

1100222 – Modelagem de Crescimento de Culturas Agrícolas LEB5048 - Modelagem de Culturas Agrícolas I

Análise de Sensibilidade

Doutorando Rodolfo Armando de Almeida Pereira

Prof. Fábio Marin Prof. Quirjn de J.van Lier

Complexidade de um Crop Model

Antes de definir o que é análise de sensibilidade precisamos ter conhecimento da complexidade dos modelos agrícolas (*Crop Model*).

Os modelos agrícolas contam com:

- Parâmetros ~ genéticos e do solo
- Variáveis ~ Temperatura do ar , Chuva, Radiação ...
- Relações matemáticas ~ Evapotranspiração Priestly e Taylor; Penmman-Montheit

Todos esses fatores causam variação na saída do modelo e geram incertezas

O que é Análise de Sensibilidade

O estudo de como a incerteza na saída do modelo(numérica ou não) pode ser distribuída a diferentes fontes de incerteza na entrada do modelo (Saltelli et al., 2004)

A análise de sensibilidade (SA) é um método que permite definir os fatores mais influentes em um sistema. Um exemplo para *crop models* seria avaliar o efeito que alterações nos parâmetros podem causar na saída do modelos.

Quando uma pequena variação em um parâmetro altera drasticamente a variável de saída do modelo, diz-se que o modelo (para aquela variável) é muito sensível a este parâmetro!

Importância da Análise de Sensibilidade

A análise de sensibilidade pode ter vários objetivos, tais como:

- Para identificar quais fatores de entrada têm maior influência sobre o modelo.
 Ex: Parâmetros de solo em um ambiente irrigado tem menor influência do que em ambientes de sequeiro (Zhang et al., 2020)
- Para identificar quais fatores de entrada precisam ser estimados ou medidos com maior precisão
 Ex: O parâmetro RUE tem grande impacto na taxa de biomassa do nosso modelo (veremos nos próximos slides)
- Determinar a possível simplificação do modelo
 Ex: aceleração da gravidade

Métodos de Análise de Sensibilidade

A escolha do método irá depender da área e objetivo .

Summary of the definition of SA in the different fields.

Literature	Context/discipline	Definition
Viel et al. (1995)	Medicine	A series of analyses of a data set to assess whether altering any of the assumptions made leads to differen final interpretations or conclusions
Pannell (1997)	Economic models	To determine how different values of an independent variable will impact a particular dependent variable under a given set of assumptions
Nestorov (1999)	Pharmacokinetic and pharmacodynamic systems	The systematic investigation of the model responses to either perturbations of the model quantitative factors or variations in the model qualitative factors
U.S. EPA (2001)	Environmental models	Sensitivity refers to the variation in output of a model with respect to changes in the values of the model's inputs, and SA attempts to provide a ranking of the model inputs based on their relative contributions to model output variability and uncertainty
Frey and Patil (2002)	Food-safety risk assessment models	The assessment of the impact of changes in input values on model outputs
Saltelli et al. (2004)	Chemical/environmental models	The study of how the variation (uncertainty) in the output of a statistical model can be apportioned, qualitatively or quantitatively, to different variations in the inputs of the model
Schneeweiss (2006)	Medicine	To determine the robustness of an assessment by examining the extent to which results are affected by changes in methods, models, values of unmeasured variables, or assumptions with the aim of identifying "results that are most dependent on questionable or unsupported assumptions"
European Commission (EC) (2009)	Impact assessment	To explore how the impacts of the options you are analyzing would change in response to variations in key parameters and how they interact
Matott et al. (2009)	Environmental models	To study the degree to which model output is influenced by changes in model inputs or the model itself
Thabane et al. (2013)	Clinical trials	To address the question on "what will the effect be on results, if the key inputs or assumptions changed"

Song., et al (2015): https://doi.org/10.1016/j.jhydrol.2015.02.013

\equiv

Métodos de Análise de Sensibilidade

Para crop models podemos dividir em dois grupos de análise de sensibilidade.

