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Abstract
Introduction  In recent years, machine learning algorithms have led to innovative tools for medical imaging analysis. The 
purpose of the present review was to summarize the literature on the developing field of deep learning (DL), particularly the 
application of convolutional neural networks (CNNs) in PET/CT and PET/MR.
Methods  We performed the literature search, referring to “convolutional neural networks” and “positron emission tomog-
raphy” on PubMed/MEDLINE, for potentially relevant articles published up until July 24th, 2020.
Results  After the screening process, 63 articles were finally included; these embraced both the technical (n = 23) and the 
clinical field (n = 40). Technical studies aimed at investigating the role of CNN-based methods for image quality improve-
ment (n = 11) and on technical issues (n = 12), mainly attenuation correction. Clinical studies explored CNN applications 
in oncology lung cancer (n = 7), head and neck cancer (n = 4), esophageal cancer (n = 2), lymphoma (n = 3), prostate cancer 
(N = 4), cervical cancer (n = 1), sarcomas (n = 1), multiple cancer types (n = 4), in neurology (n = 10) and cardiology (n = 1); 
three additional studies belonged to “other” category. In oncology, the studies aimed at detection, diagnosis, and prognostica-
tion of cancer. In neurology, the majority of the studies aimed at diagnosing Alzheimer Disease and stratification of the risk. 
CNN-based algorithms demonstrated promising results with performances equal or even higher compared to conventional 
approaches.
Discussion  Overall, CNN applications for PET/CT and PET/MR are exponentially growing, demonstrating encouraging 
results for both technical and clinical purposes. Novel research strategies emerged to face the challenges of DL algorithms 
development. Education and confidence with DL-based tools are needed for proper technology implementation.

Keywords  Artificial intelligence · Machine learning · Convolutional neural networks · PET/CT · PET/MR

Purpose

Machine learning (ML) is a subfield of artificial intelligence 
(AI) primarily aimed at identifying patterns. Several ML 
algorithms can be applied, such as a support vector machine 
(SVM), decision trees, and Bayes network, but deep learning 
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has achieved the most remarkable performance and success. 
In particular, for the image-based tasks, convolutional neural 
networks (CNN) dominate. This approach does not require 
handcrafted features calculation or operator input. The con-
volution operation uses multiple filters to extract features 
(feature map) from the input image. During training, CNNs 
learn those features that are critical to successful perfor-
mance [1]. Figure 1 summarizes the main types of networks 
for imaging applications. Basic principles and definitions in 
ML are provided in the Supplementary material.

The use of CNNs has led to the development of image 
analysis algorithms for radiological applications: tubercu-
losis detection on chest X-ray, lung nodule and interstitial 
lung disease assessment on chest computed tomography 
(CT), pulmonary embolism identification on CT angiog-
raphy, detection of breast mass on mammography, and of 
intracranial haemorrhage on head CT. Indeed, as of March 
1st, 2020, radiology resulted in the most exploited field with 
the highest number of FDA approved tools based on ML 
technology [2].

Nuclear medicine is also expected to benefit from the 
CNN-based algorithms, particularly from tools for clinical 
decision support, examinations scheduling, proper imaging 
protocols choice, image quality improvement, interpretation 
and reporting. Therefore, the purpose of the present review 
was to summarize the available literature on the developing 
field of deep learning, particularly the application of CNNs, 
in PET/CT and PET/MR.

Materials and methods

Eligibility criteria, search strategy and study 
selection

Using the PubMed and MEDLINE database, we performed 
a comprehensive literature search for potentially relevant 
articles published up until July 24th, 2020. No limitations 
on publication date were applied. The search strategy com-
bined terms (text words) referring to "convolutional neural 
networks” and “positron emission tomography. In particu-
lar, the following search strategy was applied: “convolu-
tional neural network” OR “CNN” AND “positron emis-
sion tomography” OR “PET” OR “PET/CT” OR “PET/
MR”. Titles and abstracts of retrieved records have been 
screened independently by MK and AC. Exclusion crite-
ria were: not-original articles, review articles, book chap-
ters, editorials, case reports, non-English language papers, 
duplicates, non-in-human studies and studies out of the field 
of interest. Subsequently, we screened the reference list of 
selected studies to identify additional eligible articles. Aim-
ing at a comprehensive assessment of the early stage of the 
development of deep learning applications in PET–scoping 

review–no additional exclusion criteria, which assess qual-
ity, were used; consequently, we included early-stage and 
proof-of-concept investigations.

Data extraction and analysis

We summarized study characteristics for all the selected 
papers. Study characteristics included: title, authors, year 
of publication, abstract, study design, population (public 
dataset or not) and sample size, application (technical or 
clinical), medical filed (oncology, neurology, cardiology 
or other) and disease/condition, type of imaging modality 
(PET/CT or PET/MRI), radiopharmaceutical, aim, and input 
type of data. According to the objective—technical vs diag-
nosis/prognostication—the articles were categorized into 
Image Quality and Technical applications vs Clinical stud-
ies. Main results and performance metrics were recorded. 
Descriptive statistical metrics were used to summarize the 
data.

