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KEY POINTS

� Modern artificial intelligence algorithms are built on the foundation of a traditional artificial neural
network.

� The key components of a simple convolutional neural network are the convolution layer, pooling
operation, fully connected layer, and output layer.

� The U-Net is a widely used network for image segmentation and image synthesis.
INTRODUCTION clustering). Algorithms can also be classified
Artificial intelligence (AI) has seen an explosion in
interest within nuclear medicine.1 This interest
has been driven by the rapid progress and eye-
catching achievements of machine learning (ML)
algorithms over the past decade. AI, and in partic-
ular computer vision, is now receiving attention
from many outside of computer science, hoping
to apply the promising technologies within their
own field of study. Nuclear medicine, like many
other medical specialties, is poised to benefit
from AI in several ways.2–4 However, newcomers
to ML may be overwhelmed by the nearly limitless
acronyms, network architectures, and publica-
tions claiming “state-of-the-art performance,” all
of which is challenging for beginners to navigate.

This article provides an illustrated guide to foun-
dational concepts in AI. Given the breadth of AI,
this article focuses on topics and networks that
are most relevant to PET imaging. There are
many classes of AI algorithms, many of which
are beyond the scope of this article. For example,
there are supervised learning algorithms that are
trained using datasets with paired inputs and la-
bels, and unsupervised learning algorithms that
learn relationships using unlabeled data (eg,
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based on application, such as computer vision al-
gorithms that are applied to images, and natural
language processing algorithms that are applied
to text. Algorithms are further classified according
to the structure and function of the network, such
as artificial neural networks, decision forests, sup-
port vector machines, transformers, and so forth.
Algorithms are designed with certain structures
(anatomy) and functions (physiology) so that they
are capable of handling specific tasks (eg, image
classification). This article focuses on supervised
learning algorithms that process images, with a
specific focus on convolutional neural networks
(CNN), because these are currently the most rele-
vant algorithms to PET imaging. The target audi-
ence is nontechnical, future consumers of AI
algorithms in nuclear medicine who wish to better
understand this emerging technology. We aim to
convey a high level conceptual understanding of
AI, whereas readers interested in a deeper treat-
ment of its mathematical underpinnings are
referred to other publications.5–7

The article is organized as follows. First, we pro-
vide an overview of the pipeline for AI algorithm
development. We then give a step-by-step survey
of the components and operations of AI
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algorithms, particularly the basic CNN, which is
the principal ingredient of most modern computer
vision algorithms. We then describe the process of
model training. Finally, we explain the components
of the widely used U-Net architecture, which is
arguably the most widely used CNN in the medical
imaging community.8
STEPS OF ALGORITHM DEVELOPMENT

There is a common pipeline used when developing
ML algorithms. Understanding the development
life cycle of an ML algorithm is important for
placing promising studies or newly Food and
Drug Administration–cleared AI software in proper
context. The steps of the pipeline begin once an
investigator has a clearly defined task that they
would like to perform (which can itself be a chal-
lenge). The task is a prediction task: given some
input data, the model predicts the expected
output. To build the prediction model, investiga-
tors then collect data, label data, build the
network, train the model, evaluate the model,
and deploy the model. This pipeline is shown in
Fig. 1.
Each step of the pipeline is deserving of its own

in-depth treatment. Indeed, many review and
educational articles have been dedicated to the in-
dividual steps.9–11 When developers take short-
cuts or fail to follow best practices anywhere
along the pipeline, they risk seeing their algorithms
fail during evaluation or postdeployment.12 Most
of the important terms and concepts of ML algo-
rithm development are beyond the scope of this
article; however, many of them are listed in Fig. 1
and readers are encouraged to explore them
further. Also, a glossary of terms used in this article
is found in Table 1.
Data collection and labeling are arguably the

most critical but time-consuming steps of building
an ML model. If the dataset does not reflect the
clinical task (eg, using radiotherapy contours for
PET lesion detection algorithm) or the clinical pa-
tient population (eg, lacking obese patients), then
Fig. 1. The steps of machine learning algorithm developme
the key concepts are beyond the scope of this article an
further through other sources.
the algorithm will likely reflect those limitations.
High-quality, large, and diverse datasets are
needed for ML algorithm development.
A key concept for users to understand is gener-