Summary of three typical categories for SA methods. Song., et al (2015): https://doi.org/10.1016/j.jhydrol.2015.02.013

Type	Methods	Description of the methods	Characteristics	Application cases
1	Local	Compute local response of model output based on the gradients (derivatives) of the model output with respect to parameter values evaluated at a single location in the parameter space	Easy of operation and interpret, relatively low computational cost, no self-verification, local effect of individual parameters	Local sensitivity measures, main effect
	Global	Evaluate the effect in the entire ranges of uncertain parameters	Estimating the effect of all the inputs or their combined effect on the variation of output based on many model runs	Main and joint effect of multiple input
!	Mathematical	Estimate the local or linear sensitivity of output to individual parameter	Providing the uncertainty effect of parameters on the output, not address the variance of output	Deterministic analysis, inputs for linear models, verification and validation
	Statistical	Analyze the influence of various inputs on model output with running simulations based on sampling design methods	Qualitatively or quantitatively estimate sensitivity indices with huge computational demand based on many model runs	Probabilistic analysis, main effect, joint effect of multiple inputs, verification
	Graphical	Complement the mathematical or statistical methods for better representation with graphical plot	Graphical representation with more direct- viewing and clear	Graphical representation, it can be used as a screening method before further analysis, and to complement the result of other methods
3	Screening	Be used to make a preliminary identification of sensitive inputs	Relatively simple, easy of operation, not be robust for some key model characteristics, such as nonlinearity, interactions, and different types of inputs	Many input factors or parameters, non- quantitative analysis
	Refined	Adequately consider complex model characteristics and need greater expertise and resources to implement	Providing quantitative results with more accuracy, relatively difficult to implement	Quantitative analysis, main and joint effect of multiple inputs, more data requirement
1	Qualitative	Providing a heuristic score to intuitively represent the relative sensitivity of parameters	Be aimed at screening a few active parameters within a system with many non- influential ones, relatively fewer model runs	Ranking results of input parameters, used as screening important or sensitiv parameter
	Quantitative	Estimating how sensitive the parameter is by computing the impact of the parameter on the variance of model output	To give information on the amount of variance explained by each parameter, a large number of model runs	Quantify the effect of individual or multiple parameter, deterministic or probabilistic analysis, few inputs or parameters

Métodos de Análise de Sensibilidade

A escolha do método irá depender do objetivo da sua análise; para crop models podemos dividir em dois grupos de análise de sensibilidade.

Análise de Sensibilidade Local (LSA) e Análise de Sensibilidade Global (GSA)

LSA

É baseado nas derivadas locais de saída do modelo em respeito a variação de **um único parâmetro (X)**, que indica a rapidez com que a saída aumenta ou diminui localmente em torno do valor do parâmetro de referência (baseline).

GSA

Na GSA a variância da saída do modelo é avaliada em relação ao quanto os parâmetros variam em todos os seus domínios de incerteza (Xmin < X < Xmax). Isso fornece uma visão mais realista do comportamento do modelo quando usado na prática.

Métodos de Análise de Sensibilidade

Enquanto a LSA não tem grandes modificações na metodologia, sendo a única diferença o como os autores quantificam sensibilidade. A GSA tem vários métodos com resultados diferentes e metodologias diferentes.