Results

Study selection

The search of the PubMed/MEDLINE database returned a 
total of 381 studies. After the removal of duplicates, 110 
records were left. After the abstract review and inclusion/
exclusion criteria application, 47/110 studies were excluded. 
The screening process is summarized in Fig. 2. Sixty-three 
articles were finally included.

Study characteristics

The 63 included studies embraced both the technical (n = 23) 
and the clinical field (n = 40). Technical studies aimed at 
investigating the role of CNN-based methods focussing their 
attention on the image quality (n = 11) and technical issues 
(n = 12), mainly attenuation correction.

Clinical studies explored CNN applications in lung can-
cer (n = 7), head and neck cancer (n = 4), esophageal cancer 
(n = 2), lymphoma (n = 3), prostate cancer (N = 4), cervi-
cal cancer (n = 1), sarcomas (n = 1), multiple cancer types 
(n = 4), in neurology (n = 10) and cardiology (n = 1). Three 
clinical studies belonged to “other” category investigating 
CNN-based strategies in sex determination, cerebellum 
tracer uptake and in the improvement of cerebral blood flow 
measurement. Summary of the characteristics of the selected 
studies is provided in Table 1.

The input modalities were: PET (n = 29, of which n = 1 
PET MIP and n = 3 PET sinograms) PET and CT (n = 13), 
CT (n = 6), PET and MR (n = 4), MR (n = 5), floodmaps 
(n = 1), Coincidence waveforms (n = 1), MLAA‐based 
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Fig. 1   Main types of artificial neural networks for iamging applications
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activity and attenuation maps (n = 2), polar maps (n = 1) and 
simulated PET-low-resolution sinogram (n = 1).

Image quality and technical applications

Summary of the technical studies’ main characteristics and 
findings is provided in Table 2.

Image quality

Radiation exposure is a central issue in nuclear medicine 
practice. A balance between the reduction of tracer activity 
and image quality is a challenge. On these grounds, Zhou 
et al. developed a supervised DL model (CycleWGANs) to 
boost low-dose PET images quality. The proposed method 
was compared to other existing imaging denoising methods 
(Non-Local Mean (NLM) and block-matching 3D(BM3D), 
RED-CNN and 3D-cGAN). The proposed model accurately 
estimated full-dose PET image from low-dose input images, 
at the count level of 1 million true counts. Additionally, it 
preserved SUVmean and SUVmax values and suppressed 
image noise for low dose PET imaging [3].

While Xiang et al. developed a CNN-based method to 
accurately estimate the standard PET image, combining 
both the low-quality low-dose PET (LPET) image and 
T1-weighted MR acquisition, the proposed method achieved 
a fast and competitive quality [4].

Spuhler et al. developed a denoising CNN-based method 
(dCNN) to recover full-count images from low-count images. 
dCNN was compared to existing conventional U-NET. The 
proposed algorithm achieved better results in terms of mean 
absolute percent error (MAPE): 4.99 ± 0.68 vs. 5.31 ± 0.76; 
peak signal-to-noise ratio (PSNR): 31.55 ± 1.31 dB vs. 
31.05 ± 1.39; and structural similarity index metric (SSIM): 
0.9513 ± 0.0154 vs. 0.9447 ± 0.0178 [5].

Image quality degradation and inaccurate image-based 
quantification related to the intrinsic PET low spatial 

Fig. 2   Article selection process

Table 1   Summary of included studies’ characteristics

Study characteristics Technical Stud-
ies (n = 23)

Clinical 
Studies 
(n = 40)

Year of Publication
 Before 2017 n =  0 n =  2
 2017 n =  2 n =  2
 2018 n =  5 n =  7
 2019 n =  9 n =  18
 2020 (Jan–Jun) n =  7 n =  11

Dataset size (patients/images)
 < 100 n =  13 n =  16
 > 100 and < 500 n =  3 n =  13
 > 500 and < 1000 n =  0 n =  4
 > 1000 n =  0 n =  5
 Not available n =  7 n =  2

Study design
 Retrospective (Public datasets) n =  11 (1) n =  32 (9)
 Prospective n =   0 n =  1
 Phantom n =  5 n =  0
 Both Phantom and Retrospective/

Public dataset
n =  2 n =  0

 Not available n =  5 n =  7
Imaging modality
 PET/CT n =  15 n =  36
 PET/MR n =  7 n =  4
 Not applicable n =  1 n =  0
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resolution were investigated by Song et al. [6, 7]. They con-
ducted two investigations to improve PET image resolution.

They developed a self-supervised super-resolution tech-
nique (SSSR) for PET, based on dual generative adversarial 
networks (GANs). Inputs for the SSSR were: a low-reso-
lution PET image, a high-resolution anatomical magnetic 
resonance image (MR), spatial information (axial and radial 
coordinates), and a high-dimensional feature set coming 
from an adjunct CNN. Good performance was achieved in 
image quality, peak signal-to-noise ratio, structural similar-
ity index, and contrast-to-noise ratio.

