Multi-joint Equilibrium-Point/ Virtual Trajectory Control

2.183/2.184

Discrete Reaching

- Two unimpaired human subjects reaching to visual targets in a horizontal plane
- Repeatable kinematic behavior
- Largely straight paths

T. Flash (1987) The Control of Hand Equilibrium Trajectories in Multi-Joint Arm Movements. Biological Cybernetics 57:257-274

Two-joint Dynamic Model

- Model the skeleton as a configuration-dependent inertia driven by torque
 - No gravity
 - No friction

 $\mathbf{I}(\boldsymbol{\theta})\dot{\boldsymbol{\omega}} + \mathbf{C}(\boldsymbol{\theta},\boldsymbol{\omega})\boldsymbol{\omega} = \boldsymbol{\tau}_{actuator}$

- **θ**: joint angles, a.k.a. configuration variables, generalized coordinates
- $\boldsymbol{\omega}$: generalized velocities, joint angular velocities
- T: joint torques, a.k.a. generalized forces
- I: configuration-dependent inertia
- **C**: inertial coupling (Coriolis & centrifugal accelerations)
- K: stiffness
- **B**: damping

$$\boldsymbol{\tau}_{actuator} = \mathbf{K} (\boldsymbol{\theta}_o - \boldsymbol{\theta}) - \mathbf{B} \boldsymbol{\omega}$$

- Model neuromuscular torque generation as a two-dimensional spring and damper
 - Spring between actual and virtual configuration
 - Damper to ground
 - More on this later

Calculation Details

T2+

- R: real data
- E: equilibrium-point (virtual trajectory)
- E derived by "backcalculating" using the model

*** T6

Model Performance

- Trajectory details
 - Tangential speed resembles single-joint observations
 - Smooth "bell-shape", single peak
 - Actual trajectory (A) lags equilibrium point (E)
 - E derived by "back-calculating" using the model

Model Competence

- Reproduces
 - Difference between "out" and "back"
 - More pronounced curvature closer to chest
 - Radial paths straighter
 - Lateral paths "s" shaped
 - R: real
 - S: simulated
 - E: equilibrium point

 T_2

Model Competence (continued)

- Model works at different speeds
 - I: more than 0.8 s
 - II: 0.5 to 0.8 s
 - III: 0.4 to 0.5 s
 - E and F overlay speed profiles of slow (dashed) and fast (solid) moves

Model Competence (continued)

4

More on Model Competence

Fig. 11. Comparisons between simulated (S) and measured (R) 0.4 s trajectories. Upper part of figure: speed profiles. Lower half: hand paths. For the movement from T_3 to T_6 , $G_t = 5.625$, $G_s = 3.75$, $G_e = 2.5$, $\varrho = 0.55$. For the movement from T_1 to T_4 , $G_t = 3.5$, $G_s = 5.0$, $G_e = 1.0$, $\varrho = 0.5$

Two-joint Impedance

- Stiffness is directional
 - Real-valued, symmetric, positive-definite matrix
 - Represented by an ellipse
- Stiffness varies with hand location but ...
 - Stiffness is (approximately) constant in joint coordinates
- Damping is unknown, assumed proportional to stiffness
 - Consistent with a single time-constant characterizing neuromuscular dynamics

