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Preface

Control and automation in its broadest sense plays a fundamental role in
process industries. Control assures stability of technologies, disturbance at-
tenuation, safety of equipment and environment as well as optimal process
operation from economic point of view. This book intends to present modern
automatic control methods and their applications in process control in pro-
cess industries. The processes studied mainly involve mass and heat transfer
processes and chemical reactors.

It is assumed that the reader has already a basic knowledge about con-
trolled processes and about differential and integral calculus as well as about
matrix algebra. Automatic control problems involve mathematics more than it
is usual in other engineering disciplines. The book treats problems in a similar
way as it is in mathematics. The problem is formulated at first, then the the-
orem is stated. Only necessary conditions are usually proved and sufficiency
is left aside as it follows from the physical nature of the problem solved. This
helps to follow the engineering character of problems.

The intended audience of this book includes graduate students but can
also be of interest to practising engineers or applied scientists.

Organisation of the book follows the requirement of presentation of the
process control algorithms that take into account changes of static and dy-
namic properties of processes. There are several possibilities to capture these
changes. As the control objects in process industries are mainly nonlinear and
continuous-time, the first possibility is to use nonlinear mathematical models
in the form of partial differential equations, or after some simplifications, non-
linear differential equations. Usage of these models in control is computation-
ally very demanding. Therefore, it is suitable to use robust control methods
based on linearised models with uncertainties. However, strong nonlineari-
ties can decrease performance of robust control methods and adaptive control
algorithms can possibly be used.

The book presents process control using self-tuning (ST) controllers based
on linear models. There are several reasons for their use. ST controllers can
take into account changes of operating regimes of nonlinear processes as well as
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changes in physical process parameters. These changes can be caused by ageing
or wearing of materials, etc. Finally, ST controllers can eliminate unmeasured
disturbances, process noise, and unmodelled dynamic properties of processes.

The last chapter of the book that discusses adaptive control makes use
of all previous parts. Here, discrete and continuous-time ST control of singl-
evariable and multivariable processes is investigated. For its implementation
it is necessary to have in disposition an algorithm of recursive identification
that provides an up-to-date model of the controlled process. This model is
then used in feedback process control based on either explicit or implicit pole
placement methods.

A basic requirement for a successful control is to have a suitable model
for control. It is known that the process design in process industries involves
nonlinear models with states evolving in space and time. This corresponds to
models described by partial differential equations. Automatic control based
such models is very difficult as it requires additional capacity of control com-
puters and can be used only in some special cases. Self-tuning control requires
linear models only described by ordinary differential equations of low order.
This is caused by the fact that higher order models can cause singularities in
calculation of the control law.

The first chapter of the book explains basic concepts that can be encoun-
tered in process control.

The second chapter describes principles of process modelling. Some princi-
pal models as a packed absorption column, a distillation column, and a chem-
ical reactor are developed. Mathematical model of a plug-flow reactor serves
for explanation of transport time delay that together with dynamic time delay
forms a basic phenomenon in continuous-time process models. Description of
specific process models is accompanied by assumptions when the models in
the form of ordinary differential equations can be valid. Finally, general pro-
cess models are explained together with the method of linearisation and the
notion of systems and processes.

The third chapter explains briefly the use of the Laplace transform in
process modelling. State-space process models obtained in the previous chap-
ter are analysed. A concept of state is defined and the Lyapunov stability
of continuous-time processes is investigated. The physical interpretation of
theoretical facts is explained on a model of a U-tube. Conditions of control-
lability and observability are applied to a continuously stirred tank reactor.
The state-space process models obtained from material and heat balances are
transformed into input-output models for the purposes of identification and
control design.

The aim of the fourth chapter on dynamic behaviour of processes is to
show responses of processes to deterministic and stochastic inputs. Computer
simulations explain how Euler and Runge-Kutta methods for integration of
differential equations can be used. Examples include MATLAB/Simulink, C,
and BASIC implementations. Process examples in this chapter demonstrate
differences between original nonlinear and linearised models. The part dealing
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with stochastic characteristics explains random variables and processes, the
definition of the white noise and others needed in state observation and in
stochastic control.

Direct digital process control that constitutes a part of discrete-time adap-
tive control needs discrete-time process models. Therefore, the fifth chapter
deals with the Z-transform, conversion between continuous-time and sampled-
data processes. Also discussed are stability, controllability, observability, and
basic properties of discrete-time systems.