Table 1 Comparison of sensitivity analysis methods used in building performance analysis

	Method	Subtype	Characteristics	Literature
Local	Local	-	Explore a reduced space of the input factor around a base case; low computational cost; simple to implement; easy to interpret; not consider interactions between inputs; no self-verification	[6,16-24]
Global	Regression	SRC	SRC and t-value, suitable for linear models; SRRC, suitable for non-linear but monotonic models;	[1,7-9,25-27,29,34]
		SRRC	moderate computational cost for energy models; fast to compute; easy to implement and understand;	[2,13,25,30-32]
		t-value	high SRC means more important of the variable	[10,33]
	Screen	Morris	Suitable for a larger number of inputs and computationally intensive models; model-free approach; qualitative measure to rank factors; no self-verification; not suitable for uncertainty analysis	[35-41]
	Variance	FAST	Decompose the variance of the model output for every input; model-free approach; consider both main and	[12,42]
	based	Sobol	interactions effects; quantitative measures; high computational cost; FAST is not suitable for discrete distributions	
	Meta-	MARS	Suitable for complex and computationally intensive models;	[7,45]
	model	ACOSSO	quantify output variance due to different inputs;	[9]
		SVM	the accuracy dependent on the meta-model	[46]

Notes: SRC, standardised regression coefficients [47]; SRRC, standardized rank regression coefficient [47]; FAST, Fourier amplitude sensitivity test [49]; MARS, multivariate adaptive regression splines [52], ACOSSO, adaptive component selection and smoothing operator [52], SVM, support vector machine [61].

Análise de Sensibilidade Local

VANTAGEM:

É o método mais prático, com menor custo computacional e o mais fácil de ser aplicado; demanda poucas simulações em relação a análise sensibilidade global. A partir dela, alguns "insights" sobre o modelo podem ser consideradas.

DESVANTAGEM:

É um método que não explora a incerteza, pois a variação do parâmetro é um valor relativo e não abrange o intervalo de incerteza vista em "campo". Além disso, esse método não considera a interação entre os parâmetros, ou seja, é difícil ordenar a importância deles em relação a variável de saída do modelo.

Análise de Sensibilidade Local

A LSA é um método baseado nas derivadas locais da variável resposta (Y) em relação a um parâmetro (Z), que indicam a rapidez com que a Y aumenta ou diminui localmente em torno de determinados valores de Z (Wallach et al., 2019).

A partir disso se obtêm a sensibilidade local a partir da equação (1)

$$\sigma = \frac{|\delta Y|}{\delta Z} = \frac{|\Delta Y|}{\Delta Z} \tag{1}$$

Em que:

 ΔY é a diferença entre a simulação com os parâmetros da baseline e a simulação com os parâmetros pertubados

ΔZ é a diferença entre as variações do parâmetro

Porem, muitos autores utilizam formas diferentes para quantificar a sensibilidade, de tal forma que podemos simplificar para:

$$\sigma = \left(\frac{Y'}{Ybaseline} - 1\right) * 100$$

Onde Y' é o valor simulado com base na perturbação e Ybaseline

Vamos utilizar o modelo de produtividade potencial visto nas aulas anteriores como exemplo

$$\frac{dYP_i}{dt} = RUE. aPAR_i. f(T_i). IC$$

aPAR – radiação PAR absorvida pelo dossel (MJ/m².d); RUE – radiation use efficiency g/MJ. IC – corresponde à fração da biomassa total da planta que possui valor comercial (grãos, frutos, colmos, etac). f(Ti) fator de correção relacionado a temperatura do ar.

$$aPAR = PAR. (1 - e^{-k.IAF})$$

$$\frac{dYP_i}{dt} = RUE. aPAR_i. f(T_i). IC$$

Analise sensibilidade da Yp para trigo em Piracicaba considerando as seguintes informações: vamos assumir uma perturbação de 50% na baseline