alizability, together with its counterpart overfit-
ting. The primary goal and also the primary
challenge of ML algorithm development is to
create an algorithm that performs well when
applied to unseen data (ie, data not available to
the model during training). ML algorithms can
easily memorize training samples: they can
detect noise patterns or features that are highly
specific to the training dataset and then rely on
those features to make predictions. However,
those features are not useful, and in fact are
misleading, when used to make predictions for
a new dataset. Therefore, significant effort is
spent during algorithm development to prevent-
ing overfitting. Data also need to be collected
and labeled from diverse sources, matching the
diversity of the expected population, to avoid
overfitting to a specific subpopulation. Then,
once the model is trained, its performance must
be evaluated with new data that are external to
the development dataset.13
BUILDING BLOCKS OF MACHINE LEARNING
NETWORKS

The primary assumption underpinning many ML
algorithms is that simple mathematical operations,
when intelligently stacked together, can be used to
represent highly complex relationships between
input data and training labels. Motivated by the
“simple” functions of individual biologic neurons
in the brain, many modern ML networks are in
fact a long series of simple operations. The opera-
tions rely on numerical weights or parameters that
are learned during training. These building blocks
often include weighted sums, or binary yes/no de-
cisions, or convolutions, as illustrated in Fig. 2.
Most modern ML networks are primarily
composed of these simple operations, such as
artificial neural networks (weighted sums), random
nt, together with key concepts for each step. Many of
d readers are encouraged to explore these concepts



Table 1
Glossary of terms

Term Definition

1 � 1 convolution A convenient tool for changing the number of channels in a layer

Activation function A function that transforms the output of a layer; often used to add
nonlinearity to a network

Activation (feature) map The result of network operations performed on input data; often
represents salient features of the input data

Backpropagation Amethod used by an optimizer to compute the network’s gradients

Batch (minibatch) Datasets are partitioned into batches for training; one batch is used
during each iteration

Batch normalization An operation that normalizes the values of an activation map

Channel The number of activation maps or input depth; for images, the size
of the third dimension (eg, red-green-blue 5 3 channels)

Concatenation Often used to stack two sets of activation maps together

Convolution layer A network layer in which a bank of filters is convolved with an input
matrix, producing an activation map for each filter

Cross-validation A data partitioning technique where the dataset is repeatedly
sampled into different training and testing sets

Decision tree A series of binary yes/no operations performed on input data; trees
are often combined together to create decision forests

Encoder-decoder A type of network that consists of a series of downsampling
operations followed by a series of upsampling operations

Epoch Passing over the entire dataset (all batches) during training

Filter A set of weights that is convolved with an input image as part of a
convolution layer; updated during training

Fully connected (dense) layer A single layer of a traditional neural network; each node connects
to each element of the input

Generative adversarial
network

A framework for training models by having two models compete
and learn from each other

Hyperparameters Model parameters not explicitly learned during training; often
design choices (eg, number of layers, channels, epochs)

Iteration An individual update step during training, often using a single
batch of data

Linear layer An activation function that only scales the input; used for
continuously valued outputs

Loss function A measurement of how far off the model’s predictions are from the
labels; used to guide model training

Max pooling A downsampling operation that passes on the highest value in each
patch after an image has been partitioned into patches

Neuron/node A single operation within an artificial neural network

Optimizer The method used to update the model’s weights based on the loss
function

Overfitting The network memorizing training examples; often results in poor
generalization performance

Rectified linear unit An activation function that sets all negative valued inputs to zero
and passes through all positive values

Sigmoid An activation function that yields a value between 0 and 1; used for
binary classification

Softmax An activation function that provides the probabilities for each
possible class the sample might belong to; for multiclass
classification

(continued on next page)
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Table 1
(continued )

Term Definition

Stochastic gradient descent A commonly used optimizer

Supervised learning Methods by which an algorithm learns to map input data to a
desired output by training with a dataset of paired input-label
examples