Subsequently, the group designed, implemented, and 
validated several CNN architectures for super-resolution 
(SR) PET imaging, including shallow and deep varieties. 
They used the low-resolution PET with its high-resolution 
anatomical counterpart (e.g. a T1-weighted MR image) as 
input images. CNN outperformed penalized deconvolution 
and partial volume correction. The superior performance 
was demonstrated qualitatively (edge and contrast recovery) 
and quantitatively (PSNR, SSIM, and on the contrast-to-
noise ratio (CNR).

Whiteley et al. proposed a sinogram repair method based 
on a CNN able to mitigate the effects of malfunctioning of 
block detectors, which usually leads to a decreased sensitiv-
ity. The proposed method outperformed previously tested 
methods [8].

Thin-pixelated crystals provide high spatial resolution, 
but PET systems with such characteristics are not widely 
available. Hong et al. proposed a data-driven, single-image 
super-resolution (SISR) approach to enhance the PET image 
resolution and noise property for PET scanners with large 
pixelated crystals. They achieved fair image resolution and 
noise property results (comparable image qualities with four 
times larger crystals) [9].

Low spatial resolution in pre-clinical and clinical PET 
scanners with an extended field of view (FOV) can be related 
to the parallax error, which increases the uncertainty estima-
tion of the annihilation position. Zatcepin et al. developed 
two DL-based algorithms to estimate depth-of-interaction 
(DOI) in depolished PET detector arrays, a dense NN and a 
CNN, and multiple linear regression (MLR) based methods. 
Tests were performed on an 8 × 8 array of 1.53 × 1.53x15 
mm3 crystals and a 4 × 4 array of 3.1 × 3.1x15 mm3; both 
coupled to a 4 × 4 array 3 × 3 mm3 silicon photomultipli-
ers. DL-based methods performed better than MLR-based 
methods and other conventional linear methods, achieving 
an average DOI resolution of = 2.99 mm (8 × 8 array) and 
3.14 mm (4 × 4 array) full width at half maximum (FWHM) 
[10].

Incomplete projection data lead to artefacts in the recon-
structed image. Liu et al. developed a CNN-based method 
for the recovery of partial-ring PET images. In this study, 
20 digital brain phantoms were used in the Monte Carlo Ta
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simulation toolkit, SimSET, to simulate full-ring PET scans. 
The CNN achieved good performance in terms of mean 
squared error (MSE), structural similarity (SSIM) index and 
recovery coefficient (RC), showing the potential to recover 
partial-ring PET images [11] successfully.

As far as PET image reconstruction is concerned, Kim 
et al. proposed a denoising CNN-based method integrated 
within the iterative PET reconstruction framework. The 
algorithm outperformed conventional methods based on 
total variation (TV) and non-local means (NLM) penalties 
[12].

Finally, Gong et  al. trained a deep residual CNN to 
improve PET image quality using the existing inter-patient 
information embedded in the NN. Additionally, the algo-
rithm was integrated into the iterative reconstruction frame-
work. The proposed approach outperformed neural network 
denoising methods and other conventional methods (the 
Gaussian filter and penalized reconstruction methods) [13].

Technical applications

One of the most critical technical challenges in PET/MR 
is an accurate PET attenuation correction (AC) estimation. 
Seven [14–20] out of the twelve included studies investi-
gated the potential role of CNN-based methods in the field 
of AC.

Blanc-Durand et al. [14] proposed generating the AC-
maps from Zero Echo Time (ZTE) MRI images. Three dif-
ferent methods were compared to the reference CT-based 
AC map: a single-head atlas-based method, a ZTE-segmen-
tation based method and a CNN-based method with a U-Net 
architecture. The best performance was achieved by the 
U-Net AC method that showed the lowest bias, the lowest 
inter-individual, inter-regional variability, with a negligible 
impact on brain metabolism estimation.

Leynes et al. [15] proposed a DL model to directly syn-
thesize PseudoCT images from patient-specific multipara-
metric MRI (Dixon MRI) and a proton-density-weighted 
ZTE MRI, named ZEDD-CT. The proposed CNN-based 
method achieved a 4 × and 1.5 × reduction in root-mean-
squared-error (RMSE) quantification of bone and soft tissue 
lesions, respectively.

Bradshaw et al. [16] evaluated DL’s potential use for 
PET/MR attenuation correction in the pelvis using diagnos-
tic MRI. They found that the DL-based approach outper-
formed the one using dedicated attenuation correction MRI 
sequences, shortening the scanning time.

Hwang et al. [17, 18] in 2018 and 2019 investigated dif-
ferent DL-based approaches to improve the simultaneous 
reconstruction of activity and attenuation in PET imaging 
based on maximum likelihood reconstruction of activity 
attenuation (MLAA) approach. In the first one, they pro-
posed three different CNN architectures to learn CT-based 

attenuation map from the MLAA-generated activity dis-
tribution and attenuation map. The three proposed models 
were: Convolutional Autoencoder (CAE), U-Net, hybrid 
CAE and U-net. The hybrid architecture yielded the best 
results with a Dice similarity coefficient of 0.79 in the 
bone and 0.72 in the air cavity.

The second study aimed to improve total-body PET/
MRI attenuation correction and compare with the Dixon-
based four-segment method. The average Dice similarity 
coefficient (bone regions) between μ‐CNN and μ‐CT was 
0.77, thus providing a reliable attenuation map.