$$RUE - 2.8 - Max = 4.20; Min = 1.40$$

$$IC - 0.30$$
 - Max = 0.45; Min = 0.15

$$k - 0.50$$
 - Max = 0.75; Min = 0.25

TB - 35 °C

Tb - 5°C

Tot1 - 15 °C

Tot2 - 25 °C

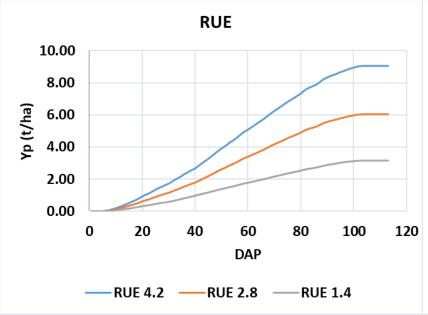
------ Considerações ------

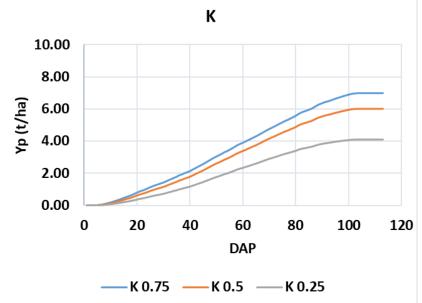
IAF está variando em função dos dias

Não irei explorar a incerteza dentro das temperaturas cardinais

BASE (baseline) é o valor do parâmetro de referência, que irá servir como comparativo.

	MAX	BASE	MIN
RUE	4.2	2.8	1.40
k	0.75	0.5	0.25
IC	0.45	0.3	0.15







Utilizando os valores do exemplo anterior:

RUE BASE = 2,8; RUE MAX = 4,2; RUE MIN = 1,4 Yp BASE = 6,02 t/ha; Yp = 9,05; Yp = 3,02 t/ha

$$\sigma = \frac{\delta Y}{\delta Z} = \frac{|(9,05 - 6,02)|}{(4,2 - 2,8)} = 2,15$$

$$\sigma = \frac{\delta Y}{\delta Z} = \frac{|(3,02 - 6,02)|}{(1,4 - 2,8)} = -2,15$$

	RUE
4.2	50%
1.4	-50%
	K
0.75	16%
0.25	-32%
	IC
0.45	50%
0.15	50%

$$aPAR = PAR. (1 - e^{-k.IAF})$$

$$\frac{dYP_i}{dt} = RUE. aPAR_i. f(T_i). IC$$

outra maneira

Sensibilidade :
$$\sigma = (\frac{9,05}{6,02} - 1)*100 = 50\%$$

Sensibilidade :
$$\sigma = \left(\frac{3,02}{6,02} - 1\right) * 100 = -50\%$$

Análise Sensibilidade Global

Dentro da análise de sensibilidade global existem diferentes métodos. Tais métodos podem ser baseados em variância e regressão.

(* para Python tem a biblioteca SimLAB)

Método	Tipo	Tempo Computacional	Referência	R Package
Partial Rank Correlation Coefficient (PRCC)	Regressão	Baixo	Marino et al., (2008) doi:10.1016/j.jtbi.2008.04.011	sensitivity
Morris	Secreening "rastreio um de cada vez"	Baixo	DeJonge et al., (2012) doi:10.1016/j.ecolmodel.2012.01.024	sensitivity
Furier Amplitude Sensitivity Test (FAST)	Variância	Alto	Marino et al., (2008) doi:10.1016/j.jtbi.2008.04.011	sensitivity
Sobol	Variância	Alto	DeJonge et al., (2012) doi:10.1016/j.ecolmodel.2012.01.024	sensitivity
Extended Amplitude Sensitivity Test (eFAST)	Variância	Moderado	Marino et al., (2008) doi:10.1016/j.jtbi.2008.04.011	sensitivity

\equiv

Análise Sensibilidade Global

Os três mais utilizados atualmente são : PRCC, MORRIS e eFAST.

Método	Vantagens	Desvantagens
Partial Rank Correlation Coefficient (PRCC)	Fornece a correlação dos parâmetros com a variável saída de interesse: -1 < PRCC< 1. Funciona para modelos não-lineares	Não é confiável quando a saída do modelo não é monótona em relação ao parâmetros avaliado. Menor tempo computacional que os demais
Morris	Menor tempo computacional que os métodos de GSA baseados em variância.	As medidas de sensibilidade são normalmente consideradas qualitativas (ou seja, classificação de fatores de entrada significativos), mas não necessariamente quantitativas em relação ao grau de significância
Extended Amplitude Sensitivity Test (eFAST)	Útil para modelos lineares e não lineares	Complexidade computacional e grande tempo de execução para um grande número de parâmetros.