Both adaptive and non-adaptive control methods are usually based on a
mathematical model of a process. The sixth chapter is divided into two parts.
In the first one identification of process models is based on their response to
the step change on input. The second part deals in more detail with recursive
least-squares (RLS) methods. Although primarily developed for discrete-time
models, it is shown how to use it also for continuous-time models. The RLS
method described in the book has been in use for more than 20 years at the
authors place. Here we describe its implementation in MATLAB/Simulink
environment as a part of the IDTOOL Toolbox available for free in the Internet
(see the web page of the book). IDTOOL includes both discrete-time and
continuous-time process identification.

The aim of the seventh chapter is to show the basic feedback control con-
figuration, open and closed-loop issues, steady state behaviour and control
performance indices. The second part deals with the mostly used controllers
in practise - PID controllers. Several problems solved heuristically with PID
controllers are then more rigorously handled in next chapters dealing with
optimal and predictive control.

The most important part of the book covers design of feedback controllers
from the pole-placement point of view. Optimal control follows from the prin-
ciple of minimum and from dynamic programming. At first, the problem of
pole-placement is investigated in a detail based on state-space process models.
The controller is then designed from a combination of a feedback and a state
observer. This controller can then also be interpreted from input-output point
of view and results in polynomial pole-placement controller design. The Youla-
Kučera parametrisation is used to find all stabilising controllers for a given pro-
cess. Also, its dual parametrisation is used to find all processes stabilised by a
given controller. The Youla-Kučera parametrisation makes it possible to unify
control design for both continuous-time and discrete-time systems using the
polynomial approach. This is the reason why mostly continuous-time systems
are studied. Dynamic programming is explained for both continuous-time and
discrete-time systems. The part devoted to the Youla-Kučera parametrisation
treats also finite time control – dead-beat (DB) that describes a discrete-
time control of a continuous-time process that cannot be realised using a
continuous-time controller. State-space quadratically (Q) optimal control of
linear (L) process models, i.e. LQ control with observer and its polynomial
equivalent are interpreted as the pole-placement problem. Similarly, LQ con-
trol with the Kalman filter (LQG) or H2 control can also be interpreted as the
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pole-placement control problem. An attention is paid to integral properties of
controllers and it is shown that optimal controllers are often of the form of
modified PID controllers. The examples in the chapter make a heavy use of
the Polynomial Toolbox for MATLAB (http://www.polyx.com).

The chapter nine extends the optimal control design with predictive con-
trol approach. It is explained why this approach predetermines discrete-time
process control. At the beginning, the basic principles and ingredients of pre-
dictive control are explained. The derivation of the predictors and controllers
is then shown for both input-output and state-space process models. The
chapter also deals with incorporation of constraints on input variables and
discusses the issue of stability and stabilisability of predictive closed-loop sys-
tem. Finally, the chapter concludes with both singlevariable and multivariable
tuning and show examples of applications in process control.

The last chapter combines results of previous chapters in adaptive control.
We prefer to use the so-called explicit, or self-tuning approach to adaptive
control where process parameters are estimated on-line using recursive least-
squares methods. Then, at each sampling instant, the available model is used
in control design.

The book has an ambition to integrate interpretations of continuous-time
and discrete-time control, deterministic and stochastic control with incorpo-
ration of sets of all stabilising controllers. Notations used in separate parts of
the books have been adapted to this aim.

Some of the programs and figures of the examples in the book marked in
the margin are freely available at the web page of the book:www
http://www.kirp.chtf.stuba.sk/~fikar/books/mic/.

The program sources are for MATLAB with toolboxes Simulink, Control
System Toolbox, Polynomial Toolbox (http://www.polyx.cz), Multipara-
metric Toolbox (MPT, http://control.ee.ethz.ch/~mpt) and, IDTOOL
(from the web site). The examples are verified in both simulation and real-
time test cases using Real-time MATLAB toolbox and the industrial system
SIMATIC STEP7.

Each chapter includes bibliographic references related to the text. Besides
the classical material on process dynamics or feedback control, there are some
parts of the book that follow from the journal publications of the authors.

http://www.polyx.com
http://www.kirp.chtf.stuba.sk/~fikar/books/mic/
http://www.polyx.cz
http://control.ee.ethz.ch/~mpt
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1

Introduction

This chapter serves as an introduction to process control. The aim is to show
the necessity of process control and to emphasize its importance in industries
and in design of modern technologies. Basic terms and problems of process
control and modelling are explained on a simple example of heat exchanger
control. Finally, a short history of development in process control is given.

