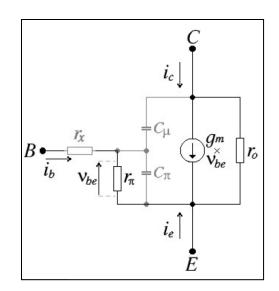
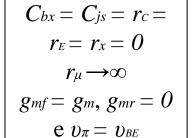
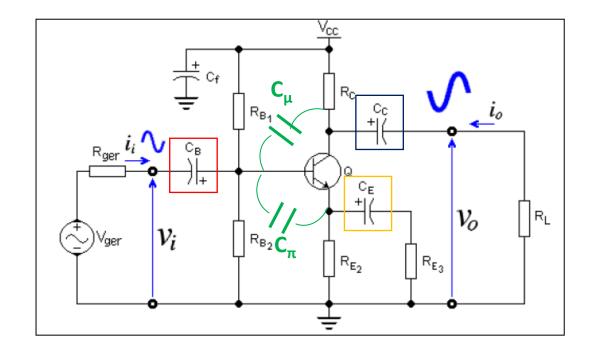


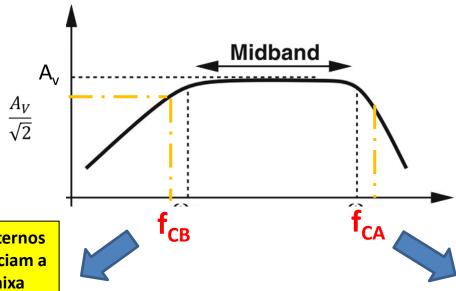
Análise AC de Circuitos com BJT


Recordação



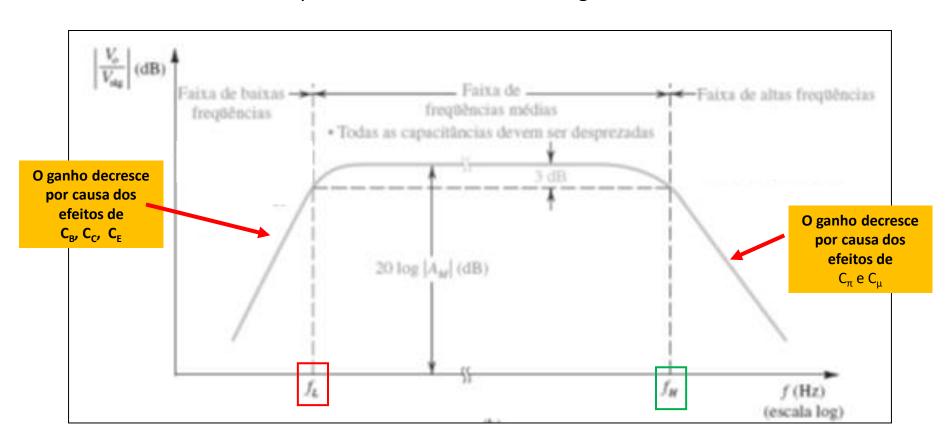
Modelo de Gummel – Poon Completo (Grandes Sinais) (4 Regiões de Operação)

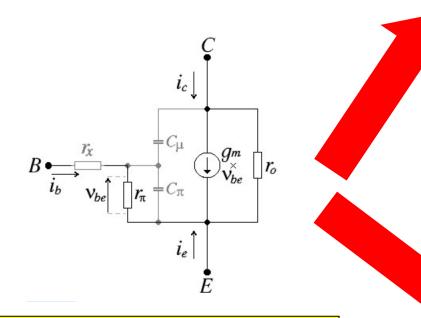




Modelo de Gummel – Poon Simplificado (Pequenos Sinais) (Região Ativa)

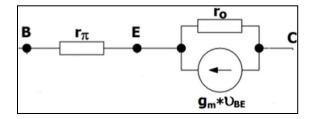
Resposta em Frequência

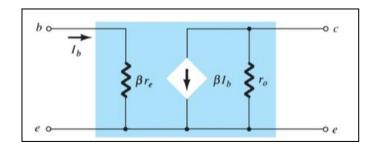




os capacitores externos C_B , C_C , C_E influenciam a resposta em baixa frequência! os capacitores internos $(C_{\pi}, C_{\mu}, trilhas de protoboard) influenciam a resposta em alta frequência!!$

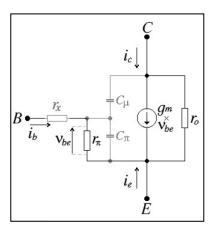
Resposta em Frequência


A influência das capacitâncias de acoplamento e intrínsecas do BJT no desempenho de um amplificador são Ilustradas na figura abaixo!


Este modelo é utilizado para a determinação das frequências de corte baixa e alta de um amplificador!

As equações são descritas nas apostilas "Polarização e Amplificação" (Paulo R Veronese, 2015). e "BJT – Resumo da Teoria" (Paulo R Veronese, 2012).

Este modelo é utilizado para a determinação das equações na banda de passagem de um amplificador.


As equações são descritas na apostila "Amplificadores Básicos com BJT" (Paulo R Veronese, 2016).

Modelo r_e para EC

Este modelo é utilizado para a determinação das equações na banda de passagem de um amplificador!

As equações são descritas no Capítulo 5 "BJT AC Analysis" do livro "Dispostivos Eletrônicos e Teoria de Circuitos" (Boylestad / Nashelsky, 2013)

Modelo simplificado para a dedução das equações de desempenho de circuitos com BJT.

Na investigação sobre o uso do modelo simplificado para a dedução das equações de desempenho de circuitos com BJT foram utilizados os seguintes transistores comerciais $\frac{\text{com }\beta\text{s muito diferentes}}{\text{comerciais}}$:

NPN: BC548A, BC548B e BC548C PNP: BC558A, BC558B e BC558C

Os parâmetros dos transistores anteriores foram alterados gerando transistores modelados a partir do modelo completo de Gummel-Poon com 37 parâmetros:

NPN - BC548Av, BC548Bv e BC548BCv PNP - BC558Av, BC558Bv e BC558Cv

Os parâmetros dos transistores anteriores foram alterados gerando transistores modelados a partir do modelo completo de Gummel-Poon com 16 parâmetros :

NPN - QnA, QnB e QnC PNP - QpA, QpB e QpC

Parâmetros dos transistores npn QnB E BC547B

.model QnB NPN

(16 parâmetros)

IS=19.22105f BF=272.7546 VAF=66.4

XTB=.3 NF=1.0022 BR=10 NR=1 XTI=5.98

CJC=6.517p VJC=0.6148 MJC=0.3362

CJE=12.5p VJE=.6 MJE=.55 TF=820p

Vceo=45 Icrating=100m mfg=Veronese

.model BC547Bv NPN

(37 parâmetros)

IS=2.39E-14 NF=1.008 ISE=3.545E-15

NE=1.541 BF=294.3 IKF=0.1357 VAF=63.2

NR=1.004 ISC=6.272E-14 NC=1.243

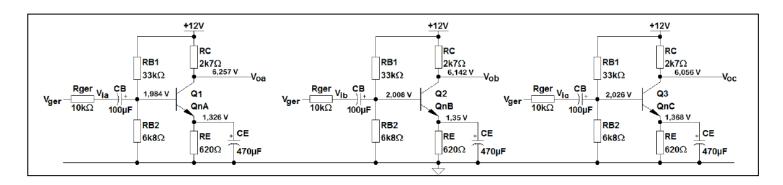
BR=7.946 IKR=0.1144 VAR=25.9 RB=1

IRB=1.00E-06 RBM=1 RE=0.4683 RC=0.85

XTB=0 EG=1.11 XTI=3 CJE=1.358E-11

VJE=0.65 MJE=0.3279 TF=4.391E-10

XTF=120 VTF=2.643 ITF=0.7495 PTF=0


CJC=3.728E-12 VJC=0.3997 MJC=0.2955

XCJC=0.6193 TR=1.00E-32 CJS=0 VJS=0.75

MJS=0.333 FC=0.9579 Vceo=45

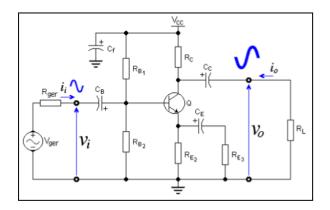
Icrating=100m mfg=NXP

Na investigação sobre o uso do modelo simplificado para a dedução das equações de desempenho de circuitos com BJT foram utilizados os amplificadores EC da figura abaixo com a mesma polarização.

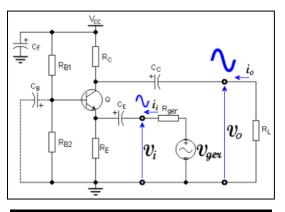
O desempenho destes amplificadores foi investigado utilizando os transistores QnA, QnB e QnC e BC548A, BC548B e BC548C. A tabela abaixo mostra que os resultados da análise DC e AC são pouco afetados.

