

PEF 3307

Resistência dos Materiais

Valerio SA, valerio.almeida@usp.br

Conteúdo da aula

- Introdução à resistência dos Materiais
- Cálculo de reações de apoio
- Cargas distribuídas
- Exemplos
- Conceito de tensão/esforço

MECÂNICA

Ciência aplicada, não tem o empirismo de algumas ciências da engenharia, nem é abstrata/pura

CORPO RÍGIDO (espaço, veloc., aceler.)

MECÂNICA

CORPO DEFORMÁVEL (esforços internos, deformações)

FLUIDOS (veloc., pressões)

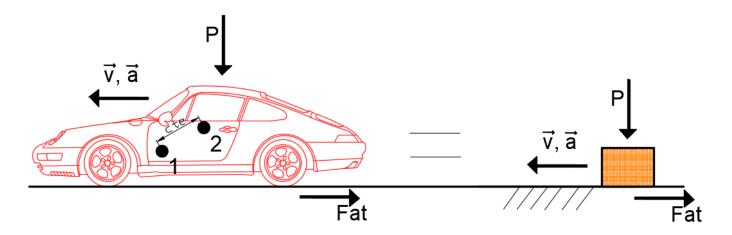
CORPO DEFORMÁVEL

Grandezas físicas: tensões, deformações

Mecânica do Materiais

Estudo da Mecânica

Corpos rígidos
 Não há interesse em movimento relativo no corpo

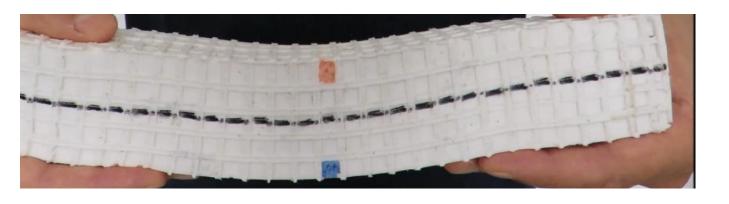


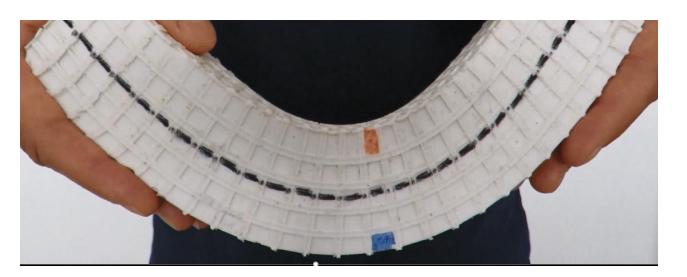
Corpos deformáveis
 Grande interesse na mudança de forma do corpo

Mecânica do Materiais

Corpos deformáveis

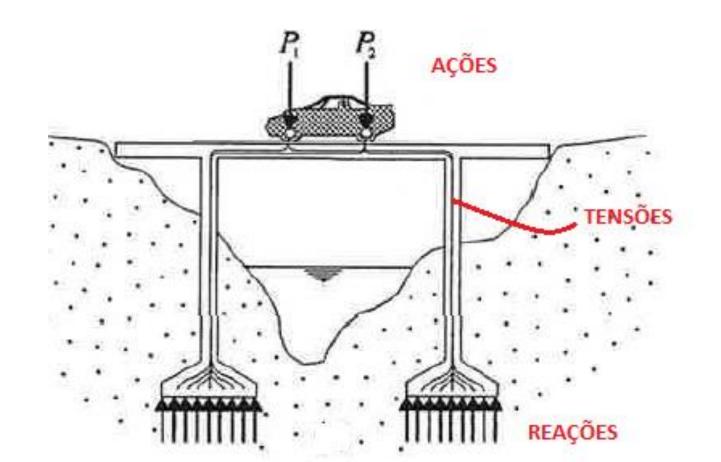
Grande interesse na mudança de forma do corpo: movimentação inter-atômica dos cristais.

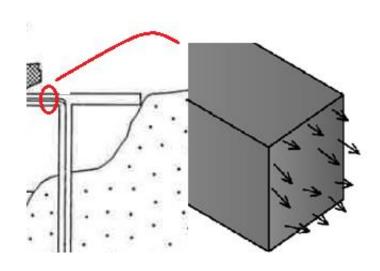




Mecânica do Materiais

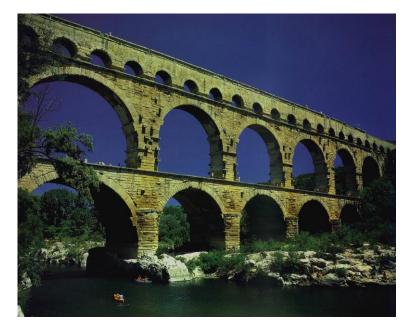
Variação de sua forma: deformações Forças dentro do corpo: esforço interno e tensões

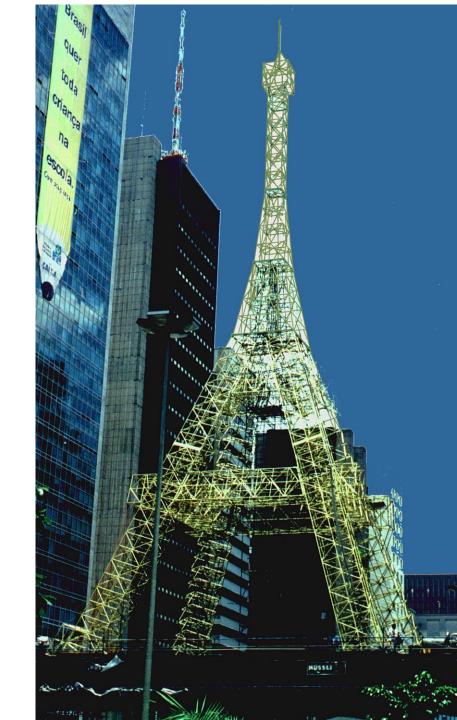




ESTRUTURAS

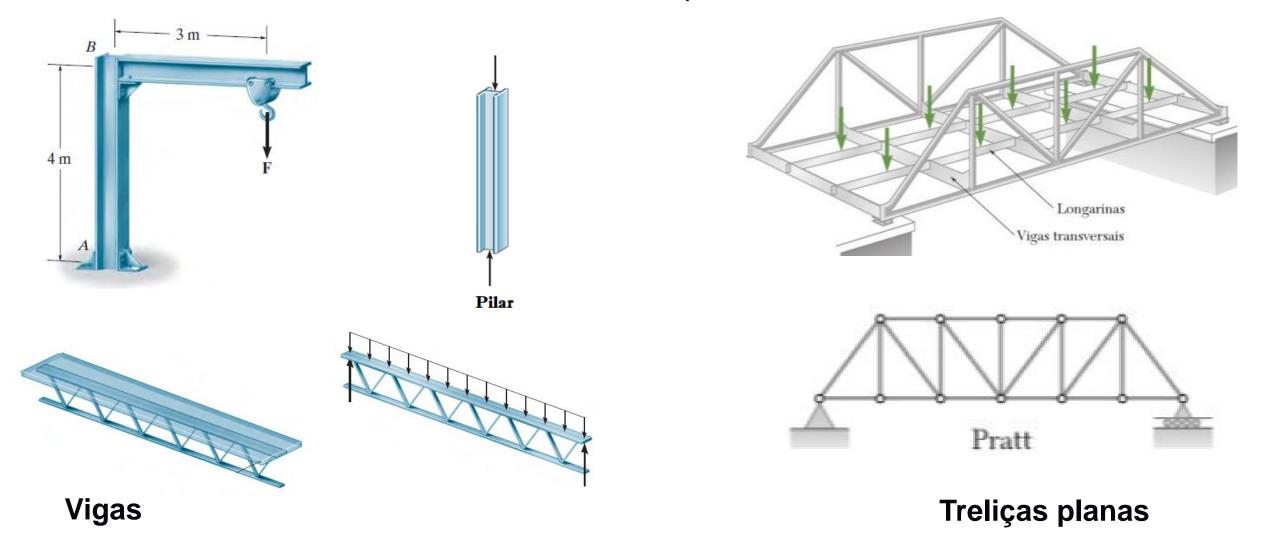
É o conjunto de partes resistentes de uma construção, de uma máquina, ponte, edifício etc...





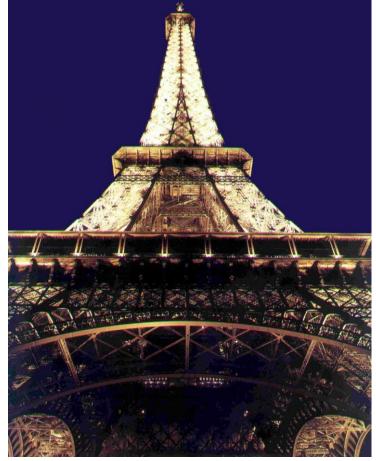
Classificação das estruturas quanto à sua forma

1) Planas: elementos que compõem a estrutura e os esforços que nela atuam se situam em um mesmo plano



Classificação das estruturas quanto à sua forma

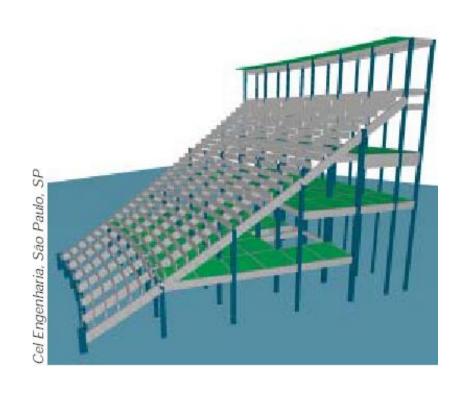
2) Espaciais: os elementos que compõem a estrutura OU os esforços que nela atuam NÃO se situam em um mesmo plano

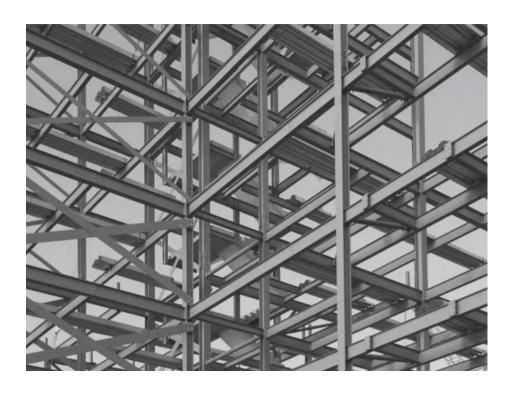


Torres de transmissão de energia elétrica, coberturas

1) Elementos lineares (barras):