Arabi et  al. trained one CNN to generate PET-AC 
images (PET-DLAC) from PET-non-AC images. They 
evaluated the quantification accuracy in four datasets (18F-
FDG, 18F-DOPA, 18F-Flortaucipir, and 18F-Flutemetamol) 
PET-CTAC images as reference. DLAC achieved less than 
9% absolute SUV bias within each tracer dataset, but it 
appeared susceptible to outliers [19].

Spuhler et al. developed a CNN-based method to gener-
ate patient-specific transmission data from T1-weighted 
MRI for PET/MRI neuroimaging; they assessed both static 
and dynamic reconstructions. Good accuracy was shown 
for both reconstructions by the DL approach. The mean 
bias was -1.06 ± 0.81% for generated transmission data 
[20].

Berg et al. proposed a CNN-based method to estimate the 
TOF PET using pairs of digitized detector waveforms for 
a coincident event as input. A 20% and 23% improvement 
in time resolution vs leading-edge discrimination and vs 
constant fraction discrimination, respectively, was achieved 
[21].

Xu et al. [22] explored the potential of a 3D CNN-based 
method for dual-tracer PET images reconstruction. They 
developed a hybrid loss-guided DL-based framework using 
sinogram data. The proposed algorithm outperformed com-
parison methods, successfully recovering the distribution of 
lower total counts. The proposed approach was promising for 
two tracers’ simultaneous imaging, even for tracers labelled 
with the same isotope.

Kumar et al. proposed a CNN-based method to improve 
PET–CT fusion. The proposed method encoded modality-
specific features and then used them to derive a spatially 
varying fusion map quantifying the relative importance of 
each modality’s feature across different anatomical regions. 
Consequently, fusion maps were multiplied by the modal-
ity-specific feature maps to obtain a representation of the 
complementary multi-modality information at different 
locations. The DL method ability to detect and segment 
multiple regions was evaluated and compared to reference 
techniques for multi-modality image fusion (fused inputs, 
multi-branch, and multi-channel techniques) and segmenta-
tion. The developed CNN resulted in a significantly higher 
foreground detection accuracy and Dice score [23].
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As a first step in developing an automated method able 
to quantify skeletal tumour burden in PET/ CT, Belal et al. 
developed a CNN-based method for bone segmentation 
and compared its’ performance with manual segmentations 
made by an experienced physician. Sørensen-Dice index 
(SDI) was used to measure the segmentation accuracy. The 
average volume difference (volume difference/mean volume) 
between the two segmentations was 5–6% and < 3% for the 
vertebral column and ribs, and for other bones, respectively 
[24].

Lee et al. proposed a CNN-based method for voxel dose 
prediction from PET and CT image patches used as inputs in 
the radiotherapy planning setting. The voxel dose rate maps 
predicted by the CNN were compared with a) the ground 
truth from direct Monte Carlo and b) dose rate maps gener-
ated from voxel S-value (VSV) kernel convolution method. 
Results showed good agreement with the ground truth (voxel 
dose rate errors = 2.54% ± 2.09%). Significant improvements 
were achieved in comparison to the conventional dosimetry 
approaches [25].

Clinical studies

Summary of the studies’ features and main results is pro-
vided in Table 3.

Brain and head and neck cancer

In medical imaging, segmentation is a common task; it is 
used for radiotherapy planning, treatment response assess-
ment and prognostic parameters calculation. An automated 
approach (full 3D U-Net CNN) for brain lesion segmenta-
tion from 18F-FET PET images in patients showing different 
glial tumours was tested. The authors demonstrated promis-
ing performance: a Dice similarity coefficient (DSC) up to 
0.8231 was obtained [26].

Radiation therapy is one of the most effective therapeutic 
strategies in head and neck cancer patients. Treatment suc-
cess strongly relies on a precise delineation of gross tumour 
volume (GTV) on medical images. Huang et al. developed 
and verified an automated GTV segmentation method based 
on CNN and PET-CT images. Dice similarity coefficient 
(DSC) of GTV of the proposed method was higher than the 
previously described automated approaches [27].

Olin et al. described further steps forward radiotherapy 
planning using CNN-based methods. They tested the fea-
sibility of an automated “one-stop-shop” radiotherapy 
planning framework using PET/MR data. All dosimetric 
parameters of the synthetic CT-based dose plans resulted 
within ± 1% of the conventional dose plans [28].

Lymph node staging is crucial since it influences both 
the overall survival and the probability of distant metasta-
ses. Chen et al. combined radiomics, and DL approaches 

to classify lymph nodes. They designed a “many-objective 
radiomics” (MaO-radiomics) model and a 3-dimensional 
convolutional neural network (3D-CNN). The algorithm 
fully utilized spatial contextual information and fused the 
outputs through an evidential reasoning approach. The 
hybrid method showed an accuracy of 0.88 [29].