Análise Sensibilidade Global - MORRIS

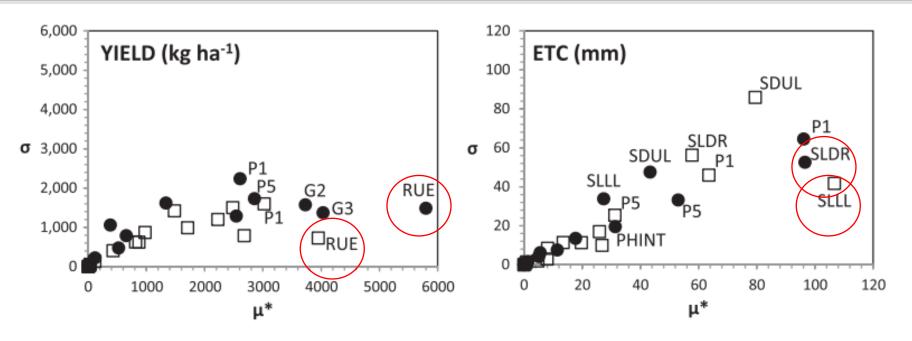


Fig. 1. Morris sensitivity analysis results shown in graphical form for all CERES-Maize output responses of interest. Filled circles indicate full irrigation treatment, open squares indicate limited irrigation treatment. Labels of the most important factors are shown.

Círculo irrigado; Quadrado sequeiro.

RUE : eficiência do uso da radiação (Radiation use efficiency)

SLDR: Taxa de drenage (*Drainage rate*)

SLLL: Ponto de murcha (wilting point)

Análise Sensibilidade Global

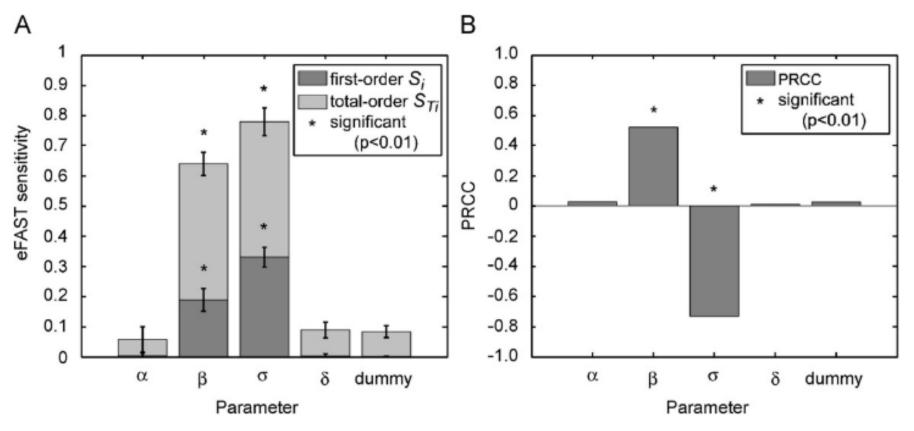


Fig. 4. Dummy parameter on eFAST and PRCC performed on the Lotka–Volterra model. Model equations and parameters are as described in Section 4.1 and Table 1. The reference output is Q(t)-prey Eq. (3), at t = 9. (A) eFAST results with resampling and significance testing. Search curves were resampled five times ($N_R = 5$), for a total of 1285 model evaluations ($N_S = 257$). First-order S_i and total-order S_T are shown for each parameter, including a dummy parameter, as described in the text. Error bars indicate ± 2 S.D. on the mean of resamples. Parameters with first- or total-order indexes significantly different (p < 0.01) from those of the dummy parameter are indicated with asterisks (*).(B) PRCC results. Sample size N = 1000. (*) denotes PRCCs that are significantly different from zero.