Uma das dimensões é maior que as demais: vigas, pilares, cabos



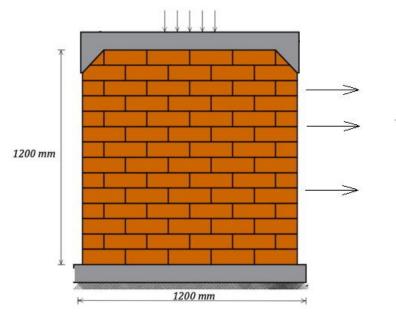


Vigas, pilares, cabos, estacas

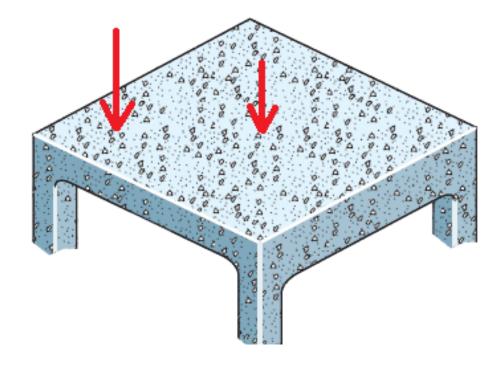
2) Superfície: elementos em que uma das dimensões (espessura, h) é bem menor que as demais dimensões (a) Folhas (h/a≤ 1:10) Folhas Placas Cascas

a) Chapas: solicitada por esforços com direções paralelas ao plano médio

Ex.: Viga-parede



b) Placas: superfície plana em que as ações são perpendiculares ao plano médio



Laje de um edifício

Radier

c) Casca: superfície não está contida num único plano, e são superfícies curvas

Ex.: Coberturas, silos, reservatório cilíndrico

Coberturas

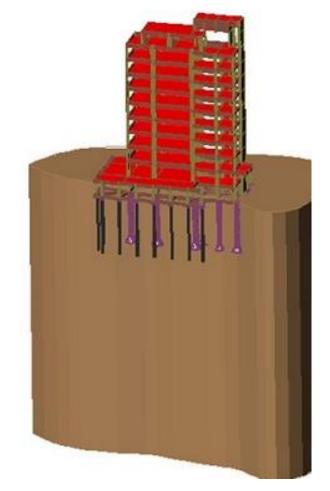
reservatório cilíndrico

3) Tridimensionais (volumétricos): elementos com dimensões com a mesma ordem de

grandeza

Ex.: Blocos de fundação, Solo

Edifício Yachthouse/SC, bloco de 4.600 m³ (1300 m² x 3,5m) [81 andares e 275 metros de altura]



Solo analisado com elemento 3D

AÇÕES

Grandezas que levam a estrutura a deformar, gerando esforços internos que devem ser verificados nos projetos. Ações: são definidas por Normas Técnicas específicas.

Tipo de ações:

i. Ações permanentes: ocorrem praticamente em toda a vida da construção e com valores constantes

Peso Próprio, no concreto, γ = 25 kN/m³ , aluminio: γ = 27 kN/m³

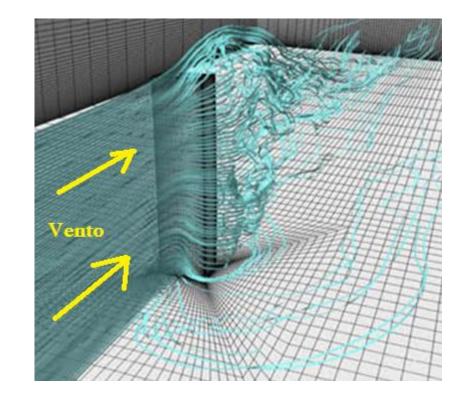
Peso dos elementos fixos nas instalações permanentes: parede, empuxo de terra, protensão.

Paredes: $q = 1.9 \text{ kN/m}^2$, cargas em escritório: $q = 2.4 \text{ kN/m}^2$

AÇÕES

ii. Ações variáveis: atuação em torno da média. Cargas acidentais, deslocamentos de apoios, variação de temperatura

Ex.: Vento nos edifícios, impacto, cargas de veículos (cargas móveis), frenação/aceleração, pessoas no estádio, pilar de um edifício que se movimenta devido ao recalque (deformação) do solo.

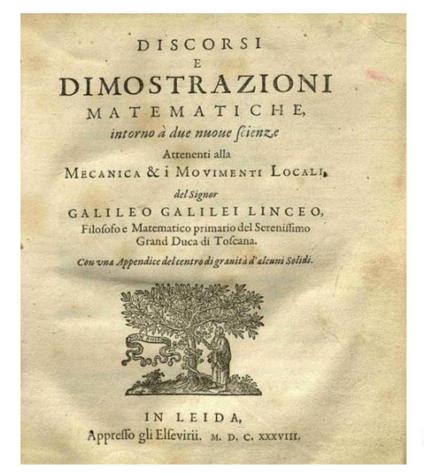


iii. Ações excepcionais: causas raras de ocorrência: explosões, colisões, incêndios.

OBJETIVO DA MECÂNICA DAS ESTRUTURAS

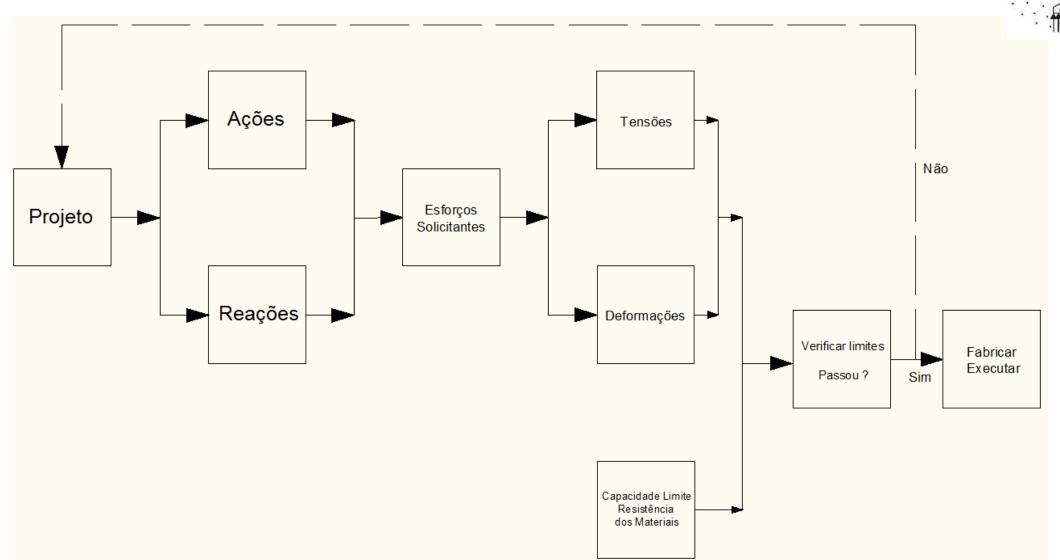
Estudar as leis e o comportamento das estruturas para levar o projeto seguro, econômico, durável e com sustentabilidade.

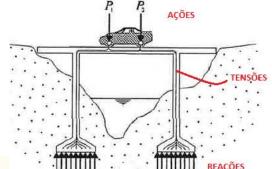
Introduzido por Galileu (1638) a abordagem de estruturas na ruptura: tamanho, carga



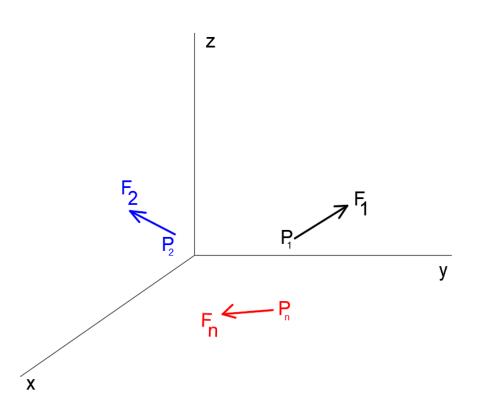
Discorsi e Dimostrazioni Matematiche, intorno a Due Nuove Scienze, 1638, Galileu Galilei

Escopo da Resistência dos Materiais





O conceito de força será introduzido por meio do 3º Princípio da Mecânica Clássica: "Em cada instante, a ação mecânica de um corpo sobre um ponto material pode ser representada por um vetor (força interativa) aplicado no ponto".



Dado um sistema de forças $S = \{(P_1, \vec{F}_1), (P_2, \vec{F}_2), ..., (P_n, \vec{F}_n)\}$, tem-se:

Definição 1.3

Resultante de S é a soma vetorial das forças que o compõem.

A resultante é indicada por \vec{R} , tendo-se então

$$\overrightarrow{R} = \sum_{i=1}^{n} \overrightarrow{F}_{i} .$$

$$R_x = \sum_{i}^{n} F_{xi}$$
 $R_y = \sum_{i}^{n} F_{yi}$ $R_z = \sum_{i}^{n} F_{zi}$

Definição 1.4

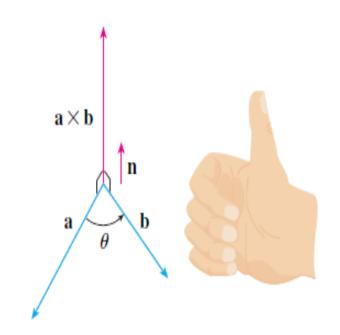
Momento de S em relação a um ponto O é a soma vetorial dos momentos de cada uma das forças do sistema em relação a esse ponto.

$$M_0 = r \wedge F$$

Definição: Se $a = \langle a_1, a_2, a_3 \rangle$ e $b = \langle b_1, b_2, b_3 \rangle$ então o produto vetorial de a e b é o vetor:

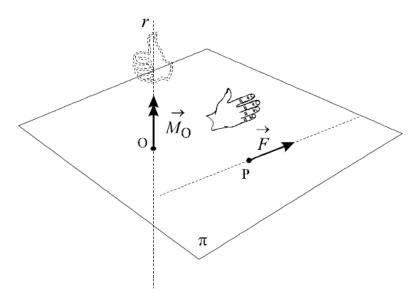
a
$$\wedge$$
 b = $\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$

$$\mathbf{a} \wedge \mathbf{b} = (a_y b_z - a_z b_y) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$



Regra da mão direita

Sabe-se que o momento $\vec{M}_{\rm O}$ tem a direção da reta r da Figura 1.4, passando por O e perpendicular ao plano definido pela linha de ação de (P, \vec{F}) e pelo ponto O (plano π).



$$\mathbf{a} \wedge \mathbf{b} = (a_y b_z - a_z b_y) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

Figura 1.4

O sentido de $\vec{M}_{\rm O}$ pode ser determinado da seguinte maneira:

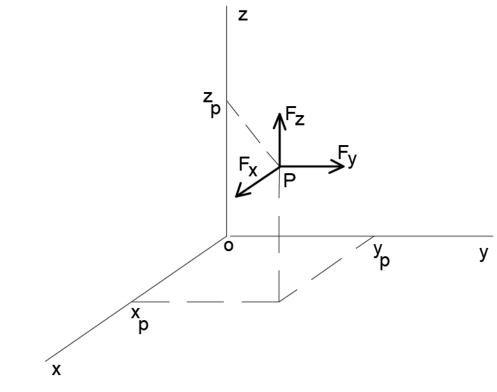
- no plano que contém a linha de ação de (P, \vec{F}) e é perpendicular a π , coloque a mão direita com a palma voltada para a reta r e com os dedos no sentido de \vec{F} ;
- deixe o polegar perpendicular aos demais dedos;
- o sentido de $\vec{M}_{\rm O}$ é então o apontado pelo polegar da mão direita (Figura 1.4).