Lymphoma

CNN-based methods in lymphoma patients provided good 
performance in detection and characterization of 18F-FDG-
avid lesions. In particular, in the study by Capobianco et al. 
the CNN-based total metabolic tumour volume (TMTV) was 
compared to the reference TMTV in terms of prognostic 
value for progression-free survival (PFS) and overall sur-
vival (OS). CNN-derived TMTV was significantly corre-
lated with the reference TMTV (ro = 0.76; p < 0.001). In 280 
patients, 6737 ROIPARS (PARS = PET assisted Reporting 
System) were obtained applying the CNN-based method, 
while the ROIREF were 7996. The CNN yielded 3317 true 
negatives, 2399 true positives, 589 false negatives and 432 
false positives. Both TMTV resulted in predictive of PFS 
and OS [30].

Sadik et al. developed a DL-based method to automati-
cally quantify the uptake in the liver and mediastinal blood 
pool needed to determine the Deauville score, as the first 
step towards an automated treatment response evaluation. 
Good accordance between the proposed method and expe-
rienced radiologists was achieved [31].

Sites of physiological 18F-FDG uptake and normal excre-
tion (sFEPU) can interfere in the interpretation of abnormal 
PET findings and reduce the sensitivity. Bi et al. focussed 
on the potential use of a CNN-based method—a multiscale 
superpixel-based encoding (MSE) in sFEPU identification. 
Their method outperformed other existing methods in the 
classification of sFEPU with average F-score of 0.9173 [32].

Lung cancer

Among the included articles, 7/40 clinical studies investi-
gated the potential of CNN-based methods in lung cancer 
patients. In lung lesion detection false positives (FPs)-reduc-
tion was a central issue [33, 34]. Interestingly, Teramoto 
et al. developed an FPs reduction method by incorporating 
CNN into FPs reduction technique that used shape features 
from PET images’ CT and metabolic features. The proposed 
ensemble technique showed a 90% sensitivity and 4.9 FPs/
case [33].

Zhao et  al. developed a multi-modality segmenta-
tion method relying on FDG uptake and CT information 
for tumour delineation. They demonstrated that the pro-
posed PET/CT CNN-based method achieved a significant 
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performance gain in tumour segmentation compared to other 
traditional and ML-based methods [35].

CNN-based methods were also explored as a tool to assist 
staging in lung cancer; Kirienko et al. tested a CNN, devel-
oped using both PET and CT, to classify T parameter (T1-T2 
vs T3-T4). The AUC of the model resulted in 0.83 [36].

For nodal staging, Wang et al. developed a CNN and 
compared it with four classical ML methods. CNN showed 
sensitivity, specificity, accuracy, and AUC of 84%, 88%, 
86%, and 0.91. Diagnostic performance was not significantly 
different among the tested algorithms [37].

The CNN-method developed by Tau et al. was aimed at 
predicting disease spread at nodal and distant sites in non-
small cell lung cancer. CNN-based algorithm accuracy was 
higher for predicting nodal than distant metastases: 80% and 
63%, respectively [38].

Finally, Baek et al. showed that CNNs trained to perform 
tumour segmentation (with no other information than physi-
cian contours) identified survival-related image features with 
remarkable prognostic value. The estimated AUC was 0.88 
(95% CI: 0.80–0.96) to predict 2-year OS [39].

Oesophagal cancer

CNN-based methods in oesophagal cancer therapy response 
and outcome prediction were evaluated by Ypsilantis et al. 
[40] and Yang et al. [41]. In the former, three-slices (3S)-
CNN outperformed other competing predictive parameters 
(e.g., SUVmax and radiomic indexes); An accuracy of 73% 
has been achieved in predicting non-responders and respond-
ers from pre-treatment 18F-FDG-PET/CT images [40]. In 
the latter paper, CNN-based methods provided promising 
results in identifying patients who died within 1 year from 
the initial diagnosis; results suggested that the prediction 
model could identify tumours with more aggressive behav-
iour. Hence, both studies built solid ground to lead further 
investigations supporting future personalized management 
of patients affected by oesophagal cancer [41].

Prostate cancer

Prognosis, prostate cancer delineation, nodal staging, and 
recurrence were all four topics that included studies using 
CNN-based prostate cancer molecular imaging methods.

Polymeri et al. evaluated a DL algorithm on 18F-choline 
PET/CT images of 145 patients for automated cancer assess-
ment (versus manual segmentation) and OS prediction. 
Good accordance between manual measurements and auto-
mated PET/CT biomarkers was shown. Automated PET/CT 
measures were significantly associated with OS (p = 0.02) 
[42].

Mortensen et al. focussed on comparing manual vs auto-
mated prostate cancer assessment in terms of 18F-choline 

PET derived parameters. The correlation between automated 
and manual measurement was significant. CNN segmenta-
tion provided volume and conventional PET measures simi-
lar to manually derived ones. Mean differences (95% CI) 
were 1.40 (− 2.26 to 5.06), 0.37 (− 0.01 to 0.75), -0.08 
(− 0.30 to 0.14), and 9.61 (− 3.95 to 23.17) of volume, 
SUVmax, SUVmean, and total lesion uptake, respectively 
[43].

Hartenstein et al. trained three different CNNs to deter-
mine 68Ga-PSMA PET/CT lymph node status from CT 
alone. The best CNN outperformed two experienced radi-
ologists with an AUC of 0.95 and 0.81, respectively [44].