			QnA	QnB	QnC	BC548A	BC548B	BC548C
		$I_B[\mu A]$	11,80	7,49	4,26	11.70	7,44	4,24
_		I_C [mA]	2,13	2,17	2,20	2,13	2,17	2,20
ANÁLISE DC	4	V_{BE} [V]	0,658	0,658	0,659	0,658	0,658	0,659
		$V_{BC}[V]$	-4,27	-4,13	-4,03	-4,27	-4,13	-4,03
	L	$V_{CE}\left[\mathrm{V} ight]$	4,93	4,79	4,69	4,93	4,79	4,69
		β_{DC}	180	290	517	181	292	520
		$g_m [A/V]$	82,0 m	83,7 m	84,9 m	80,5 m	82,2 m	82,5 m
ANÁLISE AC		$r_{\pi} [k\Omega]$	2,20	3,46	6,08	2,46	3,80	6,65
ANALISE AC		$r_o [k\Omega]$	53,9	32,5	17,0	52,2	30,5	15,0
(Parâmetros	-	$r_X[\Omega]$	0	0	0	37,7	106	285
da Análise)		C_{π} [pF]	96,8	99,0	101	65,1	65,5	65,4
da Andrise)		C_{μ} [pF]	3,25	3,28	3,30	3,25	3,28	3,30
	L	β_{AC}	180	290	517	198	312	549
		$f_T[MHz]$	131	130	130	188	190	191
		A_{vg} [V/V]	-28,805	-36,836	-44,763	-30,029	-37,117	-42,850
ANÁLISE AC		$R_i [k\Omega]$	1,582	2,146	2,928	1,738	2,314	3,115
	4	R_o [k Ω]	2,571	2,493	2,330	2,568	2,481	2,289
(Resultados)		f_{CB} [Hz]	10,64	13,42	16,17	11,06	13,52	15,50
	L	f_{CA} [kHz]	148,14	114,87	93,71	145,91	115,00	94,23
						•		

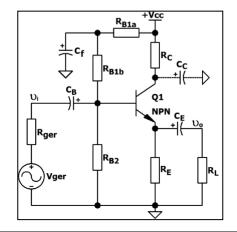
Análise AC de Circuitos com BJT (Banda de Passagem)


Referência Bibliográfica

SEL-EESC-USP


Amplificadores Básicos com BJT

Equações Básicas


P. R. Veronese 2016 As seguintes equações de polarização e de parâmetros incrementais são válidas para os amplificadores analisados a seguir:

Amplificador Emissor Comum Genérico

Amplificador Base Comum Genérico

Amplificador Coletor Comum Genérico

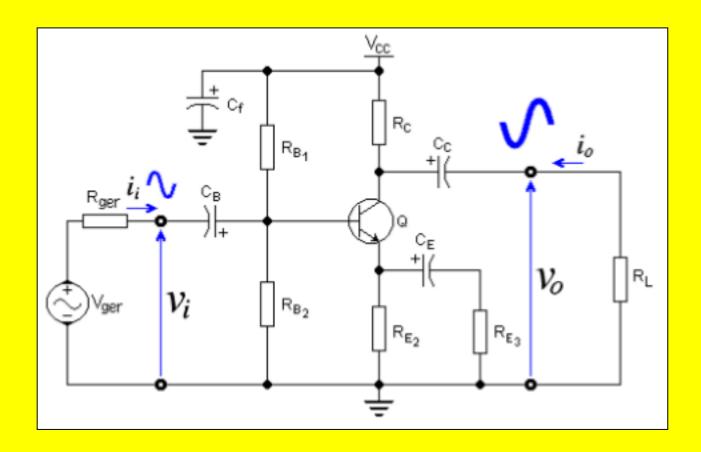
Ponto de Polarização

$$I_{C_Q} = \frac{(\frac{V_{CC}}{R_{B1}} - \frac{V_{BE_Q}}{R_B}) \times R_B \times \beta}{R_B + r_x + (\beta + 1) \times R_E} + S \times I_{CBO}$$

$$V_{CE_Q} = V_{CC} - \left(R_C + \frac{\beta + 1}{\beta}R_E\right) \times I_{C_Q}$$

Parâmetros Incrementais

Transcondutância
$$g_m = \frac{\partial I_C}{\partial V_{BE}} = \frac{I_{C_Q}}{N_F V_t}$$
 [A/V]

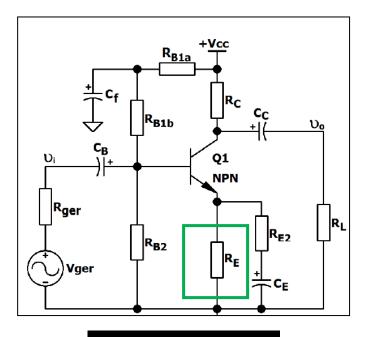

Resistência Incremental de **Entrada**

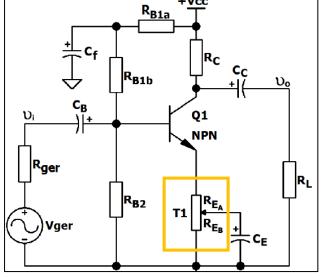
$$r_{\pi} = \frac{\partial V_{BE}}{\partial I_B} = \frac{\beta_{AC}}{g_m} \quad [\Omega]$$

Resistência Incremental de Saída

$$r_o = \frac{\partial V_{CE}}{\partial I_C} = \frac{V_{AF} + V_{CE_Q} - V_{BE_Q}}{I_{C_Q}} \quad [\Omega]$$

Emissor Comum

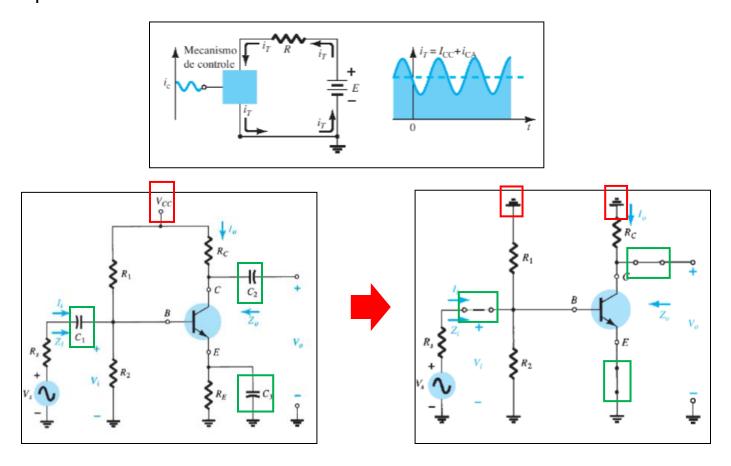

Amplificador Emissor Comum Genérico

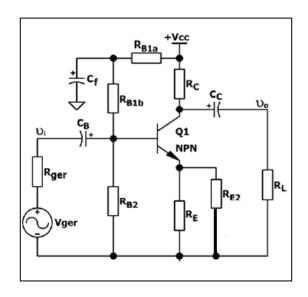

Observações:

- As equações dessa configuração, deduzidas a seguir, descrevem o desempenho do amplificador na banda de passagem calculando os seguintes parâmtros: ganho de tensão (A_v) , resistência de entrada (R_i) e resistência de saída (R_o) .
- Neste modelo não constam a resistência r_{μ} (muito alta), as capacitâncias de acoplamento (C_B, C_C, C_E) e as capacitâncias intrínsecas do BJT $(C_{\pi} e C_{\mu})$.
- A inclusão das capacitâncias C_B , C_C e C_E permite determinar o desempenho do amplificador em baixa frequência: frequência de corte baixa (f_{CB}).
- A inclusão das capacitâncias C_{π} e C_{μ} permite determinar o desempenho do amplificador em alta frequência: frequência de corte alta (f_{CA}).
- A análise incluindo os capacitores está descrita na apostila "BJT Resumo da Teoria", Paulo R Veronese, 2012.

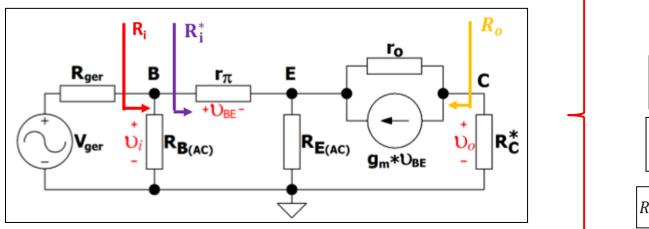
Emissor Comum

O emissor-comum é o mais importante e mais usado amplificador bipolar de eletrônica analógica.