As forças em P geram que momento em "O"?

$$M_0 = r \wedge F$$

$$r = (x_p - x_o)i + (y_p - y_o)j + (z_p - z_o)k$$

$$F = F_x i + F_y j + F_z k$$

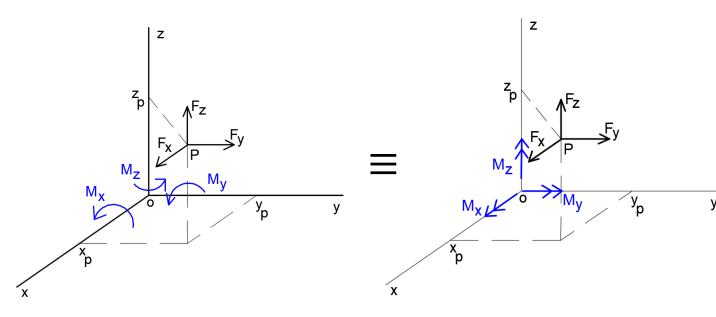


$$M_0 = [(x_p - x_o)i + (y_p - y_o)j + (z_p - z_o)k] \wedge [F_x i + F_y j + F_z k]$$

$$M_o = M_x i + M_y j + M_z k$$

$$M_x = (y_p - y_o)F_z - (z_p - z_o)F_y$$

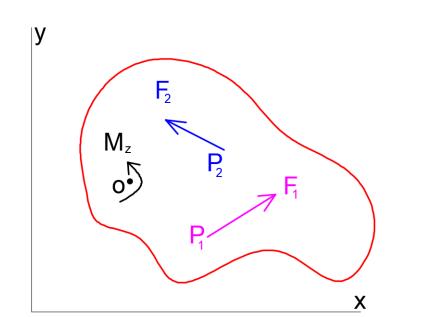
 $M_y = (z_p - z_o)F_x - (x_p - x_o)F_z$
 $M_z = (x_p - x_o)F_y - (y_p - y_o)F_x$



Sistema coplanar (Estruturas no plano)

$$R_x = \sum_{i}^{n} F_{xi} \qquad R_y = \sum_{i}^{n} F_{yi}$$

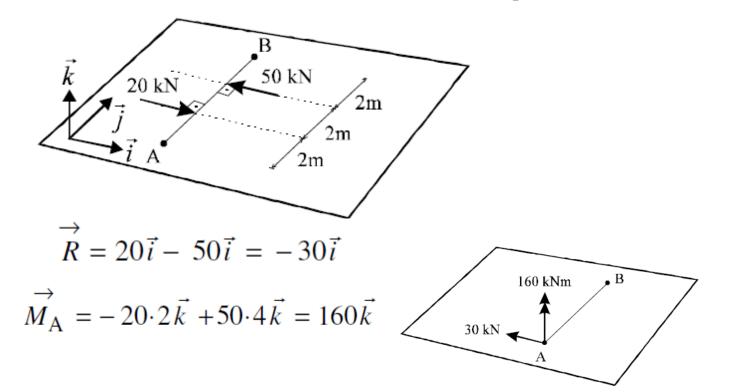
$$M_z = M = (x_p - x_o)F_y - (y_p - y_o)F_x$$



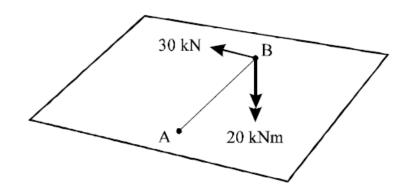
Recordação da estática: sistema mecanicamente equivalentes

Diz-se que dois sistemas de forças S e S' são *mecanicamente equivalentes* quando suas reduções em um mesmo ponto genérico A levam aos mesmos esforços, isto é, $\vec{R} = \vec{R}'$ e $\vec{M}_{\rm A} = \vec{M}'_{\rm A}$.

Exemplo 1 Considere-se a barra da figura em que são aplicadas duas forças coplanares, que constituem o sistema de esforços S₁. Obtenha um sistema equivalente em A



Sistema equivalente em B



Exemplo 2

Determinar para que ponto da barra da Figura 1.25 a redução do sistema de forças aplicadas conduz exclusivamente à resultante *R*.

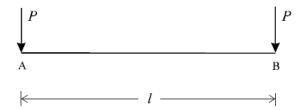


Figura 1.25

A solução direta consiste na redução do sistema em um ponto genérico Q da barra e na determinação de qual deve ser a posição do ponto Q para que o momento de redução se anule.

A redução do sistema em Q leva aos esforços indicados na Figura 1.26.

O momento de redução é

$$M_{\mathcal{O}} = P \cdot x - P \cdot (l - x) = 0 \tag{1.31}$$

$$2 P \cdot x - P \cdot l = 0 \tag{1.32}$$

$$x = \frac{l}{2}. ag{1.33}$$

Conclui-se, então, que o polo no qual o sistema de forças da Figura 1.25 se reduz exclusivamente à resultante é o ponto médio da barra, como se indica na Figura 1.27.

Como já se verificou, a redução de um sistema de forças em um ponto leva a um sistema mecanicamente equivalente ao sistema que já foi reduzido. São, portanto, mecanicamente equivalentes os dois sistemas representados na Figura 1.28, onde o símbolo ≡ indica a equivalência mecânica entre eles.

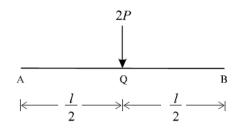


Figura 1.27

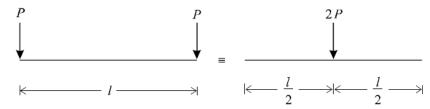


Figura 1.28

Aplicar na barra da Figura 1.31 uma única força mecanicamente equivalente ao sistema aplicado

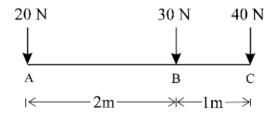


Figura 1.31

A força procurada é a resultante do sistema, mostrada na Figura 1.32.

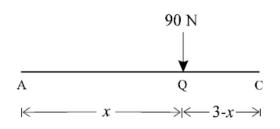


Figura 1.32

A redução do sistema da Figura 1.31 no ponto A leva ao momento

$$M_{\rm A} = -30 \cdot 2 - 40 \cdot 3 = -180 \text{ Nm};$$
 (1.35)

a redução da resultante da Figura 1.32 nesse mesmo ponto leva ao momento

$$M_{\rm A} = -90 \cdot x \,. \tag{1.36}$$

Impondo que esses dois momentos sejam iguais, obtém-se

$$M_{\rm A} = -180 = -90 \cdot x \implies x = \frac{180}{90} = 2 \text{ m}.$$
 (1.37)

São portanto mecanicamente equivalentes os dois sistemas da Figura 1.33.

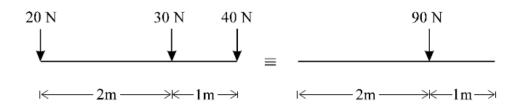
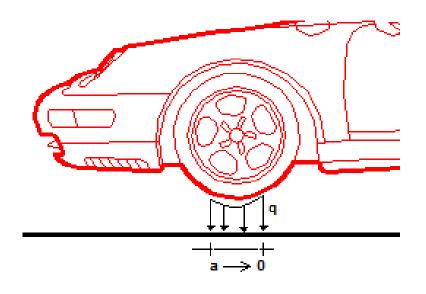
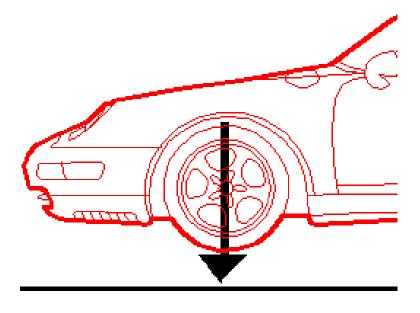


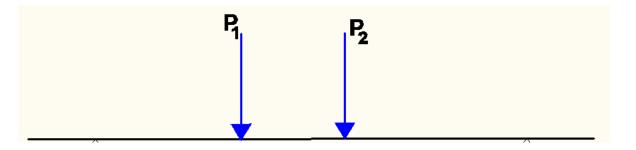
Figura 1.33

Ações: Tipos de cargas

a) Forças Concentradas

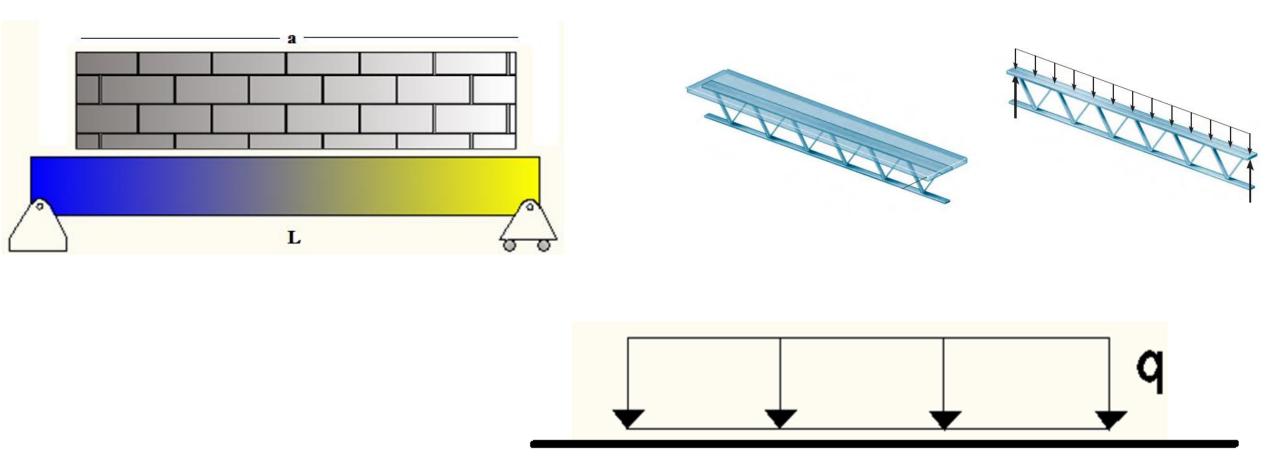






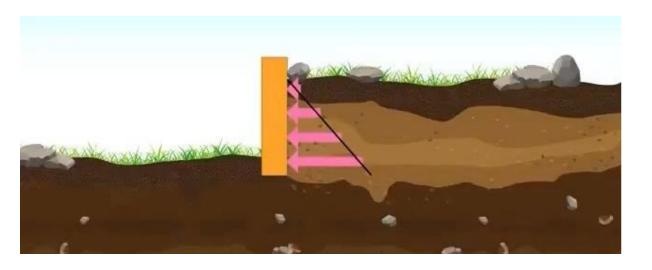
Ações: cargas distribuídas (q, unidade: F/L)