Finally, Lee et al. [45] evaluated the performance of deep 
learning approaches in detecting abnormal 18F-FACBC 
uptake in patients with biochemical cancer recurrence of 
prostate cancer. Two different CNN architectures were used: 
a 2D-CNN (ResNet-50), which uses single slices (slice-
based approach) and a 3D-CNN (ResNet-14), which uses a 
hundred slices per PET image (case-based approach). The 
slice-based approached performed much better than the 
case-based approach (AUC = 0.971 and 0.699, respectively).

Multiple cancer types

Nobashi et al. evaluated the performance of CNN-based 
approaches to dichotomously classify 18F-FDG PET/CT 
brain scans of cancer patients as abnormal vs normal obtain-
ing convincing results. An overall model that averaged all 
built models’ probabilities showed the best accuracy of 82% 
[46].

Shaish et  al. investigated whether CNN can predict 
the SUVmax of lymph nodes in patients with cancer. The 
predicted SUVmax resulted associated with the reference 
SUVmax (p < 0.0001) [47].

Sibille et al. tested multiple CNN configurations’ per-
formance on a large cohort of lung cancer and lymphoma 
patients to localize and classify uptake patterns on total body 
18F-FDG PET/CT images into suspicious vs non-suspicious 
for cancer. In the classification the AUC varied considerably 
depending on the imaging modality: CT alone, AUC = 0.78 
(95% confidence interval [CI]: 0.72, 0.83); 18F-FDG PET 
alone, AUC = 0.97 (95% CI 0.97, 0.98); 18F-FDG PET/CT, 
AUC = 0.98 (95% CI 0.97, 0.99); 18F-FDG PET/CT maxi-
mum intensity projection (MIP), AUC = 0.98 (95% CI 0.98, 
0.99); and 18F-FDG PET/CT MIP atlas, AUC = 0.99 (95% 
CI 0.98, 1.00) [48].

Kawauchi et al. tested two CNN-based methods (A and 
B) to classify lesions into benign, malignant and equivo-
cal. A total of 76,785 MIP images were analysed. In the 
total-body analysis, Algorithm A achieved 91% (benign), 
100% (malignant) and 57.5% (equivocal) accuracy; while 
Algorithm B showed 99.4% (benign), 99.4% (malignant) and 
87.5% (equivocal) accuracy. In the region-based analysis, the 
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accuracy in the prediction of malignant uptake regions was 
97.3% (head-and-neck), 96.6% (chest), 92.8% (abdomen) 
and 99.6% (pelvis) [49].

Cervical cancer

Chen et al. evaluated the performance of spatial information 
embedded CNN (S-CNN) in the detection of cervical cancer, 
a known challenging task related to its proximity to the blad-
der. The S-CNN output has been processed by a thresholding 
method combined with prior information, reaching a mean 
DSC of 0.84 [50].

Sarcoma

The high mortality rate related to distant metastases prompts 
the need for an early prediction of disease spread in sarcoma 
patients. Peng et al. compared the performance of their deep 
multi-modality collaborative learning method to the state-of-
the-art methods, achieving the overall best performance in 
predicting distant metastases risk with the following results: 
the best AUC value of 0.84, the best accuracy of 85%, the 
best sensitivity of 92%, the best F1 score of 86%, also a 
second-best precision of 81%, and a competitive third-best 
specificity of 79% [51].

Neurology

CNN-based methods were investigated in Alzheimer’s Dis-
ease (AD) and Parkinson’s Disease (PD), in particular, 7/10 
[52–58] focussed on AD, 1/10 focussed on both [59] and 
2/10 focussed on PD only [60, 61].

For AD diagnosis, Ding et al. studied the performance of 
their CNN based on InceptionV3 architecture. The algorithm 
achieved an AUC of 0.98 (95% confidence interval: 0.94, 
1.00) in predicting the clinical diagnosis of AD, outperform-
ing imager evaluation [52].

Liu et al. used one CNN to classify patients affected by 
AD [53]. They built a multiple deep 3D-CNN and an upper 
high-level 2D-CNN able to automatically learn generic 
multi-level and multimodal features from multiple imaging 
modalities. High accuracy (93%) was achieved for classi-
fication of AD versus controls, while for classification of 
Mild Cognitive Impairment (MCI) and controls accuracy 
was lower (83%), demonstrating that the classification of 
this status is challenging.

The same group tested a classification framework’s per-
formance based on a combination of 2D CNN and recurrent 
neural networks (RNNs). The algorithm showed an AUC of 
0.95 for AD vs normal controls (NC) classification and 0.84 
for MCI vs NC classification [54].

Huang et al. proposed a CNN that integrated the multi-
modality information from the hippocampal area of both 

T1-MR and 18F-FDG PET images. The accuracy was 90% 
and 87% for controls vs AD, and for controls vs MCI, 
respectively [55].

Kim et al. investigated amyloid quantification meth-
ods via a DL model. They aimed at developing a one-step 
quantification algorithm for amyloid PET, using images 
acquired from multiple institutions with different radiop-
harmaceuticals. The mean absolute errors of the composite 
SUV ratio of test sets for 18F-Florbetapir and 18F-Florbeta-
ben PET were 0.06 and 0.05, respectively [56].

