagocytes, promoting 
phagocytosis and anti-inflammatory signaling, altogether favoring 
tumor growth (Figure 4). Phagocytosis through the TAMs shifts the 
pro-inflammatory status of macrophages secreting TNF-α, IL-6, IL-
1β, and nitric oxide (NO), which are strong activators of the immune 
response, to anti-inflammatory, known to secrete resolving cyto-
kines (IL-4, IL-10, IL-13, TGF-β). These events provide for a tumor-
supportive environment and feed its growth.57,74,202,203 A large body 
of literature indicate that TAM signaling (receptors and ligands) are 
overexpressed in numerous cancers where they contribute to tumor 
proliferation, metastatic ability, and immune evasion-all driving poor 
prognosis.57,204–208 It is likely that there is a positive selection for 
PtdSer-expressing cells in the TME, allowing these cells to survive 
and contribute to tumor survival and promote epithelial to mes-
enchymal transition (EMT), as demonstrated in mouse models for 
breast,209 brain,210 and lung cancers.74 Given that efferocytosis is 
anti-inflammatory,48,211 TAM-driven clearance of ACs within tumors 
may contribute to an immune-suppressed and cancer-promoting en-
vironment. Thus, pharmacological treatments tackling cancer should 
therefore aim at inhibiting TAM-mediated phagocytosis in the TME.57

13  |  CONCLUDING REMARKS

TAM receptors and their ligands are often functionally redundant, as 
mentioned above. Yet, this pathway accurately initiates a multitude 
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of intracellular signaling cascades, each within its specific physio-
logical context. As briefly mentioned, TAMs also initiate additional 
non-phagocytic cellular functions such as proliferation, migration, 
and cell fate decisions with implications ranging from stem cell bi-
ology to cancer signaling.2,57,206 In this respect, how TAMs acquire 
their functional specificity in a variety of biological contexts is still 
not fully understood.

Now, we know that ACs are not the only targets recognized and 
engulfed by TAMs, as PtdSer-exposing live cells, or portions thereof 
(synapses, POS), as well as myelin, are also engulfed by phagocytes 
through TAMs. This way, the same system is employed to clear up 
different particles that may affect tissue health, and simultaneously 
dampen the inflammatory response. Disruption of TAM signaling 
causes particle accumulation and heightened inflammation, result-
ing in tissue degeneration, as shown in many organs including the 
brain, retina, testes, joints, and blood vessels. On the contrary, TAM-
phagocytosis is not necessarily beneficial in the tumor and stroke 
micro-environments.

However, TAMs are not universal executers of phagocytosis, as 
they are not activated by bacteria or fungi, even if all components 
seem to be in place (Figure 2). How then is this specificity regulated? 
Additional open questions are whether TAMs similarly recognize 
the different PtdSer-exposing moieties, regardless of their size and 
content? Engulfment alone introduces quite a few challenges to the 
phagocyte. Following recognition of the target, uptake requires cy-
toskeletal changes to generate the phagocytic cup leading to inter-
nalization. Once internalized, digesting a bulk of biomass is probably 
challenging, especially since ACs carry toxic waste products. In this 
respect, Anwar et al. showed that MERTK also promotes survival 
of macrophages under oxidative stress conditions, mimicking AC 
uptake.212 Despite many similarities to phagocytosis of pathogen-
infected ACs, efferocytosis is anti-inflammatory. Remarkably, TAMs 
converge cytoskeletal rearrangement, anti-inflammatory signaling, 
and survival pathways. Linking survival and anti-inflammatory sig-
naling to phagocytosis in general, and to efferocytosis in particular, 
is evolutionarily beneficial, as it allows optimization of cell resources 
and shortens the response time. Moreover, activation of protective 
pathways safeguards from the potentially detrimental consequences 
of engulfing the toxic cargo, enabling successful accomplishment of 
efferocytosis. This is particularly important for postmitotic phago-
cytes such as RPE and Sertoli cells.

Understanding the specificity of TAM function is only beginning 
to be revealed. While MERTK mainly functions at steady state, AXL 
is recruited following stress induction,213 but how this is regulated 
is still unknown. Initial reports point to functional variability among 
the ligands in regulation of adult neural stem cell proliferation,2 and 
in POS phagocytosis in the retina.214

Moreover, in order to cope efficiently with the toxic prod-
ucts of cell death, evolution generated different families of re-
ceptors, other than the TAMs, to perform phagocytosis in a 
PtdSer-dependent way.215 These include integrins, the brain-
specific angiogenesis inhibitors (BAI) subfamily of GPCRs, and 

the T cell/transmembrane, immunoglobulin, and the mucin (TIM) 
family.26,30,216–218 Whether the many PtdSer receptors that have 
evolved are unique or functionally interchangeable was addressed 
by Penberthy et al., who asked whether BAI1 overexpression 
would compensate for MERTK loss of function in the testis and 
retina. Interestingly, although BAI1 overexpression was able to 
rescue ACs build-up in the testes, it was not sufficient to rescue 
photoreceptor degeneration in the retina.215 The authors hypoth-
esized that this difference is due to the fact that the uptake of 
POS by RPE is not a traditional corpse clearing event, as is apop-
totic spermatid clearance. However, a more recent research now 
revealed that retinal degeneration in Mertk−/− mice is due to early 
inflammation rather than lack of POS uptake.116 Nevertheless, 
given that both BAI1 and MERTK have anti-inflammatory func-
tions when dealing with homeostatic clearance of ACs,78,219 these 
pathways are clearly distinct and not completely redundant. 
Similarly, clearing degraded myelin by the two PtdSer engulfment 
receptors MERTK and MEGF10 was not redundant.136 Such exper-
iments reveal that despite significant molecular and mechanistic 
similarity, TAMs and other phagocytosis receptors are not simply 
redundant, or interchangeable, illuminating functional difference 
and hence the need for numerous PtdSer-recognizing phagocyto-
sis receptors.

By virtue of the expression on virtually every cell and tissue, TAM 
receptors and their ligands are major regulators of adult homeosta-
sis, though they also play important roles during development. Their 
quintessential homeostasis-related functions are efferocytosis, dis-
covered in the nineties, and anti-inflammatory signaling. Clearly, the 
development of therapeutics targeting the TAMs is of high interest 
and has great potential to treat diseases involving system-wide, or 
organ-specific, implications. However, to best harness this system, 
different aspects of TAM-mediated phagocytosis still remain to be 
elucidated.
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