SELO313 - Circuitos Eletrônicos I

Lista de Exercícios 1

(Amplificadores Operacionais)

Exercício 1

Consider the single op-amp difference-amplifier circuit for the case $R_{1}=R_{3}=2 \mathrm{k} \Omega$ and $R_{2}=R_{4}=200 \mathrm{k} \Omega$. The resistors have 1% tolerance.
a) Find the interval value of the differential gain A_{d}.
b) Find the interval values of the differential input resistance $R_{i d}$ and the output resistance R_{o}.
c) The best-case and worst-case common-mode gain $\mathrm{A}_{c m}$ and the corresponding value of CMRR.

$$
\begin{aligned}
& A_{d}=\frac{R_{2}}{R_{1}} \\
& R_{i d}=2 R_{1} \\
& A_{c m}=\frac{R_{4}}{R_{4}+R_{3}}\left(1-\frac{R_{2}}{R_{1}} \frac{R_{3}}{R_{4}}\right)
\end{aligned}
$$

Exercício 2

Design an instrumentation amplifier to provide a gain that can be varied over the range of 2 to 1000 utilizing a $100-k \Omega$ variable resistance. Consider $R_{3}=R_{4}$.

$$
v_{0}=\frac{R_{4}}{R_{3}}\left(1+\frac{2 R_{2}}{2 R_{1}}\right) v_{I d}
$$

Exercício 3

An op amp has a rated output voltage of $\pm 10 \mathrm{~V}$. and a slew rate of $1 \mathrm{~V} / \mu \mathrm{s}$.
a) What is its full-power bandwidth ?
b) If an input sinusoid with frequency $f=5 f_{M}$ is applied to a unity-gain follower constructed using this op amp, what is the maximum possible amplitude that can be accommodated at the output without incurring SR distortion?

Exercício 4

Consider the noninverting amplifier circuit shown below. The circuit is designed for a nominal gain ($1+R_{2} / R_{1}$) $=10 \mathrm{~V} / \mathrm{V}$. It is fed with a low-frequency sine-wave signal of peak voltage V_{P} and is connected to a load resistor R_{L}. The op amp is specified to have output saturation voltages $\pm 13 \mathrm{~V}$ and output current limits of $\pm 20 \mathrm{~mA}$.

Non-inverting Amplifier
a) For $V_{p}=1 \mathrm{~V}$ and $R_{L}=1 \mathrm{k} \Omega$, specify the signal resulting at the output of the amplifier.
b) For $V_{p}=1.5 \mathrm{~V}$ and $R_{L}=1 \mathrm{k} \Omega$, specify the signal resulting at the output of the amplifier.
c) For $R_{L}=1 \mathrm{k} \Omega$, what is the maximum value of V_{p} for which an undistorted sinewave output is obtained ?
d) For $V_{p}=1 \mathrm{~V}$, what is the lowest value of R_{L} for which an undistorted sine-wave output is obtained?