Tensor A data object; often a multidimensional data array

U-Net An encoder-decoder network that is commonly used for
segmentation and image synthesis

Upsampling (upconvolution,
transpose convolution)

An operation that increases the dimensions of the input data

Unsupervised learning Methods by which an algorithm learns patterns in an unlabeled
dataset (eg, clustering)

Weights (parameters) Coefficients that are used in network operations and are updated/
learned during training
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forests (binary decisions), and CNNs (convolu-
tions). The building blocks are typically combined
with additional operations (eg, nonlinear functions)
and organized into complex pathways to better
represent the complex relationships they are
tasked to learn.

THE CONVOLUTIONAL NEURAL NETWORK

This section walks the reader step-by-step
through all the major components of a CNN.

Diagrams

CNNs are often represented using diagrams like
the one shown in Fig. 3. There are different con-
ventions for representing networks in literature,
which is a source of confusion. In general, dia-
grams either illustrate the series of operations
that are performed on the input data (eg, showing
Fig. 2. Simple functions are used as the main building bl
used to perform basic operations on input data (Xi). Wh
blocks can create complex and powerful networks.
a series of convolution operations as in He and
colleagues14) or diagrams illustrate the data that
result from the network operations (eg, showing
how the dimensions of the data change following
network operations as in Simonyan and Zisser-
man15). The latter style is used in Fig. 3. Often
the weights of a network, such as the bank of con-
volutional filters, are not represented in the dia-
grams but are implied.
Convolution Layers

The network depicted in Fig. 3 is a simple three-
layer CNN. The three components of this
network that are considered “layers” are the
convolution layer, the fully connected (FC) layer,
and the output layer. This small network serves
as a toy example that allows us to understand
the foundational components of a CNN. In
ocks of most AI networks. Learnable weights (wi) are
en stacked together in large numbers, these building



Fig. 3. This example of a convolutional neural
network is dissected throughout the article. The key
steps are labeled. (A) The convolution operation (see
Fig. 4). (B) Max pooling (see Fig. 5). (C) Fully connected
layer (see Fig. 6). (D) The output (see Fig. 7). The
numbers above each layer indicate the dimensions
of the activation maps or number of nodes: Nx � Ny-

� Nchannels. ReLU, rectified linear unit.
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Fig. 3A–D, each operation performed by the
network is represented. Each operation is dis-
cussed next and illustrated in more detail in
Figs. 4–7.
Fig. 4. A convolutional layer consists of three operations.
sliding window fashion. The filters start as random numb
feature detectors, such as edge detectors. Each of the J filter
operation produces an activation map. The activation map
whichever feature the filter has learned to detect (eg, the le
duces a different activation map. (3) An activation function
network is capable of learning nonlinear relationships betw
The first convolution operation is shown in
Fig. 3A. This is a two-dimensional (2D) convolution
and is depicted in greater detail in Fig. 4. The first
convolution layer takes two arrays as input: the
input image and a bank of learnable 2D filters or
kernels. The convolution layer produces a third
array as output: the activation map. Each filter
(the number of filters is a parameter selected by
the developer) is convolved with the input image
and consequently creates its own independent
and unique activation map as output: J filters pro-
duce J activation maps. The filters are conceptu-
ally understood to represent “feature detectors.”
They begin as random numbers and then during
training they evolve into useful filters, such as
edge detectors. The activation maps (also called
feature maps or internal representations) reflect
the part of the input image that is “activated” by
the filter. For example, an edge-detecting filter
produces an activation map with high values in
the pixels that correspond to edges in the input im-
age. This is depicted in Fig. 4. Activation maps in
the early layers of the network are thought to
reflect simple features (eg, edges), whereas acti-
vation maps deep within the network are thought
to reflect high-level, abstract features (eg, rib-
cage). By convention, the number of activation
(1) A bank of filters is convolved with the image in a
ers and evolve over the course of training to become
s is convolved with the input image. (2) The convolution
reflects the locations of the input image that contain
ft edge is activated by left edge filters). Each filter pro-
is applied pixel-wise to the activation maps so that the
een the input image and the training label.