+Vcc


Amplificador EC Genérico (Ganho de Tensão Fixo)

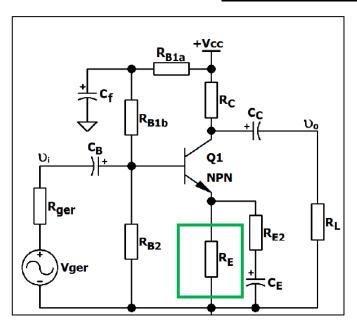
Amplificador EC Genérico (Ganho de Tensão Variável)


Na análise AC:

- 1) As fontes DC são curto-circuitadas porque o interesse é apenas a resposta AC.
- 2) Os capacitores de acoplamento são curto circuitados porque apresentam baixa reatância capacitiva.

O circuito abaixo representa o modelo linearizado de um amplificador EC genérico com o resitor $R_{\scriptscriptstyle E}$ não desacoplado, ou seja, presente no circuito.

$$R_{i} = \frac{v_{i}}{i_{i}}$$

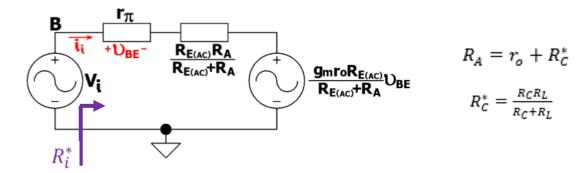

$$R_{o} = \frac{v_{o(vazio)}}{i_{o(curto)}}$$

$$R_{C}^{*} = \frac{R_{c}xR_{L}}{R_{c} + R_{L}}$$

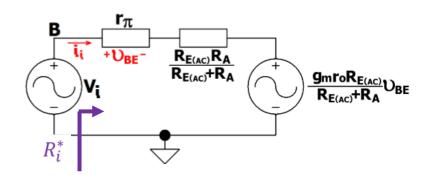
$$R_{B(AC)} = \frac{R_{B1}xR_{B2}}{R_{B1} + R_{B2}}$$

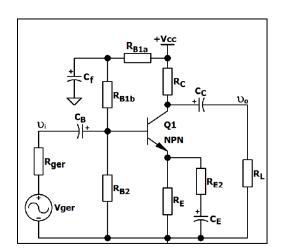
Resistência de Entrada (R_I)

Amplificador EC Genérico (Ganho de Tensão Fixo)


R_{B1a} +Vcc R_{B1b} C_C C_C U_o Q₁ NPN Rger R_{E_B} + C_E

Amplificador EC Genérico (Ganho de Tensão Variável)


$$R_{E(AC)} = \frac{R_E R_{E_2}}{R_E + R_{E_2}}$$

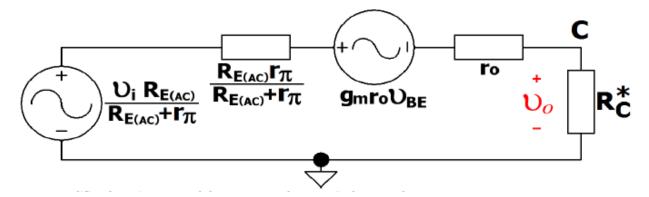

$$R_{E(AC)} = R_{EA}$$

Aplicando-se os Teoremas de Norton e de Thévenin ao amplificador EC genérico podese, a partir da saída, reduzir o circuito a seguinte malha:

Resistência de Entrada (R_I)

2 Mostra-se que:

$$i_{i} = \frac{\left[R_{E(AC)} + R_{A}\right]\vartheta_{i}}{R_{E(AC)}R_{A} + r_{\pi}\left[R_{A} + (1 + g_{m}r_{o})R_{E(AC)}\right]}$$


$$R_{i}^{*} = r_{\pi} + \frac{r_{o} + R_{C}^{*} + g_{m}r_{\pi}r_{o}}{r_{o} + R_{C}^{*} + R_{E(AC)}} \times R_{E(AC)}$$
Se $R_{L} \longrightarrow \infty \longrightarrow R_{i}^{*} \approx r_{\pi} + \beta_{AC}R_{E(AC)}$

3

$$R_{i} = \frac{v_{i}}{i_{i}} \qquad R_{i} = \frac{R_{B(AC)} R_{i}^{*}}{R_{B(AC) + R_{i}^{*}}} \qquad R_{B(AC)} = \frac{R_{B2} R_{B1b}}{R_{B2} + R_{B1b}}$$

$$v_{BE} = r_{\pi}i_{\rm i} \quad \longrightarrow \quad \vartheta_{BE} = \frac{\left[R_{E(AC)} + R_A\right]r_{\pi}}{R_{E(AC)}R_A + r_{\pi}\left[R_A + (1+g_mr_o)R_{E(AC)}\right]}\vartheta_i$$

Aplicando-se os Teoremas de Norton e de Thévenin ao amplificador EC genérico podese, a partir da entrada, reduzir o circuito a uma malha apenas.

Mostra-se que a tensão de saída do circuito calculada através da corrente de malha é dada por:

$$\vartheta_{o} = \frac{[R_{E(AC)} - g_{m} r_{\pi} r_{o}] R_{C}^{*}}{[R_{E(AC)} + r_{o} + R_{C}^{*}] r_{\pi} + [R_{C}^{*} + (1 + g_{m} r_{\pi}) r_{o}] R_{E(AC)}} \times \vartheta_{i}$$

$$A_{\vartheta} = \frac{[R_{E(AC)} - g_{m} r_{\pi} r_{o}] R_{C}^{*}}{[R_{E(AC)} + r_{o} + R_{C}^{*}] r_{\pi} + [R_{C}^{*} + (1 + g_{m} r_{\pi}) r_{o}] R_{E(AC)}} \quad [V/V]$$

$$A_{v} \cong -\frac{R_{C}}{R_{E(AC)}}$$

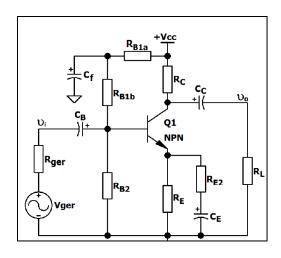
Resistência de Saída (R_o)

Se o circuito estiver em vazio, isto é, se $R_L \to \infty$, então $R_C^* = R_C e \vartheta_o = \vartheta_{o(vazio)}$. Assim:

$$\vartheta_o = \frac{[\mathit{R}_{E(AC)} - \mathit{g}_m \mathit{r}_\pi \mathit{r}_o] \mathit{R}_{C}^*}{[\mathit{R}_{E(AC)} + \mathit{r}_o + \mathit{R}_{C}^*] \mathit{r}_\pi + [\mathit{R}_{C}^* + (1 + \mathit{g}_m \mathit{r}_\pi) \mathit{r}_o] \mathit{R}_{E(AC)}} \times \vartheta_i \longrightarrow \vartheta_o(\mathit{vazio}) = \frac{[\mathit{R}_{E(AC)} - \mathit{g}_m \mathit{r}_\pi \mathit{r}_o] \mathit{R}_C}{[\mathit{R}_{E(AC)} + \mathit{r}_o + \mathit{R}_C] \mathit{r}_\pi + [\mathit{R}_C + (1 + \mathit{g}_m \mathit{r}_\pi) \mathit{r}_o] \mathit{R}_{E(AC)}} \times \vartheta_i$$

Se, no entanto, o circuito estiver com a saída em curto-circuito, então $R_L = 0$, $R_{C^*} = 0$, $\vartheta_o = \vartheta_{o(vazio)} = 0$.

$$i_{o} = \frac{v_{o}}{R_{c}^{*}} \longrightarrow i_{o(curto)} = \lim_{R_{c} \to 0} \frac{v_{o}}{R_{c}^{*}}$$


$$i_{o(curto)} = \frac{R_{E(AC)} - g_{m} r_{\pi} r_{o}}{[R_{E(AC)} + r_{o}] r_{\pi} + (1 + g_{m} r_{\pi}) r_{o} R_{E(AC)}} \times \vartheta_{i}$$

$$R_{o} = \vartheta_{o(vazio)} / i_{o(curto)}. \longrightarrow \begin{bmatrix} R_{o} = \frac{[(R_{E(AC)} + r_{o}) r'_{\pi} + (1 + g_{m} r_{\pi}) r_{o} R_{E(AC)}] R_{C}}{[R_{E(AC)} + r_{o} + R_{C}] r'_{\pi} + [R_{C} + (1 + g_{m} r_{\pi}) r_{o}] R_{E(AC)}}$$

$$R_{o} \approx \frac{r_{o} R_{C}}{r_{o} + R_{C}} \qquad r'_{\pi} = r_{\pi} + \frac{R_{ger} R_{B(AC)}}{R_{ger} + R_{B(AC)}}$$

A grandeza r_{π} agrega todas as resistências que estão ligadas na entrada do amplificador $(r_{\pi}; R_{B(AC)} e R_{ger})$.