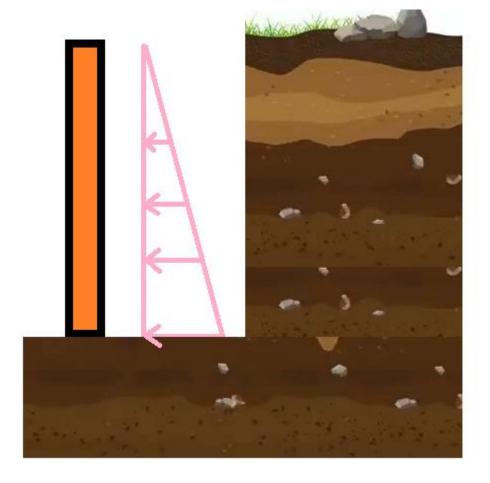
b) Carga distribuída constantemente Ex.: parede sobre uma viga



Ações: cargas distribuídas (q, unidade: F/L)

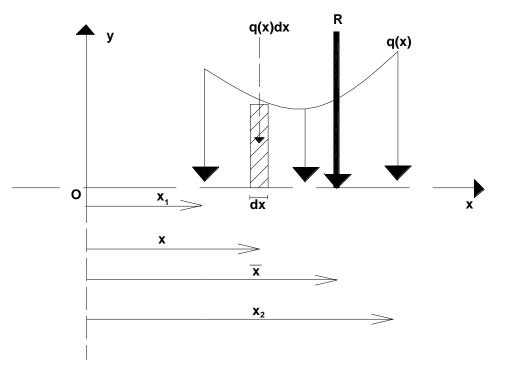
c) Carga distribuída linearmente Ex.: empuxo de terra, água





Ações: cargas distribuídas (q, unidade: F/L)

Como calcular a resultante da carga distribuída?



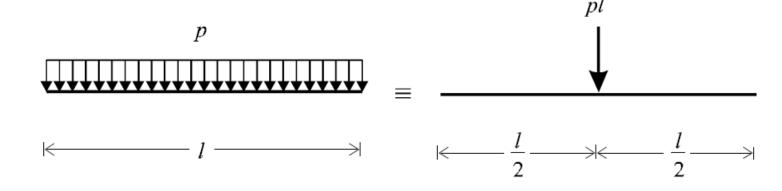
$$R = \int_{x_1}^{x_2} q(x) \cdot dx = \int_{x_1}^{x_2} dF = \text{Area}$$

E qual é a posição da resultante (R)?

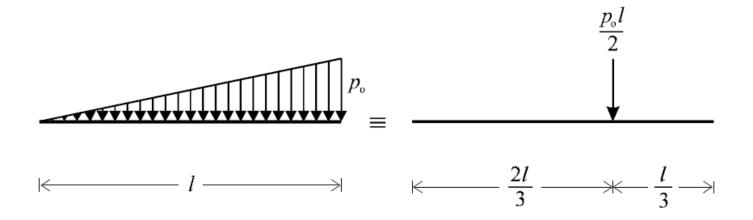
$$\frac{1}{x} = \frac{\int_{x_1}^{x_2} q(x) \cdot x \cdot dx}{R} = \frac{\int_{x_1}^{x_2} q(x) \cdot x \cdot dx}{A} = \frac{\int_{x_1}^{x_2} q(x) \cdot x \cdot dx}{\int_{x_1}^{x_2} q(x) \cdot dx} (CG \ da \ \acute{a}rea)$$

Substituindo o carregamento distribuído por uma força concentrada estaticamente equivalente para os dois casos a seguir, tem-se as respostas indicadas.

Exemplo 4



Exemplo 5



Estruturas Estáticas

Estática dos sistemas rígidos

Equações de Equilíbrio:

$$R = m \cdot a = 0 \xrightarrow{a=0} R = 0$$
; $\sum R = 0$ (Forças); $\sum M = 0$ (Momento)

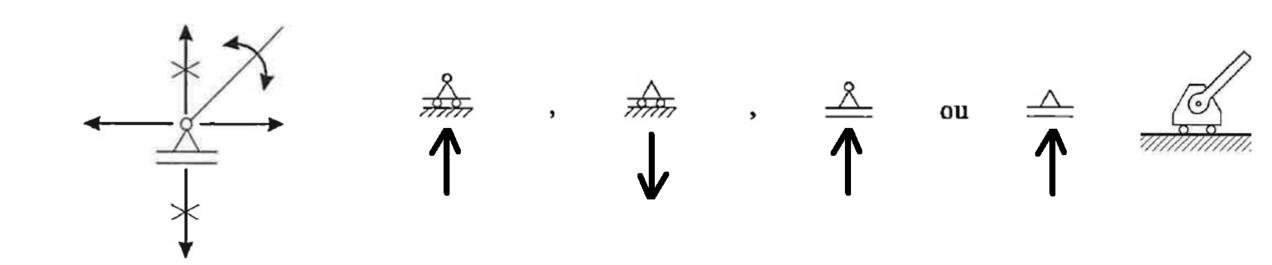
$$\sum F_x = 0$$
, $\sum F_y = 0$, $\sum M_A = 0$

A é um ponto qualquer do plano da estrutura (pólo)

Restrições de movimento e reações associadas (plano)

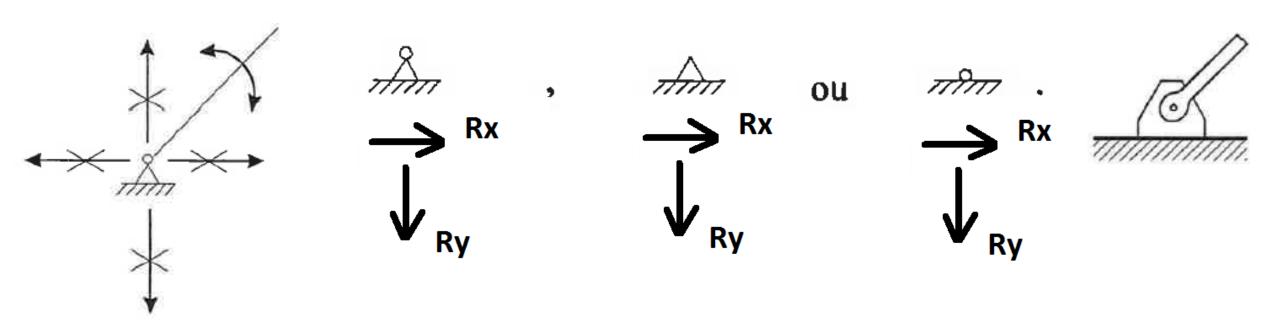
Duas translações e uma rotação

a) 1º. Gênero ou articulação móvel ou apoio simples: impede uma translação no plano



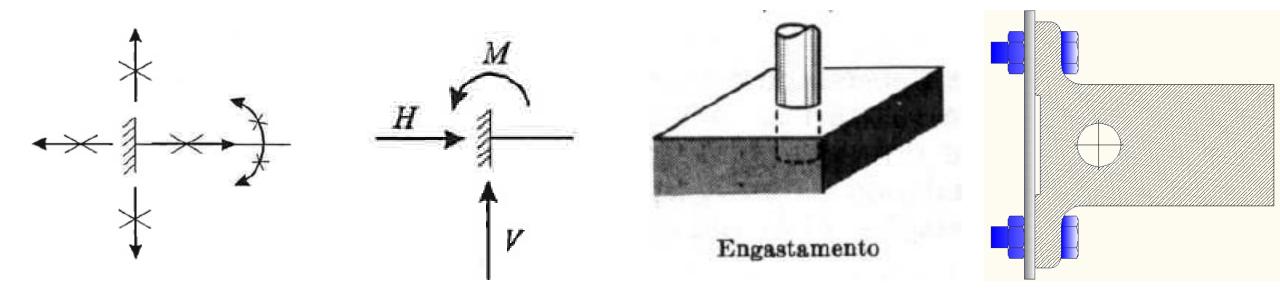
Graus de liberdade e apoios (plano)

b) 2º. Gênero ou articulação fixa/apoio fixo: impedem duas translações no plano



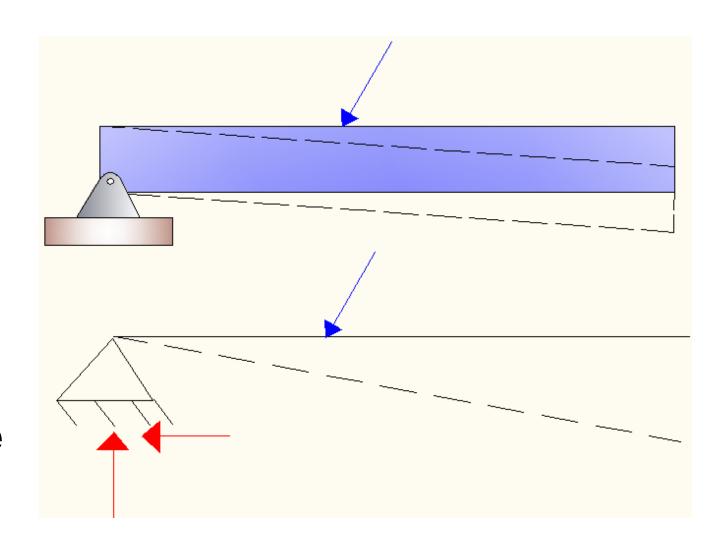
Graus de liberdade e apoios (plano)