Fig. 5. The max pooling operation partitions an image into patches (in this case 2 � 2 patches) and then passes
along the highest value in the patch to the next layer. This has the effect of downsampling the image/activation
map.
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maps produced in a given layer is also called the
number of channels in that layer (100 activation
maps 5 100 channels).
Activation Functions

Following each convolution layer, the resulting
activation map is passed through an activation
function. The activation function is a mathematical
Fig. 6. Fully connected (FC) layers are often used before th
flattened (ie, converted to a one-dimensional vector) and
activation maps, Fi, is connected to each node of the FC lay
wi (for convenience, this figure only shows Fi connected
weighted sum of all elements feeding into the node, p
function.
function applied to each element of the activation
map (ie, pixel-wise). The purpose of the activation
function is to introduce nonlinearity into the
network, otherwise the sequence of convolutions
(which are linear operations) would be limited to
only learning linear relationships between the input
data and target labels. There are a variety of func-
tions that can serve as activation functions, the
most common being the rectified linear unit and
e output layer of a CNN. The activation maps are first
then fed to an FC layer. Each element of the flattened
er, with each connection assigned a learnable weight,
to a single FC node). The output of a node is the

lus a learned bias weight, followed by an activation



Fig. 7. The output node and its activation function
dictate the output of the network. The output layer
can have a single node, a vector of nodes, a 2D array
of nodes, or (for multiclass segmentation using soft-
max) a three-dimensional array of nodes.
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the sigmoid, as shown in Fig. 4. The rectified linear
unit is a simple function whose output is 0 if the
input (ie, pixel in the activation map) is less than
0, otherwise its output is identical to the input.
The rectified linear unit effectively sets all negative
values in the activation maps to zero, which is sur-
prisingly simple yet effective.

Convolution operations are often repeated mul-
tiple times in a row. The activation maps resulting
from the first convolution layer act as the input for
a second convolution layer. These activation maps
are convolved with a new, independent bank of
learned filters, yielding another set of activation
maps in the second layer. Some CNNs have
dozens of convolution layers.

Pooling Layers

Pooling layers (see Fig. 3B), are a key component
of most CNNs. Pooling layers are downsampling
operations, which are necessary because of the
GPU’s limited memory. A succession of convolu-
tion layers producing multichannel activation
maps can quickly surpass the GPU’s memory ca-
pacity when applied to high-resolution images. For
a given memory budget, the empirical rule-of-
thumb is that one can get greater performance
when activation maps are downsampled. This
saves memory, which effectively allows one to
build a deeper network with more layers and/or
channels. Large networks typically have several
pooling layers.

The most common type of pooling is max pool-
ing, which is depicted in Fig. 5. In 2 � 2 max pool-
ing, the activation map is first partitioned into 2� 2
patches. The highest pixel value in each patch is
passed to the next layer, whereas the other three
pixel values are thrown away. This has the effect
of reducing the dimensions of the activation
maps by half (512 � 512 / 256 � 256) and mem-
ory by a factor of four. Conceptually, by passing
the maximum pixel value in a patch to the next
layer, the network is indicating to the next layer
that there is a high activation (ie, there is an impor-
tant feature) within the patch.

Fully Connected Layers

FC layers are often used before the final output of
the network (see Fig. 3C). An FC layer, or dense
layer, is equivalent to a traditional artificial neural
network comprised of neurons or nodes. The FC
layer is depicted in detail in Fig. 6. Often the pur-
pose of placing an FC layer at the end of a CNN
is to learn complex relationships between the last
set of activation maps and the final output of the
network. The developer selects the number of
nodes in the FC layer, and each element of the
input to the layer, which we call Fi, is conceptually
“connected” to each node in the FC layer. These
connections are often illustrated in diagrams by
lines connecting two nodes. Each connection is
assigned a learnable weight, wi. The output of
each node in the FC layer is a weighted sum,
meaning the total sum of all input values multiplied
by their respective weights: S(Fi � wi). In practice,
this is simply a matrix multiplication of the input
vector and the weight vector. Often a learned
bias value, b, is added to the output of the node
and then it is passed through an activation func-
tion, as shown in Fig. 6. Note that in the figure,
the input to the FC layer is not the activation map
itself, but rather a flattened version of the activa-
tion map, in which the three-dimensional array
gets collapsed to a 1 � N vector. This is a neces-
sary step before feeding the activation map to the
FC layer.