Ganho de Tensão em Relação ao Gerador (A_{vg})

$$A_{\vartheta g} = \frac{R_i}{R_{ger} + R_i} \times A_{\vartheta}$$

Análise DC

Ponto de Polarização

$$I_{C_Q} = \frac{(\frac{V_{CC}}{R_{B1}} - \frac{V_{BE_Q}}{R_B}) \times R_B \times \beta}{R_B + r_x + (\beta + 1) \times R_E} + S \times I_{CBo}$$

$$V_{CE_Q} = V_{CC} - \left(R_C + \frac{\beta + 1}{\beta}R_E\right) \times I_{C_Q}$$

Parâmetros Incrementais

Transcondutância
$$g_m = \frac{\partial I_C}{\partial V_{BE}} = \frac{I_{C_Q}}{N_F V_t}$$
 [A/V]

Resistência Incremental de **Entrada**

$$r_{\pi} = \frac{\partial V_{BE}}{\partial I_{B}} = \frac{\beta_{AC}}{g_{m}} \quad [\Omega]$$

Resistência Incremental de Saída

$$r_o = \frac{\partial V_{CE}}{\partial I_C} = \frac{V_{AF} + V_{CE_Q} - V_{BE_Q}}{I_{C_Q}} \quad [\Omega]$$

Análise AC

$$R_i = \frac{R_{B(AC) R_I^*}}{R_{B(AC) + R_I^*}}$$

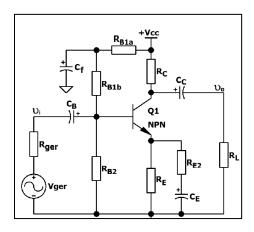
$$R_{i} = \frac{R_{B(AC) R_{I}^{*}}}{R_{B(AC) + R_{I}^{*}}} \qquad R_{i}^{*} = r_{\pi} + \frac{r_{o} + R_{C}^{*} + g_{m} r_{\pi} r_{o}}{r_{o} + R_{C}^{*} + R_{E(AC)}} \times R_{E(AC)}$$

$$\text{Se R}_{L} \longrightarrow \infty \qquad R_{i}^{*} \approx r_{\pi} + \beta_{AC} R_{E(AC)}$$

$$R_{o} = \frac{\left[\left(R_{E(AC)} + r_{o} \right) r_{\pi}' + (1 + g_{m} r_{\pi}) r_{o} R_{E(AC)} \right] R_{C}}{\left[R_{E(AC)} + r_{o} + R_{C} \right] r_{\pi}' + \left[R_{C} + (1 + g_{m} r_{\pi}) r_{o} \right] R_{E(AC)}}$$

$$R_{o} \approx \frac{r_{o} R_{C}}{r_{o} + R_{C}} \quad r_{\pi}' = r_{\pi} + \frac{R_{ger} R_{E(AC)}}{R_{ger} + R_{E(AC)}}$$

$$A_{\theta} = \frac{[R_{E(AC)} - g_m r_{\pi} r_o] R_C^*}{[R_{E(AC)} + r_o + R_C^*] r_{\pi} + [R_C^* + (1 + g_m r_{\pi}) r_o] R_{E(AC)}} \quad [V/V]$$

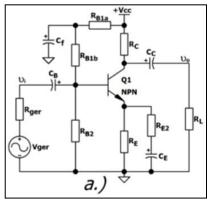

$$A_{v} \cong -\frac{R_{C}}{R_{E(AC)}}$$

$$A_{\vartheta g} = \frac{R_i}{R_{ger} + R_i} \times A_{\vartheta}$$

Exemplo de Análise DC e AC em Amplificador Emissor Comum

O amplificador EC com ganho de tensão fixo abaixo foi polarizado com as seguintes grandezas:

$$V_{CC}$$
 = +30 V, R_{B1a} = 20 kΩ, R_{B1b} = 180 kΩ, R_{B2} = 33 kΩ, R_{C} = 6,8 kΩ e R_{E} = 1,5 kΩ, R_{E2} = 1,08 kΩ e R_{ger} = 1,0 KΩ .


- a.) Sabendo-se que o transistor Q_1 possui $\beta_{AC} = \beta = 102,2$; $V_{BE} = 0,7$ V e $V_{AF} = \infty$, calcular R_i , R_o , A_ϑ e $A_{\vartheta g}$, **em vazio**, para pequenos sinais na faixa de passagem. Considerar todos os capacitores como curtos-circuitos em AC e $r_o = \infty$.
- b.) Avaliar se o circuito foi bem polarizado e se o fator de estabilidade do ponto quiescente (S) esta adequado.
- c.) Calcular a porcentagem de erro se a equação compacta de ganho de tensão for utilizada.

$$A_{\vartheta} = -\frac{R_C}{R_{E(AC)}}$$

1

Análise DC

$$R_{B1} = 20k + 180k = 200k$$

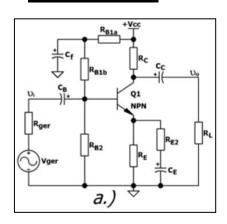
 $R_B = \frac{200k \times 33k}{200k + 33k} = 28,3262k$
 $R_E = 1,5k$

$$I_{C_{Q}} = \frac{(\frac{V_{CC}}{R_{B1}} - \frac{V_{BE_{Q}}}{R_{B}}) \times R_{B} \times \beta}{R_{B} + r_{x} + (\beta + 1) \times R_{E}} + S \times I_{CBO}$$

$$I_{Cq} = \frac{(\frac{30}{200k} - \frac{0.7}{28,3262k}) 102,2 \times 28,3262k}{28,3262k + 103,2 \times 1.5k} = 1,9806 \ mA$$

$$V_{CE_{Q}} = V_{CC} - \left(R_{C} + \frac{\beta + 1}{\beta}R_{E}\right) \times I_{C_{Q}}$$

$$V_{CEQ} = 30 - \left[6,8k + \frac{103,2}{102,2}x1,5k\right] x1,9806mA = 13,532V$$


2

Cálculo dos Parâmetros Incrementais

$$g_m = \frac{I_{CQ}}{N_F V_l}$$
 $g_m = \frac{1,9806m}{25,865m} = 76,5748 \ mA/V$ $r_\pi = \frac{\beta_{AC}}{g_m}$ $r_\pi = \frac{102,2}{76,5748m} = 1,3346 \ k\Omega$ $r_o = \infty$

Análise AC

$$\begin{split} & \text{R}_{\text{B1a}}\text{=}20 \text{ k}\Omega, \, \text{R}_{\text{B1b}}\text{=}180 \text{ k}\Omega, \\ \text{R}_{\text{B2}}\text{=}33 \text{ k}\Omega, \, \text{R}_{\text{C}}\text{=}6,8 \text{ k}\Omega \text{ e R}_{\text{E}}\text{=}1,5 \text{ k}\Omega, \\ \text{R}_{\text{E2}}\text{=}1,08 \text{ k}\Omega \text{ e R}_{\text{ger}}\text{=}1,0 \text{ K}\Omega \end{split}$$

$$R_{B(AC)} = \frac{180k \times 33k}{180k + 33k} = 27,8873 \ k\Omega$$

$$R_{E(AC)} = \frac{1,5k \times 1,08k}{1,5k \times 1,08k} = 627,907 \,\Omega$$

$$A_{\vartheta} = \frac{[R_{E(AC)} - g_m r_{\pi} r_o] R_C^*}{[R_{E(AC)} + r_o + R_C^*] r_{\pi} + [R_C^* + (1 + g_m r_{\pi}) r_o] R_{E(AC)}} \quad [V/V]$$

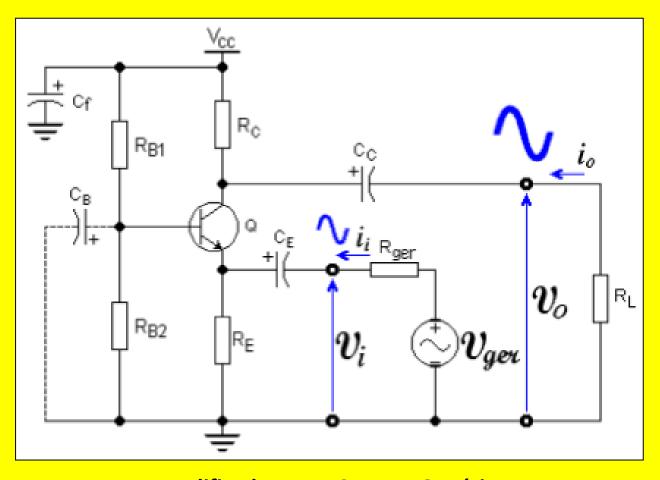
Se
$$R_L = \infty$$
 $R_C^* = R_C$ $A_V = \frac{-g_m r_{\pi} R_C}{(R_{E(AC)} + R_C) r_{\pi} + (1 + g_m r_{\pi}) R_{E(AC)}} = \frac{-\beta R_C}{(R_{E(AC)} + R_C) r_{\pi} + (1 + \beta) R_{E(AC)}}$

$$A_{\vartheta} = \frac{-102,2 \times 6,8k}{[627,907+6.8k]1,3346k+103.2 \times 627.907} \rightarrow A_{\vartheta} = -10,5083 \, V/V$$

$$R_i^* = r_\pi + \frac{R_C^* + (1 + g_m r_\pi) r_o}{R_C^* + r_o + R_{E(AC)}} \times R_{E(AC)}$$