c) Engaste: impedem duas translações e uma rotação no plano



Classificação das estruturas quanto à estaticidade

a) Estrutura Hipostática: menos de 3 vínculos

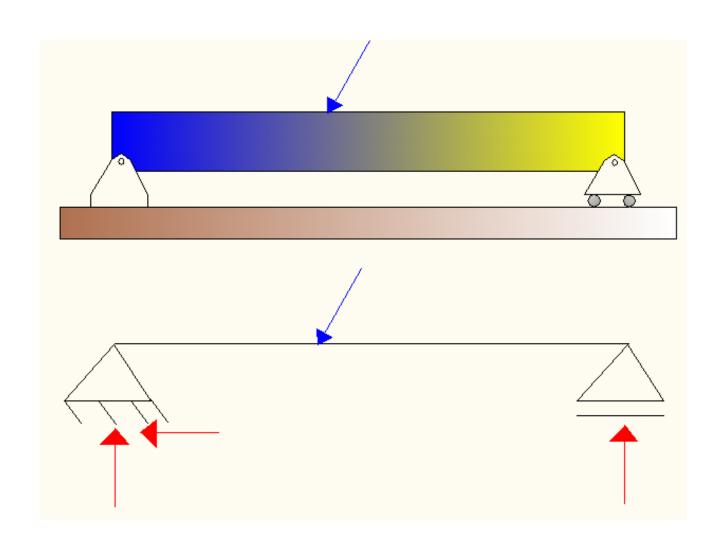


Algum movimento está livre

Classificação das estruturas quanto à estaticidade

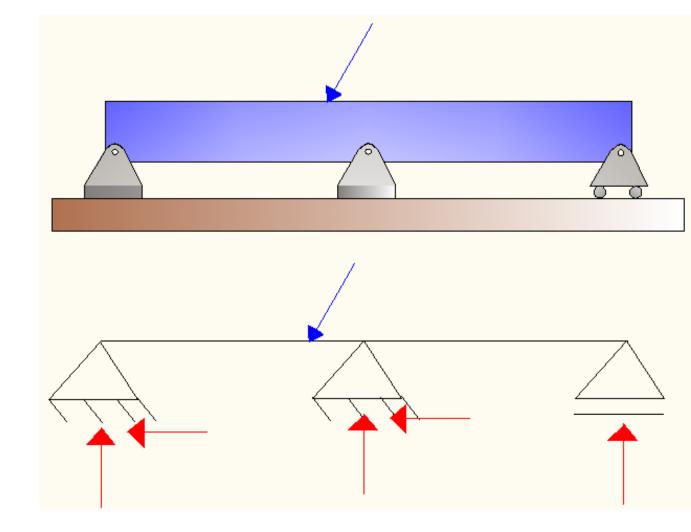
b) Estrutura Isostática: exatamente 3 vínculos

 3 movimentos impedidos



Classificação das estruturas quanto à estaticidade

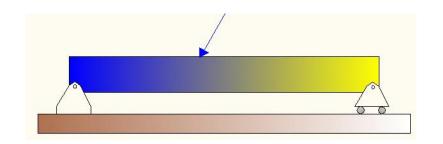
c) Estrutura Hiperestática: mais de 3 vínculos



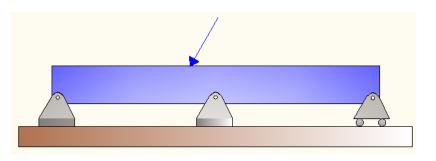
 Mais de 3 movimentos impedidos

Estruturas isostáticas e hiperestáticas deformam

Serão estudados nesse curso esses tipos

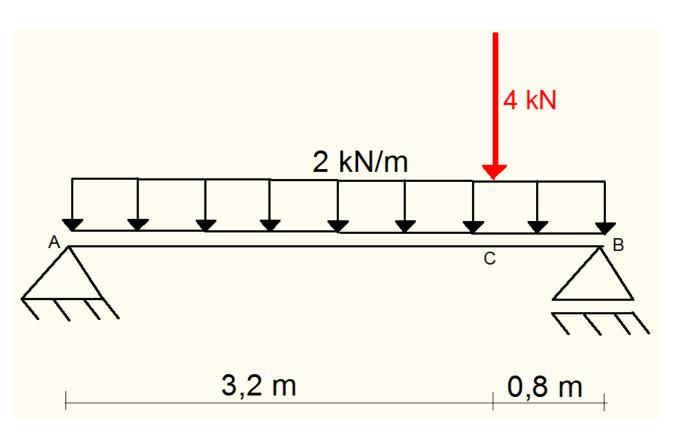


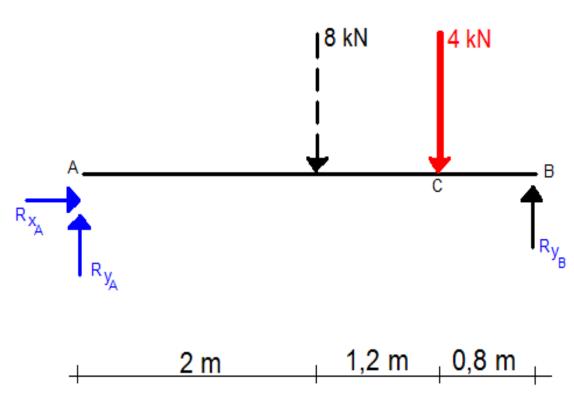
Isostáticas, 95% do curso



Hiperestáticas, 5% do curso

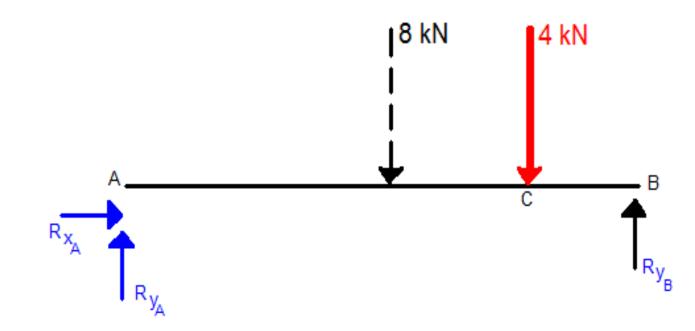
Exemplo 6: Calcule as reações da estrutura





$$\sum F_x = 0: \qquad R_{XA} = 0$$

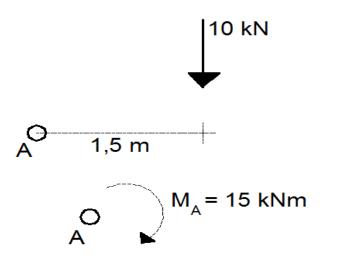
$$\sum F_y = 0$$
: $R_{YA} + R_{YB} - 12 = 0$



Lembrando que:

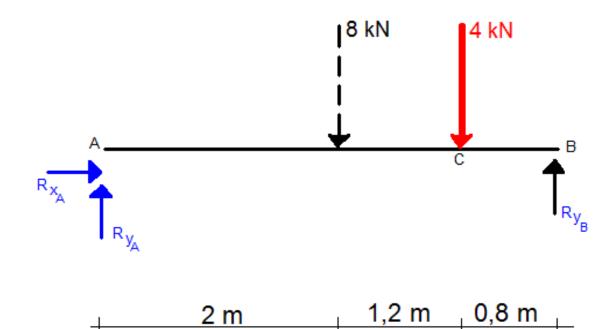
$$\overrightarrow{M}_O = \overrightarrow{OP} \wedge \overrightarrow{F}$$

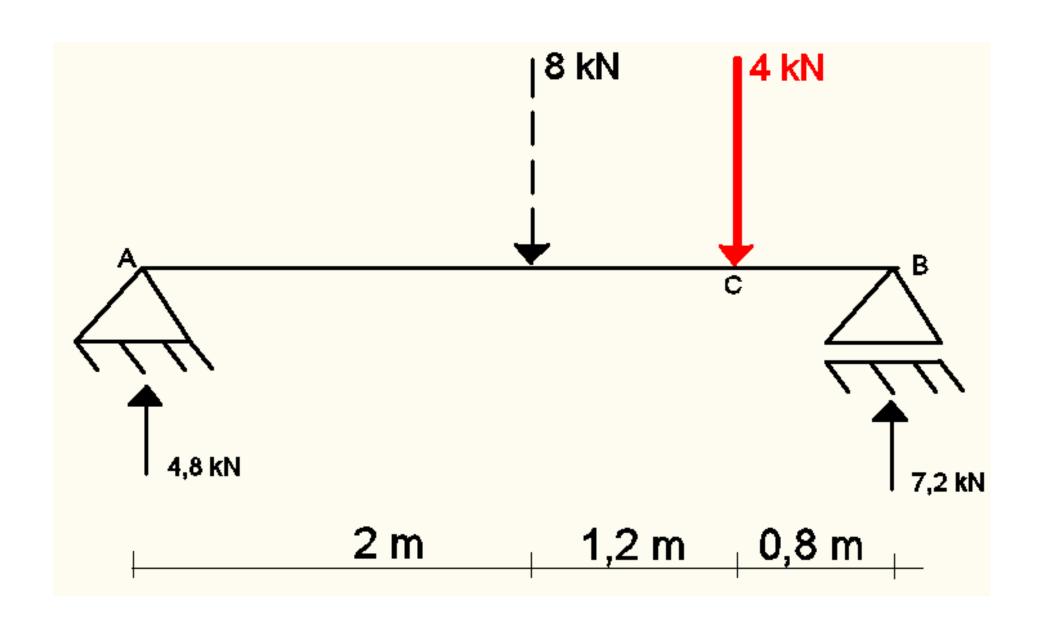
$$\|\overrightarrow{M}_{O}\| = \|\overrightarrow{OP}\| \cdot \|\overrightarrow{F}\| \operatorname{sen} \alpha$$



$$\sum M_A = 0$$
: $4.0 \cdot R_{YB} - 8.0 \cdot 2.0 - 4.0 \cdot 3.2 = 0 \rightarrow R_{YB} = 7.2 \ kN$