Vamos utilizar um modelo simples de produção de massa seca para trigo de inverno: WWDM (*Winter Wheat Dry Mass*) http://erecord.toulouse.inra.fr/erecord/html/using/examples/wwdm model.html#wwdm-model

$$U_{(t)} = U_{(t+1)} + Eb * Eimax * (1 - e^{(k*LAI_{(t)})}) * PAR_{(t)}$$

; Massa seca acima do solo

$$LAI_{(t)} = Lmax * \left(\frac{1}{(1 + e^{(-A*(ST_{(t)} - TI))})} - e^{(-B*(ST_{(t)} - Tr))} \right)$$

; Índice de área foliar

$$Tr = \left(\frac{1}{B}\right) * \log(1 + e^{(A*TI)})$$

; Função de temperatura para calcular o índice de área foliar

- PAR(t): photosynthetically active radiation
- ST(t): cumulative degree day

Parameters

Eb	Radiation use efficiency	g/m^2	1.85	0.9-2.8
Eimax	Max ratio of intercepted to incident radiation		0.94	0.9-0.99
K	Coefficient of extinction		0.7	0.6-0.8
Lmax	Maximal value of LAI		7.5	3-12
TI	Temperature threshold	degre C	900	700-1100
Α	Coefficient of LAI increase		0.0065	0.0035-0.01
В	Coefficient of LAI decrease		0.00205	0.0011-0.0025

Fourier Amplitude Sensitivity Test

1. Amostragem : definir um intervalo para cada Parâmetro. Dentro desse intervalo são gerados (N) diferentes valores de parâmetros, respeitando a distribuição adotada para cada parâmetro. Em nosso exemplo adotamos uma distribuição uniforme.

```
: 0.0065 [ 0.0035, 0.01
# A
       : 0.00205 [ 0.0011, 0.0025 ]
# B
# Eb : 1.85
                [0.9, 2.8]
# Eimax: 0.94 [ 0.9 , 0.99
                [ 0.6
                     , 0.8
# K
       : 0.7
# Lmax : 7.5 [3
                      , 12
                [ 700
# TI
       : 900
                      , 1100
```


2. Número de simulações (Simple Size; C) necessárias : o número de simulações necessárias não é um concesso em nenhum método de GSA. Porém quanto maior o número de parâmetro maior será o número de simulações;

por ex: 7 parâmetros para 70 ~ 490 simulações necessárias

4	-	Α \$	в 🗘	Eb ‡	Eimax ‡	K ‡	Lmax ‡	ті
1	0	0.009264742	0.002453022	2.7731430	0.9413554	0.6997398	7.447263	1005.2654
2	2 0	0.008172307	0.001722462	2.3950269	0.9471856	0.6789068	8.329568	826.6401
3	3 0	0.005671350	0.001489757	1.1029795	0.9403147	0.7022968	5.554417	837.4167
4	1 0	0.005613477	0.001292471	1.9271025	0.9219526	0.7113745	9.500571	799.0371
	6 0	0.009764487	0.002456759	1.9956211	0.9217992	0.7753102	7.277088	742.6367
(6 (0.005913289	0.001617335	0.9205211	0.9079210	0.7351813	9.525195	789.7294
7	7	0.005641863	0.001699949	1.8241217	0.9164916	0.7380116	4.353154	908.6987