Se
$$R_L = \infty$$
 $R_i^* = r_{\pi} + (\beta + 1)R_E$ $R_i^* = 1,3346k + 103,2 \times 1,5k = 66,1346 k\Omega$

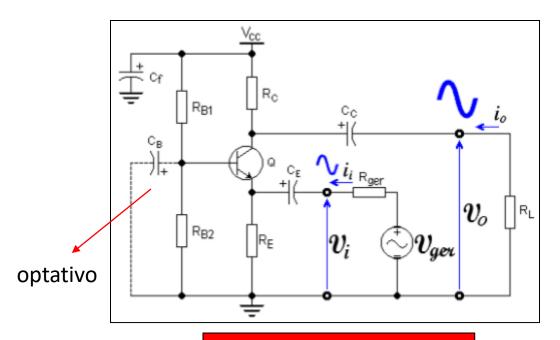
$$R_i = \frac{R_i^* R_{B(AC)}}{R_i^* + R_{B(AC)}}$$
 \longrightarrow $R_i = \frac{66,1346k \times 27,8873k}{66,1346k + 27,8873k}$ \longrightarrow $R_i = 19,6158 k\Omega$

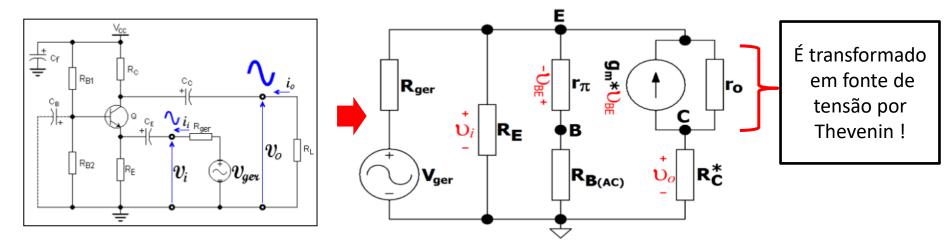

$$A_{\vartheta g} = \frac{R_i}{R_i + R_{ger}} \times A_{\vartheta} = -\frac{19,6158k}{20,6158k} \times 10,50826 = -9,9985 \, V/V$$

- O circuito foi razoavelmente bem polarizado porque o fator de estabilização do ponto quiescente é S = $(1 + R_B / R_c) = 1 + 28,3262 k/1,5 k = 19,88$. Foi utilizado um filtro contra ruidos na polarização de base $(R_{b1a} e C_f)$, o que melhora o desempenho do circuito.
- c Cálculo de A_v pela equação compacta:

$$A_{\vartheta} = -\frac{R_C}{R_{E(AC)}}$$
 $A_{\vartheta} = -\frac{6,8k}{627,907} = -10,83 \, V/V$

O valor do ganho de tensão tem um erro de 3,06 % em relação ao valor calculado com exatidão.


Base Comum

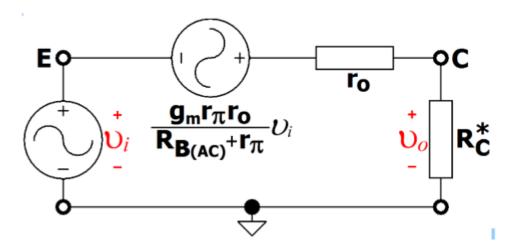

Amplificador Base Comum Genérico

Observações:

- As equações dessa configuração, deduzidas a seguir, descrevem o desempenho do amplificador na banda de passagem calculando os seguintes parâmtros: ganho de tensão (A_v) , resistência de entrada (R_i) e resistência de saída (R_o) .
- Neste modelo não constam a resistência r_{μ} (muito alta), as capacitâncias de acoplamento (C_B, C_C, C_E) e as capacitâncias intrínsecas do BJT $(C_{\pi} e C_{\mu})$.
- A inclusão das capacitâncias C_B , C_C e C_E permite determinar o desempenho do amplificador em baixa frequência: frequência de corte baixa (f_{CB}).
- A inclusão das capacitâncias C_{π} e C_{μ} permite determinar o desempenho do amplificador em alta frequência: frequência de corte alta (f_{CA}).
- A análise incluindo os capacitores está descrita na apostila "BJT Resumo da Teoria", Paulo R Veronese, 2012.

Amplificador BC genérico

Modelo linearizado, para pequenos sinais de um amplificador BC genérico, com o resistor R_B acoplado.


$$R_{C}^{*} = \frac{R_{c}xR_{L}}{R_{c} + R_{L}}$$

$$Se C_{B} = 0 \quad então R_{B(AC)} = R_{B} \quad R_{B} \text{ acoplado}$$

$$Se C_{B} \neq 0 \quad então R_{B(AC)} = 0 \quad R_{B} \text{ desacoplado}$$

3 No circuito acima:
$$\theta_{BE} = -\frac{r_{\pi}}{R_{B(AC)} + r_{\pi}} \times \vartheta_i$$

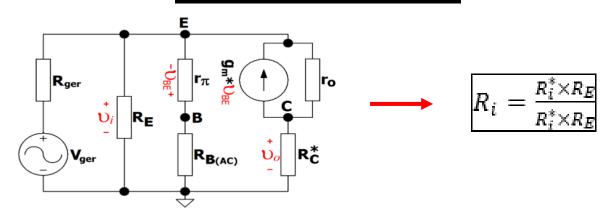
Aplicando-se os Teoremas de Norton e de Thévenin no circuito anterior pode-se, a partir da saída, reduzir o circuito a uma malha apenas:

5 Utilizando-se a equação de v_{BE} e o circuito acima, mostra-se que:

$$\vartheta_{\mathit{BE}} = -\frac{r_{\pi}}{R_{\mathit{B(AC)}} + r_{\pi}} \times \vartheta_{i}$$

$$\vartheta_{o} = \frac{\left(1 + \frac{g_{m}r_{\pi}r_{o}}{R_{\mathit{B(AC)}} + r_{\pi}}\right)}{r_{o} + R_{\mathit{C}}^{*}} \times \vartheta_{i}$$

$$\vartheta_{o} = \frac{\left[R_{\mathit{B(AC)}} + r_{\pi} + g_{m}r_{\pi}r_{o}\right]R_{\mathit{C}}^{*}}{\left[R_{\mathit{B(AC)}} + r_{\pi}\right]\left(r_{o} + R_{\mathit{C}}^{*}\right)} \times \vartheta_{i}$$


Ganho de Tensão (A_v)

$$\vartheta_o = \frac{[R_{B(AC)} + r_{\pi} + g_m r_{\pi} r_o] R_C^*}{[R_{B(AC)} + r_{\pi}] (r_o + R_C^*)} \times \vartheta_i \longrightarrow$$

$$A_{\theta} = \frac{[R_{B(AC)} + r_{\pi} + g_{m} r_{\pi} r_{o}] R_{C}^{*}}{[R_{B(AC)} + r_{\pi}] (r_{o} + R_{C}^{*})}$$

$$A_v \cong g_{m}R_L^*$$

8 No circuito acima a corrente de entrada no emissor, vale:

$$\begin{split} i_i &= \frac{\vartheta_i}{r_\pi + R_{B(AC)}} + i_o \\ i_o &= \frac{\left(1 + \frac{g_m r_\pi r_o}{R_{B(AC)} + r_\pi}\right)}{r_o + R_C^*} \times \vartheta_i \\ \end{split}$$

$$i_i &= \frac{\vartheta_i}{r_\pi + R_{B(AC)}} + \frac{R_{B(AC)} + r_\pi + g_m r_\pi r_o}{\left(R_{B(AC)} + r_\pi\right)(r_o + R_C^*)} \times \vartheta_i \\ &= \frac{r_o + R_C^* + R_{B(AC)} + r_\pi + g_m r_\pi r_o}{\left(R_{B(AC)} + r_\pi\right)(r_o + R_C^*)} \times \vartheta_i \end{split}$$

A resistência de entrada, vista no emissor $R_i^* = \vartheta_i/i_i$, vale, portanto:

Com R_{B(AC)} desacoplada por C_B resulta:

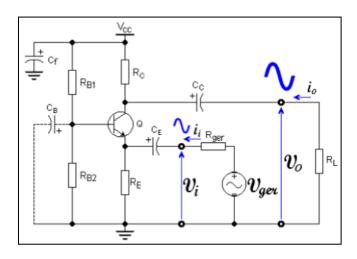
$$R_i^* = \frac{r_{\pi}}{(1 + g_m r_{\pi})} \longrightarrow R_i^* \cong \frac{1}{g_m}$$