Final Layer

The final layer of a network together with its corre-
sponding activation function dictate the output of
the model. For our toy network, the final layer
(see Fig. 3D) consists of a single node. The last
layer can be a single node, a vector of nodes, or
even a 2D or three-dimensional array of nodes,
depending on the desired output of the model.
The different possible forms that the last layer
might take and options for activation functions
are depicted in Fig. 7. The most common activa-
tion functions for the last layer are sigmoid, linear,
and softmax. Sigmoid activation functions are
ideal for binary tasks (eg, disease present or dis-
ease absent).7 The output of a sigmoid is a contin-
uous value between 0 and 1 (see Fig. 4), but in
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practice its output gets rounded to either 0 or 1.
Sigmoids are used for binary classification or
two-class image segmentation (for which the last
layer would have dimensions Nx � Ny). Linear acti-
vation functions are for continuously valued out-
puts, such as predicting a risk score or for image
synthesis. Softmax activation functions are used
in multiclass classification problems. Softmax
returns a probability score for each of the possible
output classes, and the class with the highest
score is then used as the model output. Layers us-
ing softmax must therefore have an extra dimen-
sion whose size is the number of possible
classes (see Fig. 7). For example, if classifying
an image into one of four disease groups, softmax
would output four values, one for each disease
group, representing the probability of the image
belonging to each group. So the final layer should
be of dimensions 1 � 4.

NETWORK TRAINING

A detailed treatment of network training is beyond
the scope of this article, but the following is a brief
overview of the key components.

Optimization

Training is an optimization process. This means
that with each iteration of training, the weights of
the network (which start off as random numbers)
are tweaked in a way that makes the output of
the network better (ie, the network’s output gets
closer in value to the labels of the training data).
For the network shown in Fig. 3, the weights that
get updated during training are the convolutional
filters and the FC layer weights (both of which
are not depicted in the figure). Weights can num-
ber in the tens of millions for large networks.
An optimization problem requires a loss func-

tion. A loss function quantifies the difference be-
tween the model’s output and the training labels.
The overall goal of training is to minimize the net-
work’s loss function. For example, a potential
loss function for problems with continuously
valued outputs might be mean squared error: (pre-
dicted – true)2. For classification problems, classi-
fication accuracy could be used as a loss function,
but researchers have found that a measure called
cross-entropy produces better results for classifi-
cation and is therefore more widely used.7

The training algorithm, or the optimizer, is the
method that determines the magnitude and direc-
tion that each weight should be changed during
training so that the loss function gets smaller. For
example, stochastic gradient descent is a
commonly used optimizer for CNNs.16 Most opti-
mizers, including stochastic gradient descent,
use the backpropagation algorithm to compute
the network’s gradients (the gradients tell how a
directional change in a weight will impact the
loss function).

Training Considerations

During training, precautions are taken to prevent
the network from overfitting the training dataset.
To avoid overfitting, developmental datasets are
often partitioned into two or three distinct sets:
the training set for training the model, the test set
for estimating the performance of the model on un-
seen data, and (if needed) a validation set for
model selection. The validation set lets developers
try out different models without the risk of acci-
dently selecting a model that is by chance overfit-
ting the test set. An even better method than one-
time data splitting is the use of cross-validation, in
which the dataset is repeatedly split into training
and testing sets and a new model is trained with
each split. With cross-validation, the whole data-
set is used for training and for testing across the
different splits.
Because of memory constraints, developers

often train the model on batches of examples
from the training dataset, updating the model
with each batch of data. When enough batches
have passed through the model to encompass
the full size of the entire training dataset, this is
called an epoch. Model training typically proceeds
through many epochs and stops when the error in
the validation set begins to rise (even if the error in
the training set continues to improve).