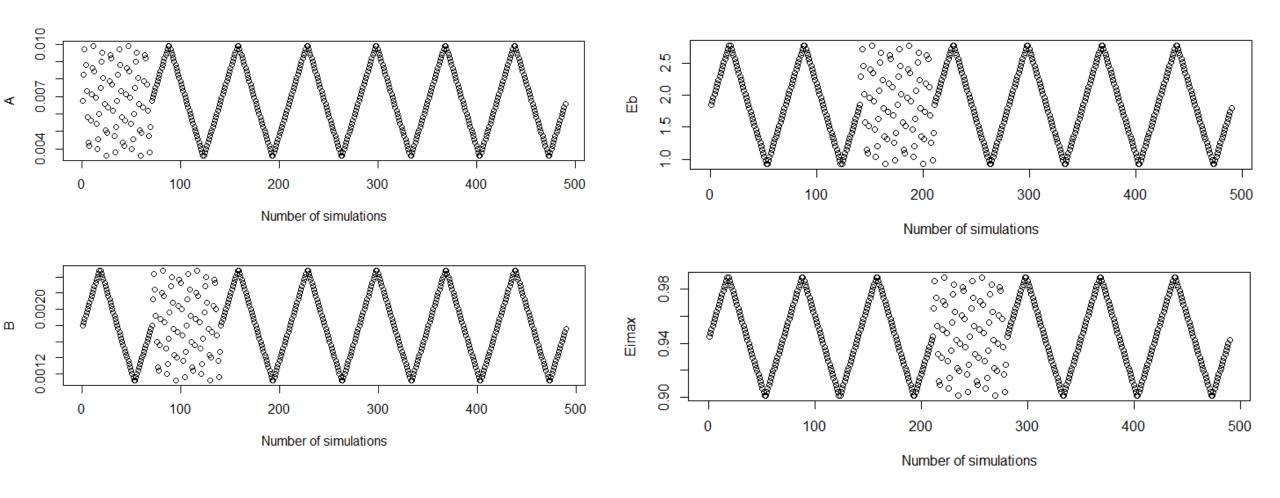
•

.

490 linhas; 490 conjuntos de parâmetros

\blacksquare

Exemplo Análise Sensibilidade Global



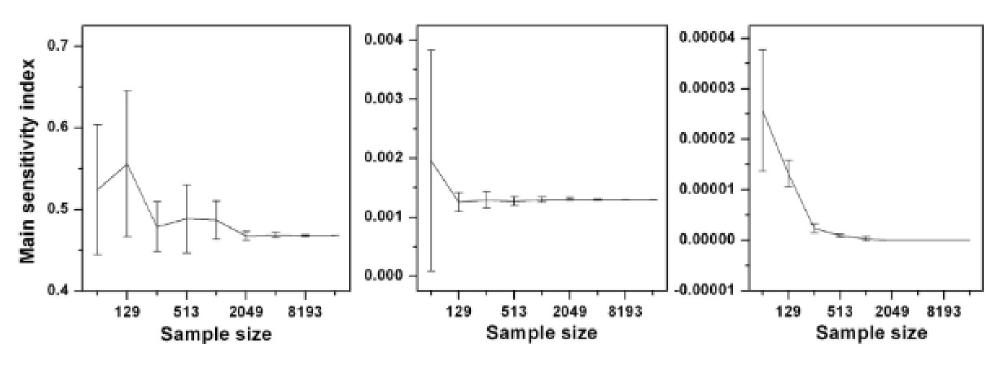


Fig. 1. Evolution of the sensitivity index of parameters SPAN, FOTB_{1.3}, and RDRSTB_{1.5001} with increasing sample size.

O número de simulações é importante, geralmente ele não afeta a determinação da ordem de importância dos parâmetros. Porém, quanto menor for o numero de simulações maior é o desvio dos índices.

• Será realizada uma simulação para cada conjunto de parâmetros e a partir dessas simulações é calculado a variância para variável de interesse em função da alteração do parâmetro.

$$var(Y) = \sum_{i} V_i + \sum_{i \neq j} V_{ij} + \sum_{i \neq j \neq m} V_{ijm} + \dots + \sum_{i \neq j \neq m \neq \dots \neq k} V_{ij\dots k}$$

Onde , V_i é a variância associada com o efeito do parâmetro i, e V_{ij} é a variância associada da interação do parâmetro i e j . Os índices de sensibilidade (S_i) são derivados da equação anterior, dividindo as medidas de importância por var(Y).