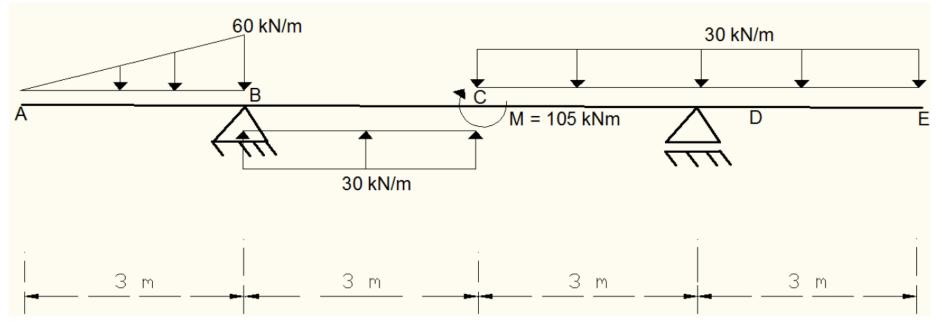
$$R_{Y4} = 12 - 7.2 = 4.8 \ kN$$



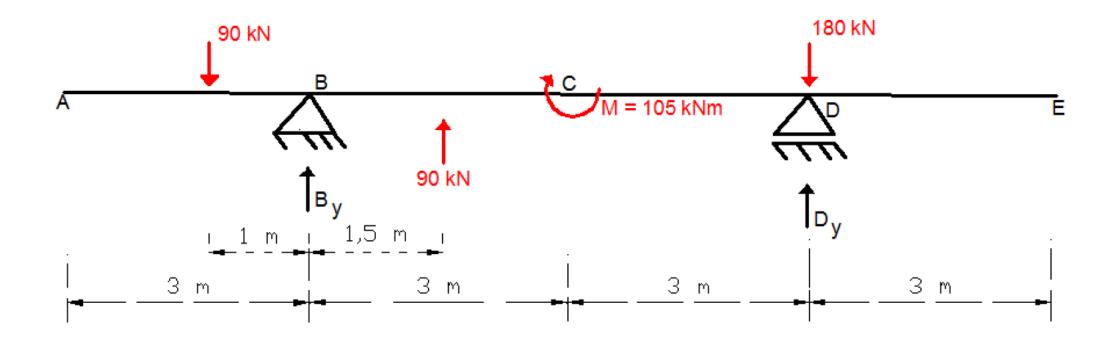


R3) Determinar as reações da viga a seguir.

Exemplo 7*



Exemplo 7 R3) Determinar as reações da viga a seguir.



$$\sum F_{x} = 0 \to B_{x} = 0$$

$$\sum F_{y} = 0 \to B_{y} + D_{y} = 180$$

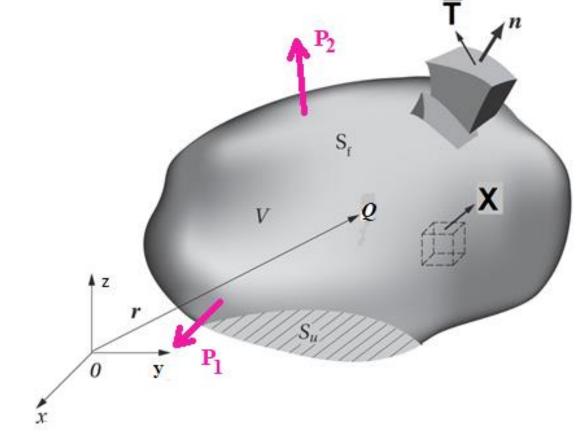
$$\sum M_{B} = 0 \to 6.D_{y} + 90.1 + 90.1,5 = 105 + 180.6 \to D_{y} = 160 \ kN(\uparrow)$$

$$\therefore B_{y} = 20 \ kN(\uparrow)$$

Tensão

Sólido deformável (V) em equilíbrio estático

Sujeito a forças de contato: P₁, P₂....



Realize um corte imaginário que passe dentro do corpo

Tensão

Corte imaginário

Vetor tensão em Q no plano de normal n

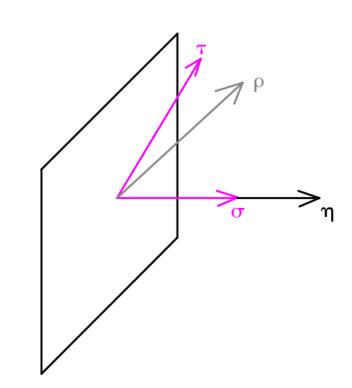
$$\rho_n = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$$

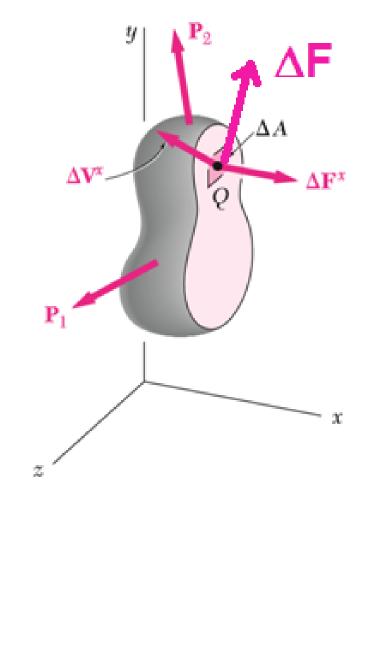
$$\rho_n = \sigma + \tau$$

σ: tensão normal

τ: tensão cisalhante

 Δ A: área





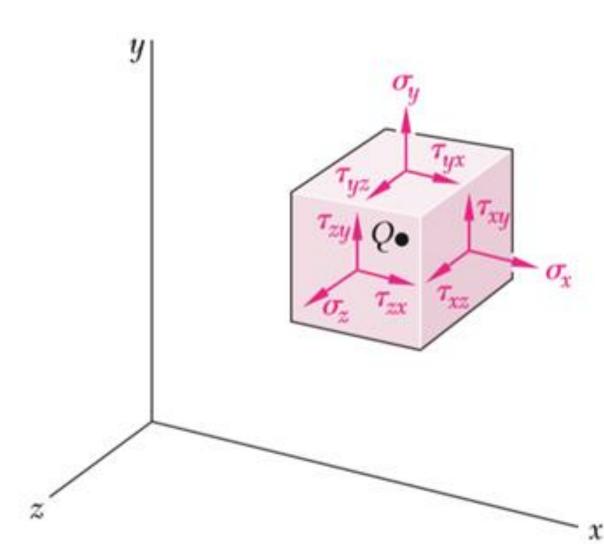
Tensão

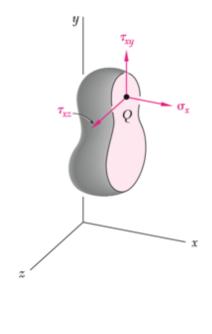
Decomposição do vetor tensão

$$\sigma_x = \lim_{\Delta A \to 0} \frac{\Delta F^x}{\Delta A}$$

$$au_{xy} = \lim_{\Delta A \to 0} \frac{\Delta V_y^x}{\Delta A}$$

$$au_{xz} = \lim_{\Delta A o 0} rac{\Delta V_z^x}{\Delta A}$$





Simetria de tensões

A combinação de forças geradas pela tensão devem satisfazer as condições para o equilíbrio:

$$\sum F_x = \sum F_y = \sum F_z = 0$$

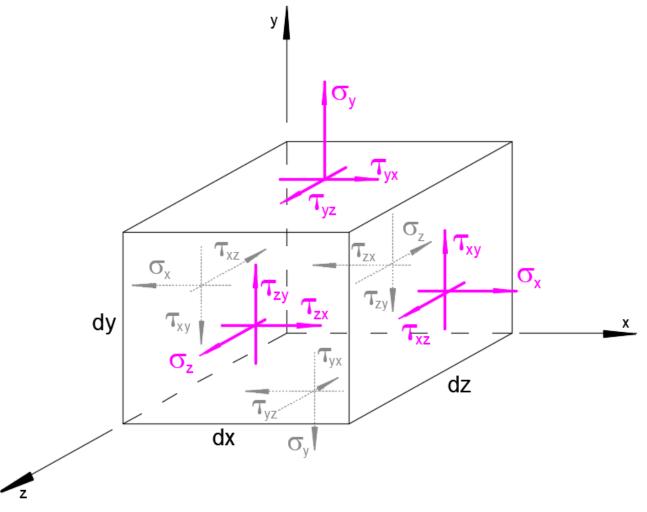
$$\sum M_x = \sum M_y = \sum M_z = 0$$

Considere os momentos em torno do eixo z, pólo no centro do volume:

$$\sum M_z = 0 = (\tau_{xy} dy dz) dx - (\tau_{yx} dx dz) dy$$

$$\tau_{xy} = \tau_{yx}$$

Similar,
$$\tau_{yz} = \tau_{zy}$$
 e $\tau_{zx} = \tau_{xz}$



$$au_{yz} = au_{zy} \ au_{zx} = au_{xz}$$
 Simetria de tensões cisalhamento

Notação das 6 tensões

Notação:

$$oldsymbol{\sigma} = egin{bmatrix} \sigma_x \ \sigma_y \ \sigma_z \ au_{xy} \ au_{xz} \ au_{yz} \end{bmatrix} = [\sigma_x & \sigma_y & \sigma_z & au_{xy} & au_{xz} & au_{yz}]^T$$

Às vezes é conveniente escrever na forma:

$$\boldsymbol{\sigma} = [\sigma_{xx} \quad \sigma_{yy} \quad \sigma_{zz} \quad \sigma_{xy} \quad \sigma_{xz} \quad \sigma_{yz}]^T$$

Ou

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{22} & \sigma_{33} & \sigma_{12} & \sigma_{13} & \sigma_{23} \end{bmatrix}^T$$

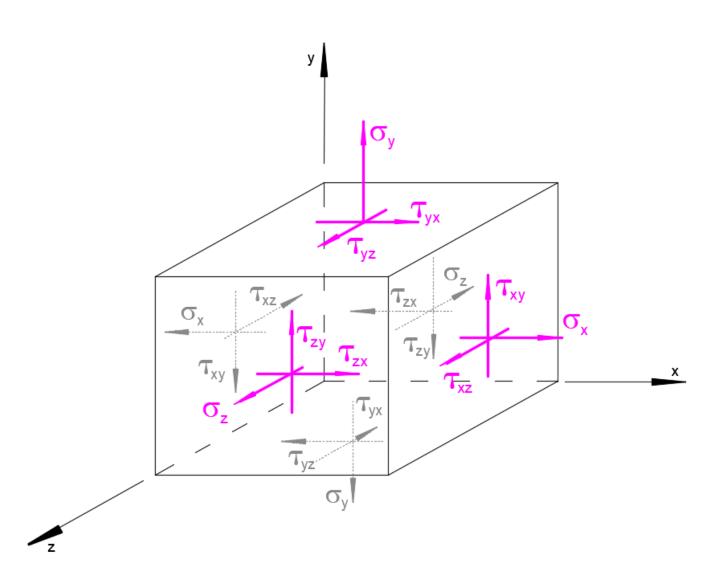
Tensor das tensões de Cauchy (simétrico)

$$T = egin{bmatrix} oldsymbol{\sigma}_{\chi} & oldsymbol{ au}_{\chi y} & oldsymbol{ au}_{\chi z} \ oldsymbol{ au}_{\chi z} & oldsymbol{ au}_{y z} & oldsymbol{\sigma}_{z} \end{bmatrix}$$