Choi et al. [57] developed a CNN-based method trained 
on 18F-Fluorodeoxyglucose and 18F-Florbetapir PET 
images to predict future cognitive decline in MCI patients. 
Results showed an accuracy of 84% in the prediction for 
conversion to AD in MCI patients, while accuracy for clas-
sification between AD and healthy subjects was 96%. The 
same group, Choi et al., developed a DL-based evalua-
tion of cognitive dysfunction (cognitive signature) on both 
Parkinson and AD. The proposed algorithm discriminated 
between AD and controls on 18F-FDG PET/CT, achieving 
an AUC = 0.94. When this model was directly transferred 
to images coming from MCI subjects to identify those who 
would have most likely progressed to AD, the AUC was 
0.82; while testing the method on images coming from 
Parkinson disease patients to discriminate the ones with 
dementia, the AUC was 0.81 [59].

Yee et al. proposed a CNN-based method to generate a 
probability score along the continuum of AD. The method 
based on 18F-FDG-PET images showed the limited prog-
nostic value in predicting future conversion to Dementia 
Alzheimer Type [58].

Zhao et al. proposed a 3D deep CNN for an automated 
early differential diagnosis on 18F-FDG PET/CT images 
to discriminate Idiopathic Parkinson’s Disease (IPD) 
from multiple system atrophy (MSA) and progressive 
supranuclear palsy (PSP). Performance achieved by the 
CNN-based method was as follows: 98% sensitivity, 94% 
specificity, 95.5% positive predictive value (PPV) and 97% 
negative predictive value (NPV) for the classification of 
IPD; 97% sensitivity, 99.5% specificity, 99% PPV, and 99% 
NPV for MSA diagnosis; 83% sensitivity, 98% specificity, 
90% PPV, and 98% NPV, for the PSP, respectively. Also, 
saliency maps were illustrated. It is worth to mention that, 
among the saliency features discovered by the deep learn-
ing methods, the midbrain was implied as well, which is a 
widely accepted pathological region for movement disor-
ders that were not considered in the analysis of 18F-FDG 
PET/CT images yet [60].

Manzanera et al. [61] investigated a 3D-CNN model’s 
potential role in the differentiation of PD patients from 
controls on 18F-FDG PET/CT images, achieving good per-
formance AUC of 0.94 on the test set.
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Cardiology

Hirata et al. [62] developed a CNN-based method to retro-
spectively differentiate cardiac sarcoidosis (CS) and non-
CS in 18F-FDG PET/CT images of 85 patients (CS = 33). 
An appropriate diagnosis could help prevent deadly cardiac 
events occurring in this particular type of patients such 
as complete heart block, ventricular or atrial arrhythmias, 
congestive heart failure, and sudden cardiac death. Perfor-
mance of the CNN-based method with the ReliefF algo-
rithm’s introduction achieved a sensitivity and specificity of 
84% and 87%, respectively, outperforming the standardized 
uptake value (SUV)-based classification method and the 
coefficient of variance (CoV)-based classification method.

Other applications

Cerebral blood flow (CBF) is altered in many neurological 
diseases. Guo et al. [63] developed a CNN-based method 
trained to integrate single and multi-delay arterial spin 
labelling (ASL) and structural MR to predict gold-stand-
ard 15O-water PET CBF maps. Significant improvement in 
image quality and quantification accuracy was achieved. 
Results showed good performance with a structural simi-
larity index of 0.732 for the multi delay and 0.854 for a 
single delay.

Xiong et al. evaluated the performance of three differ-
ent 3D deep CNNs (U-Net, V-Net, and modified U-Net) in 
the automated measurement of 18F-FDG uptake in the cer-
ebellum. U-Net CNN yielded the best performance with a 
Dice coefficient of 0.911 and showed no significant slope 
and intercepted error in the SUV uptake measurement than 
an independent reference standard [64]. This study dem-
onstrated the potential of deep CNNs in automated SUV 
measurement of reference regions.

To prevent patient misidentification, Kawauchi et al. [65] 
developed a CNN-based method to predict patients’ sex from 
18F-FDG PET/CT images, achieving an accuracy of 99%. 
The pelvic region was the most crucial region to classify the 
patients correctly. Moreover, the DL method was also able 
to predict the age and body weight.

Discussion

Nuclear medicine field has experienced rapid development 
of AI-based applications in the last 2 years.

The vast majority of included articles (45/63–71%) were 
published in 2019–2020. CNN-based algorithms have been 
proposed for a wide range of PET imaging purposes, encom-
passing technical and clinical objectives. Indeed, machine 
learning algorithms have been demonstrated to be of value 
for image quality improvement, attenuation correction (in 

particular for PET/MR systems), and automatic extraction 
of a higher amount of information from raw and processed 
images. Clinical applications comprised oncology (detec-
tion, diagnosis, and prognostication in many cancer dis-
eases), neurology and cardiology, in line with the PET/CT 
indications.