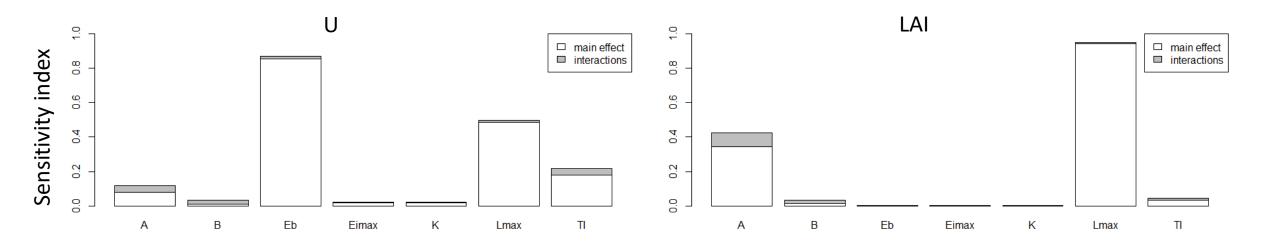
$$S_i = \frac{V_i}{var(Y)}; S_{ij} = \frac{V_{ij}}{var(Y)}$$

Onde S_i é chamado de índice de sensibilidade de primeira ordem e S_{ij} é o índice de sensibilidade entre os parâmetros i e j.

Assim o índice de sensibilidade total (TS_i) é obtido pelo somatório:

$$TS_i = 1 - \frac{(V_i + V_{ij} + \dots + V_{ij\dots k})}{var(Y)}$$

Um alto valor de S_i ou TS_i indica uma maior contribuição para as variáveis resposta de interesse. Em nosso exemplo as variáveis de interesse são Massa Seca (U) e índice de área foliar (LAI)

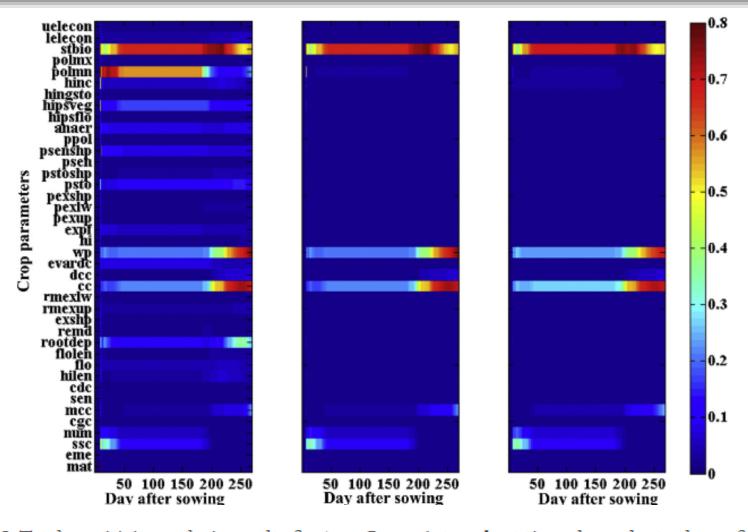


main effect = índice de sensibilidade de primeira ordem $(S_i)' \rightarrow$ é o índice sem quantificar as interações com demais parâmetros Interactions = índice de sensibilidade total $(TS_i) \rightarrow$ é o índice considerando a interação entre os parâmetros

Assim, podemos definir que para U a ordem de importância dos índices é: Eb , Lmax , TI, A, B , K, Eimax E para LAI a ordem de importância dos índices é: LMAX, A, TI, B, Eb, Eimax, K

\blacksquare

Pontos pertinentes sobre GSA



A análise sensibilidade e sua dependência tempo temporal é uma excelente informação para

Jin et al., (2018): https://doi.org/10.1016/j.fcr.2018.07.002