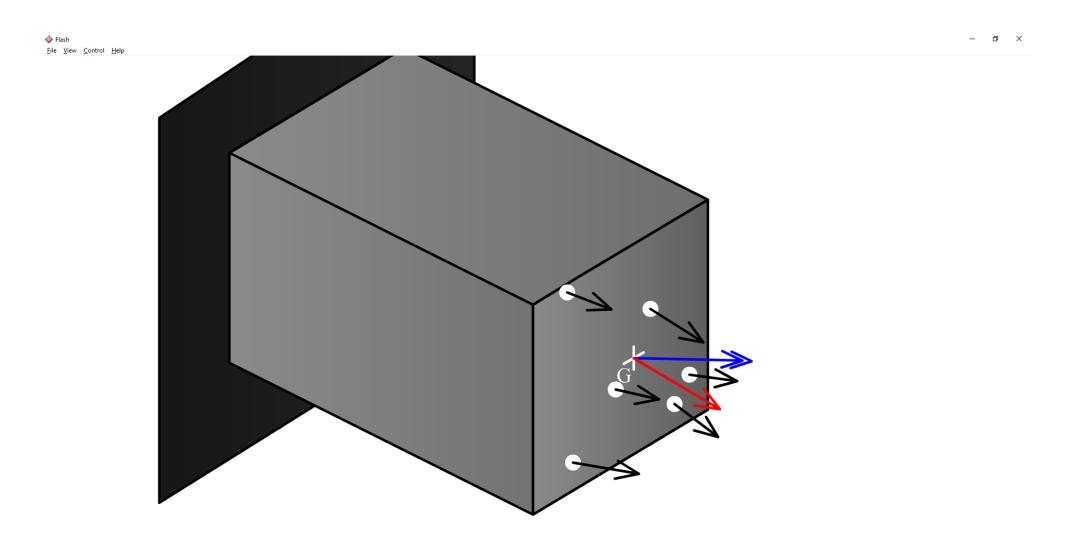
Sinal das componentes de tensão

A σ é positiva no sentido da normal à faceta

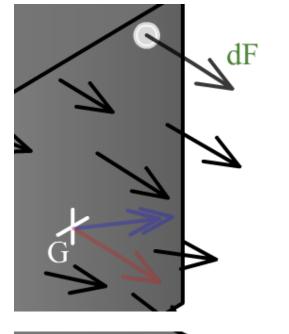
Se normal à faceta está no sentido do eixo, τ acompanha o seu sentido, caso contrário, sentido oposto.



TENSÕES E ESFORÇOS SOLICITANTES: ELEMENTOS LINEARES



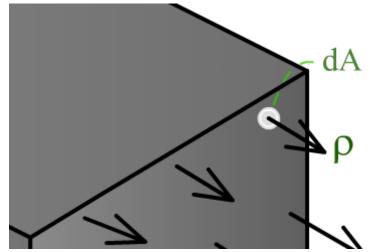
Tensões no plano



Tensão:

$$\vec{\rho} = \vec{\sigma} + \vec{\tau}$$

Tensão normal a seção:



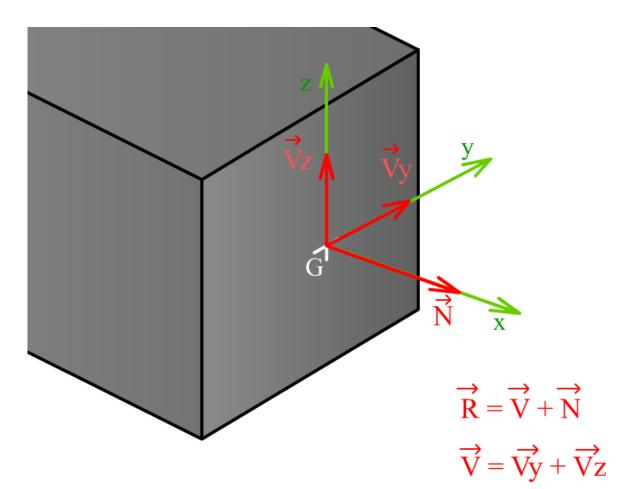
Tensão paralela a seção:

$$\vec{o}_{m\acute{e}dia} = \lim_{\Delta A \to 0} \frac{\overline{\Delta F}}{\Lambda A}$$

τ

ESFORÇOS SOLICITANTES

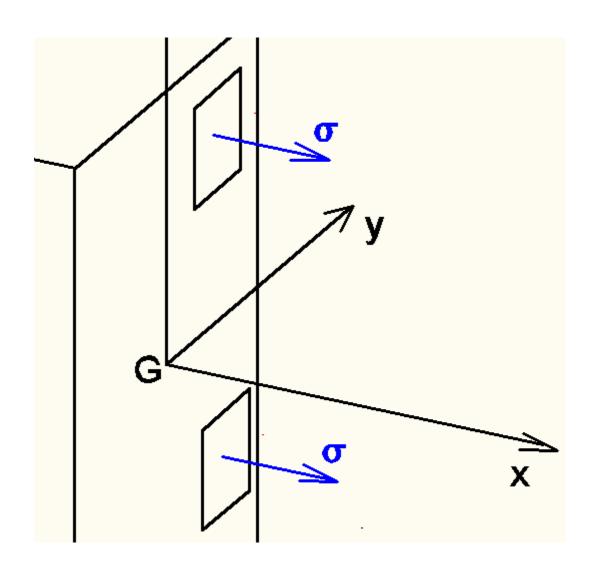
Esforços solicitantes: força/momento resultante das tensões transferidos para o centroide de cada seção transversal



N: Esforço Normal

V: Esforço Cisalhante ou Cortante

ESFORÇO NORMAL

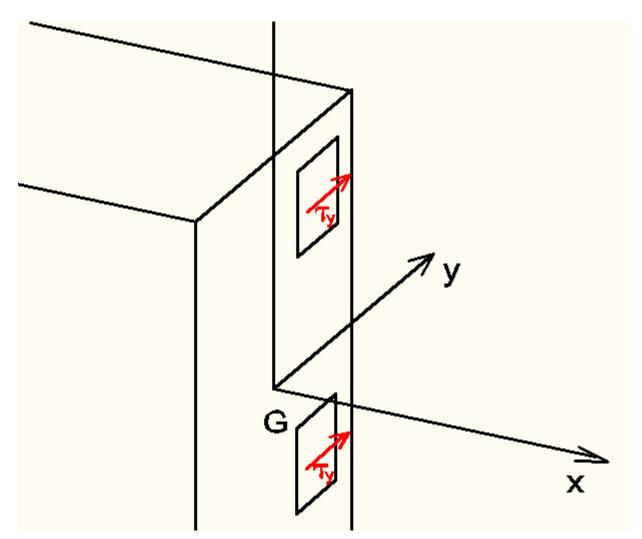


$$N = \int_{A} \sigma \, dA$$

N: ESFORÇO NORMAL

σ: TENSÃO NORMAL

ESFORÇO CISALHANTE (Cortante)

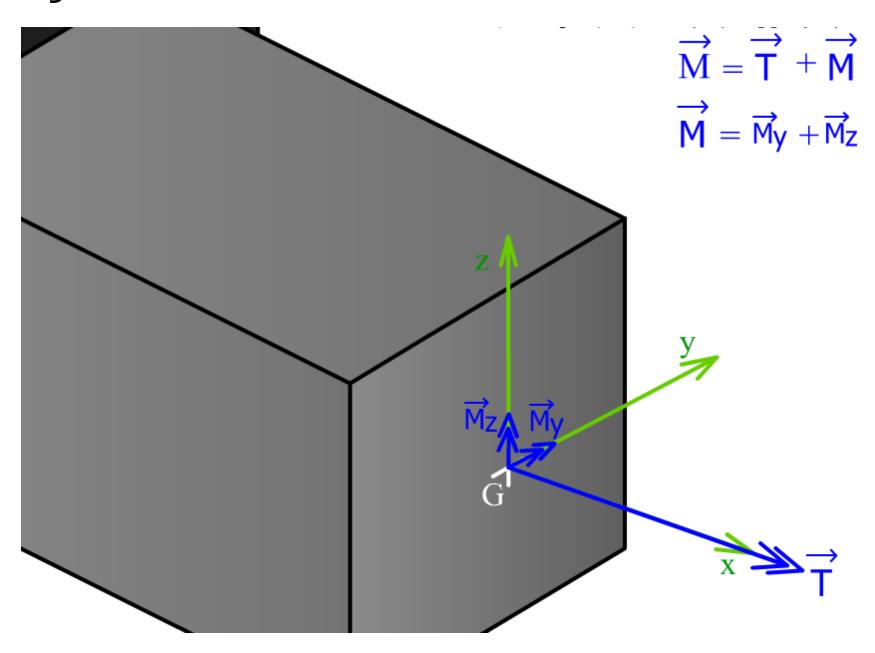


$$V_{y} = \int_{A} \tau_{y} dA$$

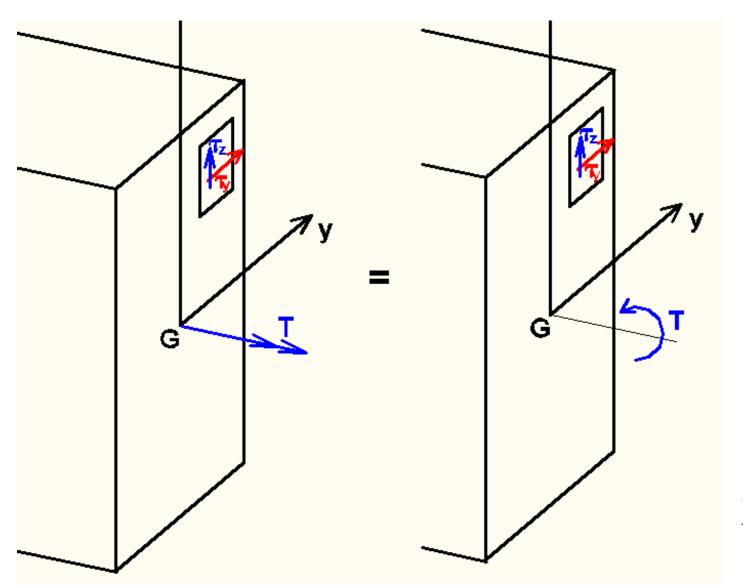
$$V_z = \int_A \tau_z \ dA$$

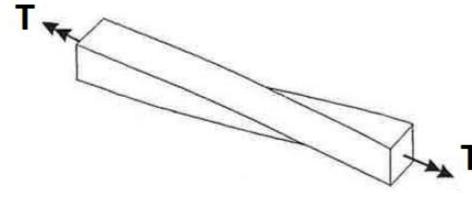
Tensão Cisalhante:

ESFORÇOS DE MOMENTO



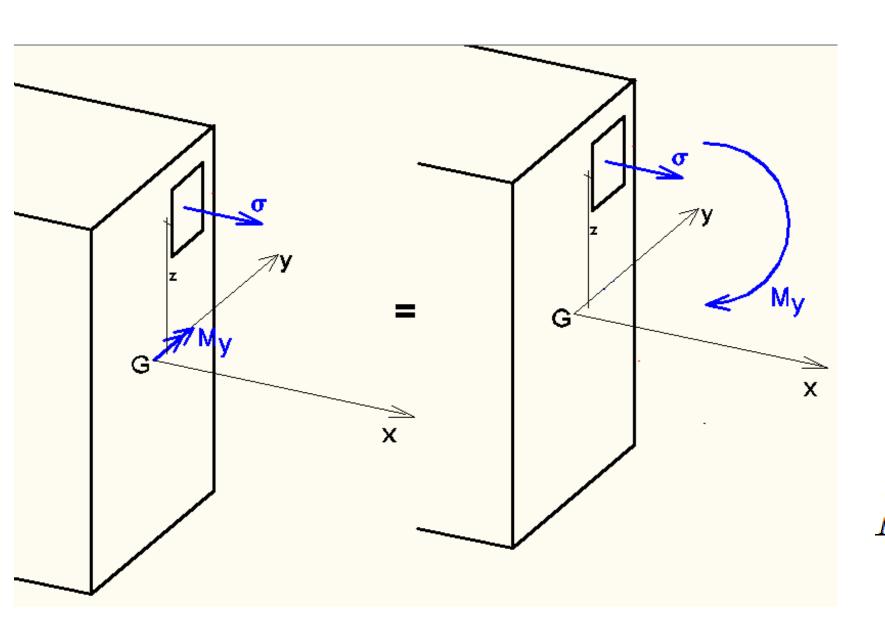
MOMENTO TORÇOR (T)





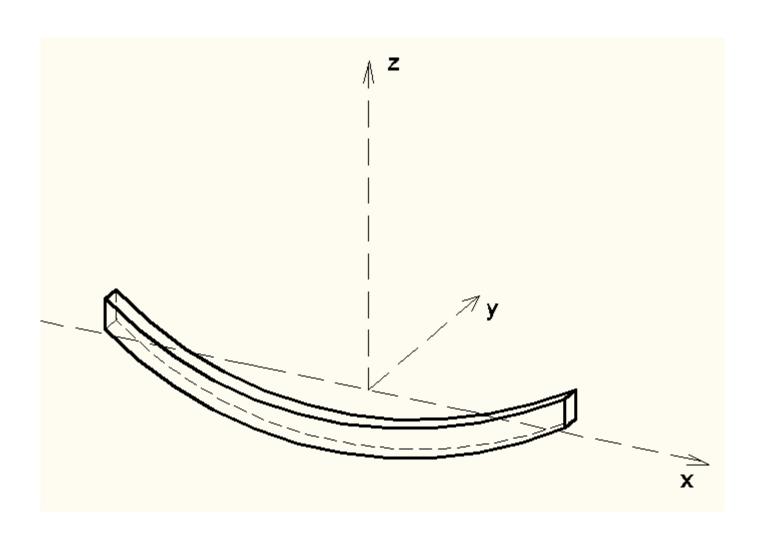
$$T = \int_{A} \left(\tau_z \ y \ - \tau_y \ z \right) dA$$

MOMENTO FLETOR (My)

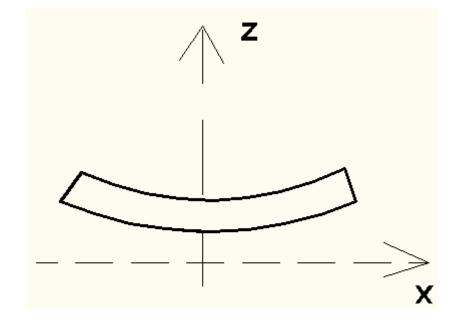


$$M_y = \int_A \sigma \cdot z \, dA$$

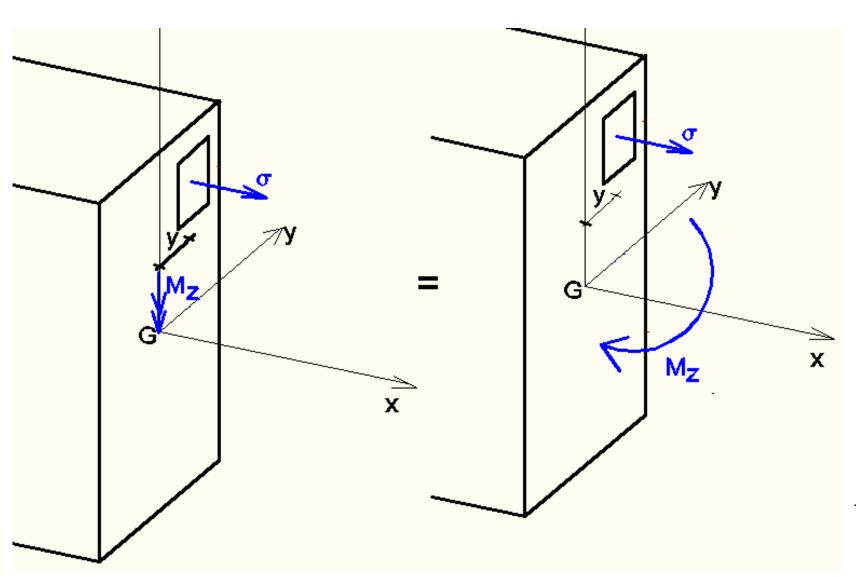
MOMENTO FLETOR (M_y)



Curvatura em torno de y

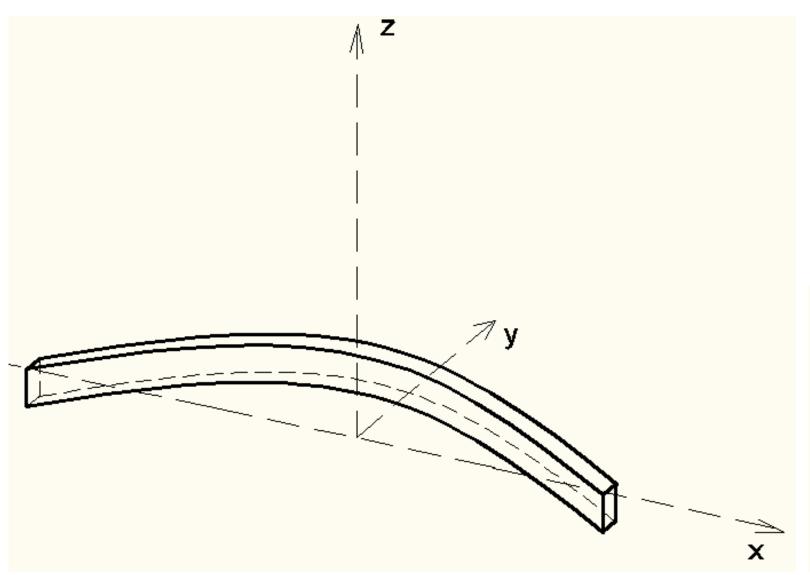


MOMENTO FLETOR (M_z)

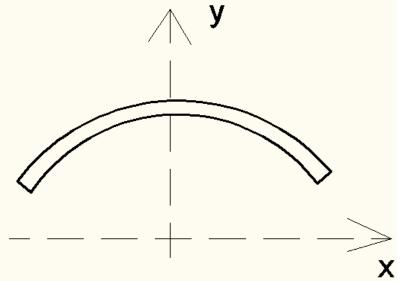


$$M_z = \int_{A} \sigma \cdot y \ dA$$

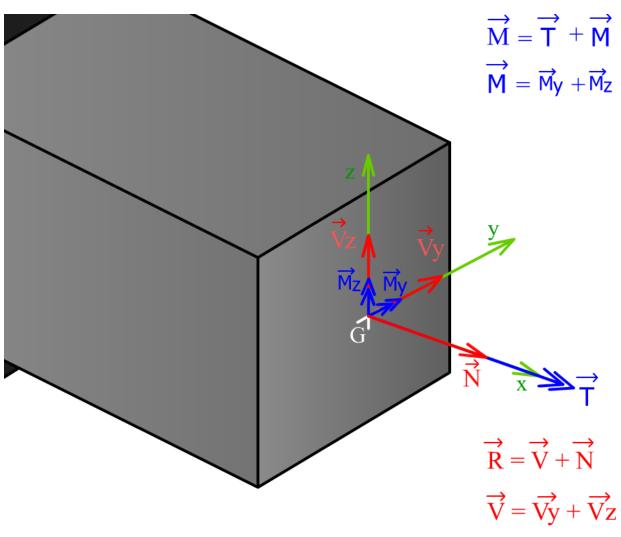
MOMENTO FLETOR (M_z)



Curvatura em torno de z



TOTAL DE ESFORÇOS (6)



Laboratório de Mecânica Computacional da EPUSP. Todos os direitos reservados.

$$N = \int_{A} \sigma \, dA$$

$$V_{y} = \int_{A} \tau_{y} \, dA$$

$$V_{z} = \int_{A} \tau_{z} \, dA$$

$$M_{z} = \int_{A} \sigma \cdot y \, dA$$

$$M_{y} = \int_{A} \sigma \cdot z \, dA$$

$$T = \int_{A} (\tau_{z} y - \tau_{y} z) \, dA$$