One of the main challenges for CNN-based algorithms 
development is the scarcity of the datasets. Augmenta-
tion strategies are generally put in place to improve model 
performance and overcome the overfitting phenomenon, a 
common problem related to machine learning algorithms. 
Augmenting the data allows adding variability in the dataset 
to improve the prediction generalization [66]. The selected 
technical studies included up to 180 subjects, and clinical 
studies patient population ranged between 11 and 6462 
patients, with a median of 209. Deep learning methods 
require exponentially larger populations. On the one hand, 
this is necessary to minimize the effects of overfitting. On 
the other hand, it allows training an algorithm on a cohort 
representative of the “real-world” population for which the 
model is developed. It has been demonstrated that model 
performance significantly improves with dataset enlarge-
ment. When a 1000 samples dataset vs the > 100,000 data-
sets was used for retinopathy classifier development, the 
weighted error resulted in 13% vs 7%, respectively [67]. 
Several studies can be considered proof-of-concept or pre-
liminary investigations because of the limited dataset size, 
restricting their clinical practice applicability. Large and rep-
resentative study cohorts are challenging to enrol because 
of ethical limitations, expense, time requirements, or lack 
of ground truth. Indeed, retrospective study design rather 
than prospective is the main one among the selected studies.

Alternative strategies have been implemented to over-
come this challenge. Multiple studies focussed on neuro-
logical diseases (8/10 selected studies, [52–59]) used image 
datasets from the Alzheimer disease neuroimaging initia-
tive (ADNI) (http://adni.loni.usc.edu). ADNI started in 2004 
with an initial ANDI-1 project, followed by ADNI-2 and 
ADNI-3, to detect and track AD using genetic, biochemi-
cal, clinical, and imaging biomarkers. The availability of 
this open database allows multiple investigators worldwide 
to study and develop alternative strategies to respond to the 
need for early identification of the disease and risk stratifi-
cation. The availability of such public datasets for a wide 
range of conditions could accelerate the research path. Some 
initiatives such as The Cancer Imaging Archive (TCIA)—a 
project funded by the Cancer Imaging Programme of the 
National Cancer Institute—hosts datasets of different medi-
cal imaging types and cancer patients’ modalities accessible 
for public download [68].

Virtual clinical trials (VCTs) (or “in silico” imaging tri-
als or virtual imaging trials) may constitute an alternative 
approach to evaluate medical imaging technologies and to 

http://adni.loni.usc.edu
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perform clinical trials. Within VCTs in medical imaging, 
the investigators may create models of humans, synthetic 
datasets, simulate imaging scanners, design and use inter-
pretation models, and emerge from our review especially for 
technical investigations [9, 11, 13]. This technology is at its 
early stage for clinical applications. These approaches are 
challenged by computational complexity, simulation real-
ism, and difficulties for validation but soon may represent 
an alternative or at least a companion strategy for research 
in medical imaging [69].

Prior experiences on distributed learning approaches such 
as Clara platform have been launched to promote collabo-
ration among institutions preserving policy and regulatory 
aspects (https​://devel​oper.nvidi​a.com/clara​).

Deep learning applied to images attempts to identify fea-
tures in an image that could be predictive of the outcome 
of interest (diagnosis or patient survival) without explicit 
human programming. On the other hand, radiomics is based 
on calculating many parameters (histogram and texture fea-
tures), defined by mathematical formulas, that subsequently 
are analysed using appropriate statistical methods or ML 
algorithms to assess their potential diagnostic or predic-
tive value. Interestingly, image mining tools may be based 
on combining these two strategies (radiomics and CNNs), 
such as in the study by Peng et al. [51]. They applied and 
compared handcrafted features (with the random forest for 
classification and prediction), PET-derived 2D and 3D CNN, 
and an algorithm integrating in-depth features with texture 
features to predict distant metastases development in patients 
affected by soft-tissue sarcoma. The multi-modality (PET/
CT) collaborative (radiomics and CNN) learning approach 
demonstrated the best performance. The proposed combina-
tion strategy may overcome single approaches.

Knowledge of the basic principles and awareness of 
deep learning methods’ advantages and limitations should 
become part of radiologists and nuclear medicine physi-
cians’ skills. Restructured training programmes are under 
development [70]. The availability of educational resources 
by national and international scientific societies and aca-
demia for practising professionals is growing; books [1, 71], 
journal articles [72–74], meetings[75], webinars, and online 
resources[76] can be accessed. The integration of AI-based 
tools into the medical workflow is an up-and-coming trend, 
and all the professionals working in imaging departments 
should embrace innovation coming from AI, attend training 
initiatives and be up to date.

We have to acknowledge that we may have missed some 
papers from technical and engineering resources. However, 
we aimed to identify the research trend towards the clinical 
arena. Secondly, we did not perform a quality assessment of 
the studies since we intended to include preliminary inves-
tigations to identify early trends in CNN-based approaches 
in PET imaging.

In conclusion, CNN applications for PET/CT and PET/
MR are exponentially growing for both technical and clinical 
purposes. ML algorithms demonstrated promising results 
with performances equal or even higher compared to con-
ventional approaches. Novel research strategies emerged to 
face the challenges of ML algorithms development. Intro-
duction of AI-based methods into clinical practice requires 
dedicated educational initiatives for professionals involved 
in the medical imaging field to enable a critical appraisal of 
the advantages and limitations of AI-based tools.
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