Resistência de Saída (R_o)

$$A_{\theta} = \frac{[R_{B(AC)} + r_{\pi} + g_{m}r_{\pi}r_{o}]R_{C}^{*}}{[R_{B(AC)} + r_{\pi}](r_{o} + R_{C}^{*})}$$

Pela Equação de A, a tensão de saída em vazio é:

$$\vartheta_{o(vazio)} = \frac{\left[R_{B(AC)} + r_{\pi} + g_m r_{\pi} r_o\right] R_C}{\left[R_{B(AC)} + r_{\pi}\right] (r_o + R_C)} \times \vartheta_i \qquad \mathsf{R_L} = \mathsf{0, R_{C^*}} = \mathsf{R_L}$$


A corrente de saída em curto-circuito vale:

$$i_{o} = \frac{v_{o}}{R_{c}^{*}} \longrightarrow i_{o(curto)} = \lim_{R_{L} \to 0} \frac{v_{o}}{R_{c}^{*}} \longrightarrow i_{o(curto)} = \lim_{R_{L} \to 0} \frac{\left[R_{B(AC)} + r_{\mu} + g_{m}r_{\mu}r_{o}\right]}{\left[R_{B(AC)} + r_{\mu}\right](r_{o} + R_{c}^{*})} v_{i}$$

$$\downarrow i_{o(curto)} = \frac{\left[R_{B(AC)} + r_{\pi} + g_{m}r_{\pi}r_{o}\right]}{\left[R_{B(AC)} + r_{\pi}\right]r_{o}} \times \vartheta_{i}$$

Então a resistência de saída, $R_o = \vartheta_{o(vazio)} / i_{o(curto)}$, vale: $R_o = \frac{r_o \times R_C}{r_o + R_C} \longrightarrow R_o \cong R_C$ [Ω]

Ganho de Tensão em Relação ao Gerador (A_{vg})

$$A_{\vartheta g} = \frac{R_i}{R_i + R_{ger}} \times A_{\vartheta}$$

Comparação EC x BC

- Em linhas gerais, se polarizados no mesmo ponto quiescente, os amplificadores EC e BC possuem o mesmo ganho de tensão, em módulo.

 O EC é, no entanto, um amplificador inversor e o BC não é inversor.
- A resistência de entrada do amplificador BC é muito baixa, enquanto que a resistência de entrada do EC é média ou alta.
- As resistências de saída dos dois amplificadores possuem a valores muito próximas e altas, sendo que a do BC é, geralmente, levemente superior.

Análise DC

Ponto de Polarização

$$I_{C_Q} = \frac{(\frac{V_{CC}}{R_{B1}} - \frac{V_{BE_Q}}{R_B}) \times R_B \times \beta}{R_B + r_x + (\beta + 1) \times R_E} + S \times I_{CBO}$$

$$V_{CE_{Q}} = V_{CC} - \left(R_{C} + \frac{\beta + 1}{\beta}R_{E}\right) \times I_{C_{Q}}$$

Parâmetros Incrementais

Transcondutância
$$g_m = \frac{\partial I_C}{\partial V_{RE}} = \frac{I_{C_Q}}{N_E V_E}$$
 [A/V]

Resistência Incremental de **Entrada**

$$r_{\pi} = \frac{\partial V_{BE}}{\partial I_B} = \frac{\beta_{AC}}{g_m} \quad [\Omega]$$

Resistência Incremental de Saída

$$r_o = \frac{\partial V_{CE}}{\partial I_C} = \frac{V_{AF} + V_{CE_Q} - V_{BE_Q}}{I_{C_O}} \quad [\Omega]$$

Análise AC

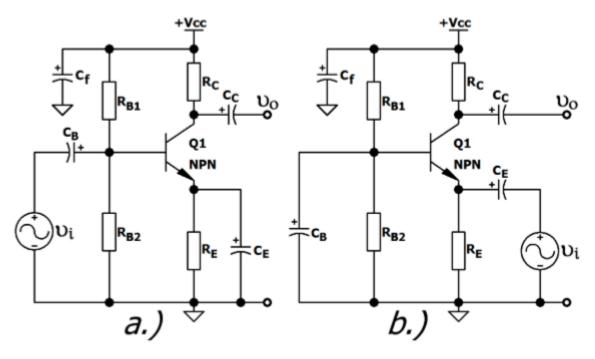
$$R_i = \frac{R_i^* \times R_E}{R_i^* \times R_E}$$

$$R_C^* = \frac{R_C x R_L}{R_C + R_L}$$

$$R_i^* = \frac{\left(R_{B(AC)} + r_{\pi}\right)(r_o + R_C^*)}{R_C^* + R_{B(AC)} + r_{\pi} + (1 + g_m r_{\pi})r_o}$$

Com $R_{B(AC)}$ desacoplada por C_B :

$$R_i^* = \frac{r_{\pi}}{(1 + g_m r_{\pi})} \longrightarrow R_i^* \cong \frac{1}{g_m}$$


$$R_o = \frac{r_o \times R_C}{r_o + R_C}$$
 $R_o \cong R_C$

$$A_{\vartheta} = \frac{[R_{B(AC)} + r_{\pi} + g_{m}r_{\pi}r_{o}]R_{C}^{*}}{[R_{B(AC)} + r_{\pi}](r_{o} + R_{C}^{*})}$$

$$A_v \cong g_{m}R_L^*$$

Exemplo de Análise DC e AC em Amplificador Base Comum

Comparar os valores das grandezas elétricas de pequenos sinais (R_i , R_o e A_ϑ) dos amplificadores abaixo. As resistências de polarização valem: R_{B1} = 200 k Ω , R_{B2} = 33 k Ω , R_C = 6,8 k Ω e R_E = 1,5 k Ω . A fonte de alimentação é V_{CC} = +30 V e o transistor, tipo Q_{sedra} , possui β_{AC} = β = 102,2 ; V_{BE} = 0,7 V e V_{AF} = ∞ , r_o = ∞ . Considerar todos os capacitores com curto circuitos em AC.

Amplificadores Básicos:

a.) Amplificador EC com R_E desacoplado; b.) Amplificador BC com R_{B2} desacoplado.

Os pontos de polarização nos dois circuitos são idênticos ao do circuito com configuração EC analisado anteriormente. Os parâmetros incrementais também são iguais.

1 Análise DC

$$R_B = \frac{R_{B1}R_{B2}}{R_{B1} + R_{B2}} \longrightarrow R_B = \frac{200k \times 33k}{200k + 33k} = 28,3262k$$

$$I_{Cq} = \frac{\left(\frac{V_{CC}}{R_{B1}} - \frac{V_{BE}}{R_B}\right)\beta R_B}{R_B + (\beta + 1)R_E} \qquad I_{Cq} = \frac{\left(\frac{80}{200k} - \frac{0.7}{28,8262k}\right)102,2 \times 28,3262k}{28,3262k + 103,2 \times 1,5k} = 1,9806 \ mA$$

$$V_{CE_Q} = V_{CC} - \left(R_C + \frac{\beta + 1}{\beta}R_E\right) \times I_{C_Q} \longrightarrow V_{CEQ} = 30 - \left[6.8k + \frac{103.2}{102.2}x1.5k\right]x1.9806mA = 13.532V$$

2 Cálculo das grandezas incrementais:

$$g_m = \frac{I_{CQ}}{N_F V_t} \longrightarrow g_m = \frac{1,9806m}{25,865m} = 76,5748 \ mA/V$$

$$r_{\pi} = \frac{\beta_{AC}}{g_m}$$
 $r_{\pi} = \frac{102,2}{76,5748m} = 1,3346 k\Omega$

$$r_o = \infty$$

Ganho de Tensão (A,)

$$A_{\vartheta(EC)} = -g_m R_C - 76,5748m2 \times 6,8k \rightarrow A_{\vartheta(EC)} = -520,7086 V/V$$

Resistência de Entrada (R_i)

$$R_{B(AC)} = \frac{R_{B1}xR_{B2}}{R_{B1} + R_{B2}} \longrightarrow R_{B(AC)} = \frac{200k \times 33k}{200k + 33k} = 28,3262 \, k\Omega$$

$$R_{E(AC)} = 0$$
Se R_L $\longrightarrow \infty \longrightarrow R_i^* \approx r_\pi + \beta_{AC}R_{E(AC)} \longrightarrow R_i^* = r_\Pi = 1.3346k\Omega$

$$R_i = \frac{R_{B(AC)}xR_i^*}{R_{B(AC)} + R_i^*} \longrightarrow R_i = \frac{1.3346k \times 28,3262k}{1.3346k + 28,3262k} = 1,2746 \, k\Omega$$