THE U-NET

Most CNNs used in academic or commercial ap-
plications are more complicated than the toy
network shown in Fig. 3. In this section, we
describe in detail the well-known and widely
used U-Net architecture. The U-Net architecture
was proposed by Ronneberger and colleagues in
2015 and is depicted in Fig. 8.8 The U-Net forms
a U-shape, with the left-hand descending side
called the encoder, and the right-hand ascending
side called the decoder. The U-Net was developed
to solve a problem that was challenging at the
time: how to produce high-resolution segmenta-
tion maps using CNNs. The “funnel” shape of
CNNs, in which high-resolution images get repeat-
edly downsampled to low-resolution activation
maps, causes the high-resolution information (eg,
sharp edges) to get lost along the way. The
U-Net solves this problem in two ways: upsam-
pling and concatenation operations. Fig. 8 shows
that the upsampling operations begin halfway
through the network. An upsampling operation



Fig. 8. The U-Net is an encoder-decoder network, with the encoder (left side) consisting of downsampling oper-
ations via max pooling and the decoder (right side) consisting of upsampling operations. This U-Net is producing
a binary segmentation map from a nuclear medicine image.
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doubles the X-Y dimensions of an activation map,
and if repeated enough, eventually allows for the
network’s output (eg, a segmentation map) to
match the dimensions of the input image. It also al-
lows for features from the lowest-resolution level
of the network, which represent the most abstract
and contextually aware features, to be passed to
the high-resolution output map. Upsampling can
be performed using nearest neighbor upsampling,
in which one pixel value is replicated four times
into a 2 � 2 patch, or through upconvolution
(also called transpose convolution or deconvolu-
tion), in which one pixel gets multiplied by four
learned weights to produce a 2 � 2 patch. The
number of channels often remains the same after
upsampling. Note that in Fig. 8 the channel depth
(ie, number of activation maps) is not accurately
depicted: all layers appear to have the same num-
ber of channels. In fact, the U-Net increases in
channel number with each stage of the encoder,
and then decreases in channel number with each
stage of the decoder. Fig. 8 ignores this for conve-
nience only.

The second novel component of the U-Net is the
concatenation operations. These operations allow
the network to combine the abstract features
learned at the lowest resolution layer with the
high-resolution features of the input images. It
works in the following manner: the activation
maps on the encoder side of the network, which
are produced by convolutional layers acting on
the input image and its descendants, are combined
with the activation maps on the decoder side of the
network, which are produced by upsampling the
lowest-resolution features. Because the X and Y di-
mensions of some activation maps match on the
encoder and decoder sides of the network, the acti-
vation maps are combined by simply stacking them
together channel-wise. If the activation maps in the
encoder side are of dimensions Nx � Ny � NA, and
theactivationmapson thedecoder sideareNx�Ny-

� NB, the concatenated maps will be of dimension
Nx � Ny � NA 1 B.

Finally, there are a few other components of the
U-Net in Fig. 8 that are not included in our original
toy example: batch normalization (BN) and 1 � 1
convolutions. BN is a surprisingly powerful opera-
tion that is frequently used after every convolu-
tional layer.17 For each iteration of training (ie, for
each batch of training samples), BN causes the
output values of a given layer to have a fixed
mean and variance. This means that the activation
maps are scaled such that the average value of all
the elements in the activation maps is equal to
some number (this number is a learned weight
and changes with each batch) and the variance
of the activation maps is equal to some number
(also a learned weight). This prevents the values
in the activation maps from drifting to large
difficult-to-handle numbers during training. Empir-
ically, BN results in faster convergence and helps
regularize a network. The 1 � 1 convolution, which
is applied in the last layer of the U-Net in Fig. 8, is a
means of converting a stack of activation maps
into a single 2D output image: Nx � Ny � Nz / Nx-