Resistência de Saída (R_o)

$$R_o \approx \frac{r_o R_C}{r_o + R_C}$$
 $r_o = \infty$
 $R_o = R_C = 6.8 K\Omega$

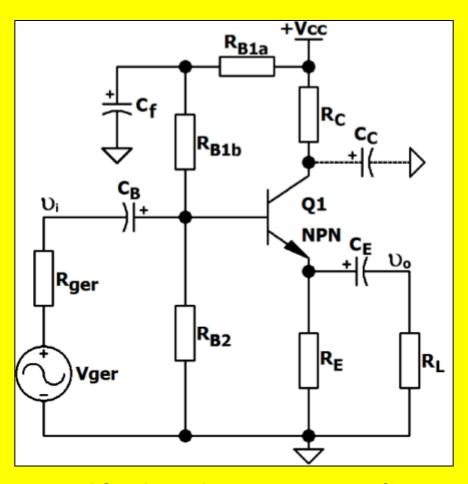
4 Análise AC

Ganho de Tensão (A,)

$$A_{\vartheta(BC)} = g_m R_C = 76,5748m2 \times 6,8k \rightarrow A_{\vartheta(BC)} = 520,7086 V/V$$

Resistência de Entrada (R_i)

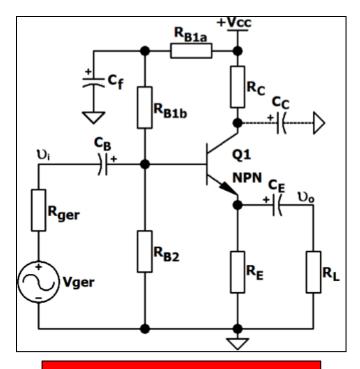
$$R_i^* = \frac{r_{\pi}}{(1 + g_m r_{\pi})} = \frac{1,3346k}{103,2} = 12,9326 \Omega \qquad \qquad \qquad \qquad R_i = \frac{R_i^* \times R_E}{R_i^* + R_E} = \frac{12,9326 \times 1,5k}{12,9326 + 1,5k} = 12,822 \Omega$$


Resistência de Saída (R_o)

$$R_o = R_C = 6.8 \, k\Omega$$

Os amplificadores EC e BC possuem resistências de saída e ganhos de tensão idênticos em módulo.

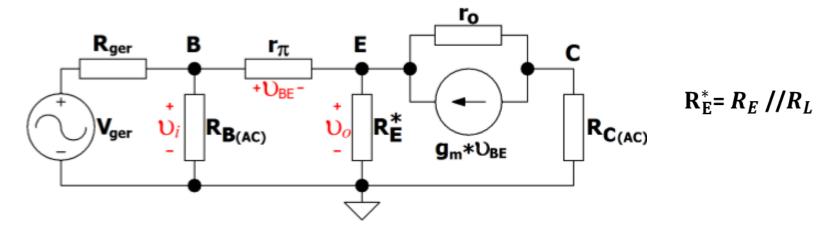
As resistências de entrada, no entanto, são bem diferentes, sendo da faixa média/alta para o EC e muito baixa para o BC.


Coletor Comum

Amplificador Coletor Comum Genérico

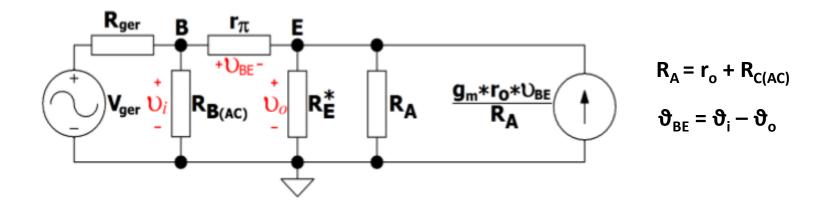
Observações:

- As equações dessa configuração, deduzidas a seguir, descrevem o desempenho do amplificador na banda de passagem calculando os seguintes parâmtros: ganho de tensão (A_v) , resistência de entrada (R_i) e resistência de saída (R_o) .
- Neste modelo não constam a resistência r_{μ} (muito alta), as capacitâncias de acoplamento (C_B , C_C , C_E)e as capacitâncias intrínsecas do BJT (C_{π} e C_{μ}).
- A inclusão das capacitâncias C_B , C_C e C_E permite determinar o desempenho do amplificador em baixa frequência: frequência de corte baixa (f_{CB}).
- A inclusão das capacitâncias C_{π} e C_{μ} permite determinar o desempenho do amplificador em alta frequência: frequência de corte alta (f_{CA}).
- A análise incluindo os capacitores está descrita na apostila "BJT Resumo da Teoria", Paulo R Veronese, 2012.


Amplificador CC Genérico

O amplificador CC é conhecido pelo fato de possuir ganho de tensão muito próximo da unidade e de ter sua saída no emissor. A fase do sinal de saída é a mesma da tensão de emissor (seguidor de emissor). O resistor $R_{\rm C}$ foi deixado no circuito para torná-lo o mais genérico possível.

Se $C_C = 0$, então $R_{C(AC)} = R_C$. Se $C_C \neq 0$, então $R_{C(AC)} = 0$.


Normalmente, $R_C = 0$, tanto para AC, quanto para DC.

1

Modelo Linearizado para Pequenos Sinais do Amplificador Coletor-Comum.

2 Um circuito equivalente é mostrado abaixo:

Ganho de tensão com carga (A_v)

Equacionando-se o circuito por cálculo de tensões de nós, tem-se que:

$$\vartheta_{o} = \frac{\frac{\vartheta_{i}}{r_{\pi}} + \frac{g_{m}r_{o}\vartheta_{BE}}{R_{A}}}{\frac{1}{r_{\pi}} + \frac{1}{R_{E}^{*}} + \frac{1}{R_{A}}} = \frac{\frac{\vartheta_{i}}{r_{\pi}} + \frac{g_{m}r_{o}\vartheta_{i}}{r_{o} + R_{C(AC)}} + \frac{g_{m}r_{o}\vartheta_{o}}{r_{o} + R_{C(AC)}}}{\frac{1}{r_{\pi}} + \frac{1}{R_{E}^{*}} + \frac{1}{r_{o} + R_{C(AC)}}}$$

$$\vartheta_o = \frac{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E^*}{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E^* + \left(r_o + R_{C(AC)} + R_E^*\right)} \times \vartheta_i$$

$$A_{\vartheta} = \frac{\left[R_{C(AC)} + (1 + g_m r_{\pi})r_o\right]R_E^*}{\left[R_{C(AC)} + (1 + g_m r_{\pi})r_o\right]R_E^* + \left(r_o + R_{C(AC)} + R_E^*\right)r_{\pi}}$$

Ganho de tensão em vazio (A_{v(NL)})

$$\vartheta_o = \frac{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E^*}{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E^* + \left(r_o + R_{C(AC)} + R_E^*\right)} \times \vartheta_i$$

$$R_E^* = R_E \longrightarrow \vartheta_{o(vazio)} = \frac{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E}{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E + \left(r_o + R_{C(AC)} + R_E\right)} \times \vartheta_i$$

$$A_{v(NL)} = \frac{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_{\pi}\right) r_o R_E}{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_{\pi}\right) r_o R_E + \left(r_o + R_{C(AC)} + R_E\right)}$$

$$r_o = \infty \longrightarrow A_{v(NL)} = \frac{(1+g_m r_\pi)R_E}{r_\pi + (1+g_m r_\pi)R_E}$$

Resistência de Saída (R_o)

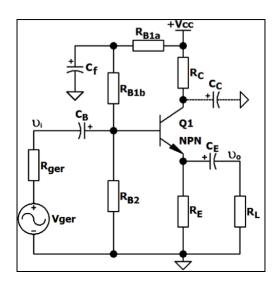
$$\vartheta_o = \frac{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E^*}{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E^* + \left(r_o + R_{C(AC)} + R_E^*\right)} \times \vartheta_i$$

$$R_{L} = 0 \qquad \longrightarrow i_{o(curto)} = \frac{\left[R_{C(AC)} + (1 + g_{m}r_{\pi})r_{o}\right]}{\left[r_{o} + R_{C(AC)}\right]r_{\pi}} \times \vartheta_{i}$$

 $R_o = \vartheta_{o(vazio)}$ /i_{o(curto)} e agregando-se todas as resistências que estão ligadas na entrada do amplificador, tem-se que a resistência de saída é igual à:

$$R_o = \frac{\left[r_o + R_{C(AC)}\right] R_E r_\pi'}{\left[R_{C(AC)} + (1 + g_m r_\pi) r_o\right] R_E + \left(r_o + R_{C(AC)} + R_E\right) r_\pi'}$$

$$r_{\pi}' = r_{\pi} + \frac{R_{ger} \times R_{B(AC)}}{R_{ger} + R_{B(AC)}}$$


Resistência de Entrada (R_i)

A resistência de entrada, vista na base do transistor, é calculada de maneira idêntica a do amplificador EC com R_F não desacoplado:

$$R_{i}^{*} = r_{\pi} + \frac{R_{C(AC)} + (1 + g_{m}r_{\pi})r_{o}}{R_{E}^{*} + r_{o} + R_{C(AC)}} \times R_{E}^{*}$$

$$R_{i} = \frac{R_{B(AC)} \times R_{i}^{*}}{R_{B(AC)} + R_{i}^{*}}$$

Ganho de Tensão em Relação ao Gerador (A_{vg})

$$A_{\vartheta g} = \frac{R_i}{R_{ger} + R_i} \times A_{\vartheta}$$

Análise AC

Análise DC

Ponto de Polarização

$$I_{C_Q} = \frac{(\frac{V_{CC}}{R_{B1}} - \frac{V_{BE_Q}}{R_B}) \times R_B \times \beta}{R_B + r_x + (\beta + 1) \times R_E} + S \times I_{CBo}$$

$$V_{CE_Q} = V_{CC} - \left(R_C + \frac{\beta + 1}{\beta}R_E\right) \times I_{C_Q}$$

Parâmetros Incrementais

Transcondutância
$$g_m = \frac{\partial I_C}{\partial V_{RE}} = \frac{I_{C_Q}}{N_E V_t}$$
 [A/V]

Resistência Incremental de **Entrada**

$$r_{\pi} = \frac{\partial V_{BE}}{\partial I_B} = \frac{\beta_{AC}}{g_m} \quad [\Omega]$$

Resistência Incremental de Saída

$$r_o = \frac{\partial V_{CE}}{\partial I_C} = \frac{V_{AF} + V_{CE_Q} - V_{BE_Q}}{I_{C_O}} \quad [\Omega]$$

$$R_i = \frac{R_{B(AC)} \times R_i^*}{R_{B(AC)} + R_i^*}$$

$$R_i^* = r_\pi + \frac{R_{C(AC)} + (1 + g_m r_\pi) r_o}{R_E^* + r_o + R_{C(AC)}} \times R_E^*$$

$$R_o = \frac{[r_o + R_{C(AC)}]R_E r'_{\pi}}{[R_{C(AC)} + (1 + g_m r_{\pi})r_o]R_E + (r_o + R_{C(AC)} + R_E)r'_{\pi}}$$

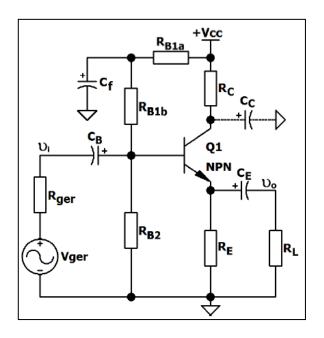
$$r_\pi' = r_\pi + \frac{R_{ger} \times R_{B(AC)}}{R_{ger} + R_{B(AC)}}$$

$$A_{\vartheta} = \frac{\left[R_{C(AC)} + (1 + g_m r_{\pi}) r_o\right] R_E^*}{\left[R_{C(AC)} + (1 + g_m r_{\pi}) r_o\right] R_E^* + \left(r_o + R_{C(AC)} + R_E^*\right) r_{\pi}}$$

(ganho de tensão com carga)

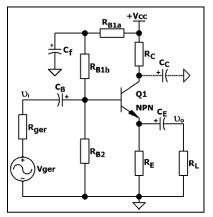
$$A_{v(NL)} \frac{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E}{\left(\frac{r_o + R_{C(AC)}}{r_o} + g_m r_\pi\right) r_o R_E + \left(r_o + R_{C(AC)} + R_E\right)}$$

$$r_o = \infty$$
 \longrightarrow $A_{v(NL)} = \frac{(1+g_m r_\pi)R_E}{r_\pi + (1+g_m r_\pi)R_E}$


(ganho de tensão sem carga)

$$A_{\vartheta g} = \frac{R_i}{R_{ger} + R_i} \times A_{\vartheta}$$

Exemplo de Análise DC e AC em Amplificador Coletor Comum


Calcular os valores das grandezas eletricas AC, de pequenos sinais (R_i ; R_o e A_ϑ) do amplificador CC, em vazio. As grandezas de polarização valem:

 V_{CC} = +30 V, R_{B1a} = 20 kΩ, R_{B1b} = 180 kΩ, R_{B2} = 33 kΩ, R_{C} = 6,8 kΩ, R_{E} = 1,5 kΩ e R_{ger} = 1,0 kΩ. O transistor possui β_{AC} = β = 102,2 ; V_{BE} = 0,7 V e V_{AF} = ∞ . Considerar todos os capacitores, inclusive CC, como curtos-circuitos em AC.

Amplificadores CC Genérico

$$\begin{split} R_{\text{B1a}} &= 20 \text{ k}\Omega, \, R_{\text{B1b}} = 180 \text{ k}\Omega, \\ R_{\text{B2}} &= 33 \text{ k}\Omega, \, R_{\text{C}} = 6.8 \text{ k}\Omega, \\ R_{\text{E}} &= 1.5 \text{ k}\Omega \text{ e } R_{\text{ger}} = 1.0 \text{ k}\Omega. \end{split}$$

$$R_{B1} = 20k + 180k = 200k;$$

$$R_{B} = \frac{200k \times 33k}{200k + 33k} = 28,3262k$$

$$R_{E} = 1,5k$$

$$I_{c\varrho} = \frac{\left(\frac{V_{cc}}{R_{B1}} - \frac{V_{BE\varrho}}{R_B}\right) \times R_B \times \beta}{R_B + (\beta + 1) \times R_E} \longrightarrow I_{cq} = \frac{\left(\frac{30}{200k} - \frac{0.7}{28,3262k}\right) 102,2 \times 28,3262k}{28,3262k + 103,2 \times 1.5k} = 1,9806 \ mA$$

$$V_{\scriptscriptstyle CE_{\scriptscriptstyle Q}} = V_{\scriptscriptstyle CC} - \left(R_{\scriptscriptstyle C} + \frac{\beta+1}{\beta} \times R_{\scriptscriptstyle E}\right) \times I_{\scriptscriptstyle CQ}$$

$$V_{CEq} = 30 - [6.8k + 103.2 \times 1.5k] \times 1.9806m = 13.532 V$$

2 Cálculo dos Parâmetros Incrementais

$$g_m = \frac{1,9806m}{25,865m} = 76,5748 \ mA/V; \qquad r_o = \infty$$
 $r_\pi = \frac{102,2}{76,5748m} = 1,3346 \ k\Omega$

Análise AC

5
$$R_{B(AC)} = \frac{180k \times 33k}{180k + 33k} = 27,8873 \, k\Omega$$

 $R_{C(AC)} = 0 \, \Omega$
 $R_F^* = R_F = 1,5 \, k\Omega$

6 Cálculo do ganho de tensão (A_v)

$$A_{\vartheta} = \frac{(1+g_m r_{\pi})R_E}{r_{\pi} + (1+g_m r_{\pi})R_E} = \frac{103,2 \times 1,5k}{1,3346k + 103,2 \times 1,5k} \longrightarrow A_{\vartheta} = 0,99145 \, V/V$$

7 Cálculo da impedância de entrada (R_i)

$$R_i^* = r_{\pi} + \frac{R_{C(AC)} + (1 + g_m r_{\pi}) r_o}{R_E^* + r_o + R_{C(AC)}} \times R_E^*$$

Se
$$R_L = \infty$$
 $R_i^* = r_{\pi} + (\beta + 1)R_E$ $R_i^* = 1,3346k + 103,2 \times 1,5k = 156,1346 k\Omega$

$$R_i = \frac{R_{B(AC)} \times R_i^*}{R_{B(AC)} + R_i^*}$$
 \longrightarrow $R_i = \frac{136,1346k \times 27,8873k}{136,1346k + 27,8873k}$ \longrightarrow $R_i = 23,6612 \ k\Omega$

Cálculo da impedância de saída (R_o)

$$r_{\pi}' = r_{\pi} + \frac{R_{ger} \times R_{B(AC)}}{R_{ger} + R_{B(AC)}} = 1,3346k + \frac{1k \times 27,8873k}{1k \times 27,8873k} = 2,3k$$

$$R_o = \frac{R_E r_\pi'}{r_\pi' + (1 + g_m r_\pi) R_E} = \frac{1,5k \times 2,3k}{2,3k + 103,2 \times 1,5k} \rightarrow R_o = 21,96 \,\Omega$$

0 Cálculo de A_{vg}

8

$$A_{\theta g} = \frac{R_i}{R_i + R_{ger}} \times A_{\theta} = -\frac{19,6158k}{20,6158k} \times 0,9915 \longrightarrow A_{vg} = 0,95$$