� Ny. Conceptually, every individual X-Y index in
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the activation maps before the last layer will have
multiple values in the z-dimension, Nz, one for
each activation map. A 1� 1 convolution performs
a weighted sum of those Nz values to produce a
single X-Y output. The weights of this weighted
sum are learned during training. Consequently,
the 1 � 1 convolution is used as a convenient
tool for changing the number of channels of a
layer.
The U-Net is used for more than just segmenta-

tion. By simply changing the last layer activation
function from sigmoid (binary output) to linear
(continuously valued output), and using an appro-
priate loss function and training set, the U-Net can
perform image synthesis. BN often needs to be
removed for image synthesis applications, howev-
er, because BN can make it difficult to produce
consistent quantitative outputs because of the
Table 2
Different classes of AI models and their typical uses

Model Classes Input Output

Convolutional neural network

Deep CNN Image Class, scorea

Encoder-decoder
CNN

Image Image, mask

Detection CNN Image Pixel indices

Generative
adversarial
network

Image Image, mask

Artificial neural network

Feed forward
artificial neural
network

Features Class, score

Recurrent
artificial neural
network

Features Class, score,
text

Transformer Features Class, score,
text

Decision forest

Random forests Features Class, score

Gradient-boosted
decision forest

Features Class, score

Clustering Features Class

Support vector
machines

Features Class

a Score can mean any continuous variable, such as age, size, o
constantly shifting values of the activation maps.
The U-Net has been used in several image synthe-
sis applications, such as computed tomography
synthesis for attenuation correction.2

OTHER NETWORKS AND MODELS

CNNs, including the U-Net, have gained wide
popularity in nuclear medicine, but they are not al-
ways the best option for every application.
Furthermore, not all CNNs are designed to perform
the same function. Developers must select a
model type and architecture (anatomy) matched
with the proper functionality (physiology) that is
appropriate for their prediction task. For example,
a model designed for classification is often not
suitable for image synthesis.
Table 2 shows several different classes of AI

models and their typical uses. It also lists
Typical Uses Example Architectures

Image classification,
risk score prediction

AlexNet, ResNet

Image segmentation,
image synthesis

U-Net, SegNet, FCN

Object detection/
localization

R-CNN, YOLO

Image-to-image
translation

CycleGAN, pix2pix

Radiomics, risk score
prediction

Perceptron, multilayer
perceptron

Language modeling,
time series

LSTM

Language modeling BERT, GPT-3

Radiomics, risk
score prediction,
classification

CART, bagged trees

Radiomics, risk
score prediction,
classification

XGBoost

Unsupervised
classification

k-means, k-NN,

Classification RBF SVM

r risk.
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examples of published architectures for each
class. The structure and function of each type of
model dictates applications for which it is suitable.
For example, a radiomics model should be
designed to take a list of numerical values (radio-
mics features) as input and produce a numerical
output (eg, risk score). Hence, radiomics models
often use artificial neural networks or decision for-
ests with the appropriate structure (eg, number of
input/output nodes) and function (eg, activation
functions).18

Novel classes of model are continuing to be
developed. For example, a generative adversarial
network is a unique type of model that is gaining
popularity in medical imaging. Generative adver-
sarial networks can often perform the same tasks
as CNNs but may require fewer labeled data sam-
ples.19 Generative adversarial networks pit two
networks against one another (often two CNNs).
One network is tasked with producing realistic
and accurate outputs (eg, segmentation masks)
and the other network is tasked with predicting
whether a sample was generated by the first
network or came from a set of true labels. Each
network gets penalized when the other network
succeeds, which causes both networks to
compete and improve. Novel unsupervised and
semisupervised model types are also showing
promise. Readers are encouraged to explore
benchmark datasets and data science competi-
tions to become familiar with the ever-growing va-
riety of AI architectures.20
SUMMARY

As the foothold of AI within PET imaging continues
to grow, more and more people in nuclear medi-
cine will be exposed to concepts and principles
of AI. Here, we have described the core structure
and function of CNNs, starting basic and then
building up to the more complicated U-Net. It is
hoped that this establishes a foundation of knowl-
edge that readers can build on and familiarizes
readers with the building blocks that are used in
most ML applications. With a greater familiarity
of AI principles, readers are better positioned to
develop, evaluate, and use AI tools in future clin-
ical practice.
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