1.1 Topics in Process Control

Continuous technologies consist of unit processes, that are rationally arranged
and connected in such a way that the desired product is obtained effectively
with certain inputs.

The most important technological requirement is safety. The technology
must satisfy the desired quantity and quality of the final product, environmen-
tal claims, various technical and operational constraints, market requirements,
etc. The operational conditions follow from minimum price and maximum
profit.

Control system is the part of technology and in the framework of the
whole technology which is a guarantee for satisfaction of the above given
requirements. Control systems in the whole consist of technical devices and
human factor. Control systems must satisfy

• disturbance attenuation,
• stability guarantee,
• optimal process operation.

Control is the purposeful influence on a controlled object (process) that en-
sures the fulfillment of the required objectives. In order to satisfy the safety
and optimal operation of the technology and to meet product specifications,
technical, and other constraints, tasks and problems of control must be divided
into a hierarchy of subtasks and subproblems with control of unit processes
at the lowest level.
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The lowest control level may realise continuous-time control of some mea-
sured signals, for example to hold temperature at constant value. The second
control level may perform static optimisation of the process so that optimal
values of some signals (flows, temperatures) are calculated in certain time in-
stants. These will be set and remain constant till the next optimisation instant.
The optimisation may also be performed continuously. As the unit processes
are connected, their operation is coordinated at the third level. The highest
level is influenced by market, resources, etc.

The fundamental way of control on the lowest level is feedback control.
Information about process output is used to calculate control (manipulated)
signal, i.e. process output is fed back to process input.

There are several other methods of control, for example feed-forward. Feed-
forward control is a kind of control where the effect of control is not compared
with the desired result. In this case we speak about open-loop control. If the
feedback exists, closed-loop system results.

Process design of “modern” technologies is crucial for successful control.
The design must be developed in such a way, that a “sufficiently large number
of degrees of freedom” exists for the purpose of control. The control system
must have the ability to operate the whole technology or the unit process in
the required technology regime. The processes should be “well” controllable
and the control system should have “good” information about the process, i.e.
the design phase of the process should include a selection of suitable measure-
ments. The use of computers in the process control enables to choose optimal
structure of the technology based on claims formulated in advance. Projec-
tants of “modern” technologies should be able to include all aspects of control
in the design phase.

Experience from control praxis of “modern” technologies confirms the im-
portance of assumptions about dynamical behaviour of processes and more
complex control systems. The control centre of every “modern” technology
is a place, where all information about operation is collected and where the
operators have contact with technology (through keyboards and monitors of
control computers) and are able to correct and interfere with technology. A
good knowledge of technology and process control is a necessary assumption
of qualified human influence of technology through control computers in order
to achieve optimal performance.

All of our further considerations will be based upon mathematical models
of processes. These models can be constructed from a physical and chemical
nature of processes or can be abstract. The investigation of dynamical prop-
erties of processes as well as whole control systems gives rise to a need to look
for effective means of differential and difference equation solutions. We will
carefully examine dynamical properties of open and closed-loop systems. A
fundamental part of each procedure for effective control design is the process
identification as the real systems and their physical and chemical parameters
are usually not known perfectly. We will give procedures for design of control
algorithms that ensure effective and safe operation.
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One of the ways to secure a high quality process control is to apply adap-
tive control laws. Adaptive control is characterised by gaining information
about unknown process and by using the information about on-line changes
to process control laws.

1.2 An Example of Process Control

We will now demonstrate problems of process dynamics and control on a sim-
ple example. The aim is to show some basic principles and problems connected
with process control.

1.2.1 Process

Let us assume a heat exchanger shown in Fig. 1.1. Inflow to the exchanger
is a liquid with a flow rate q and temperature ϑv. The task is to heat this
liquid to a higher temperature ϑw. We assume that the heat flow from the
heat source is independent from the liquid temperature and only dependent
from the heat input ω. We further assume ideal mixing of the heated liquid
and no heat loss. The accumulation ability of the exchanger walls is zero, the
exchanger holdup, input and output flow rates, liquid density, and specific
heat capacity of the liquid are constant. The temperature on the outlet of the
exchanger ϑ is equal to the temperature inside the exchanger. The exchanger
that is correctly designed has the temperature ϑ equal to ϑw.

The process of heat transfer realised in the heat exchanger is defined as
our controlled system.

ϑ

vϑ

V

ϑ
q

ω

q

Fig. 1.1. A simple heat exchanger

1.2.2 Steady-State

The inlet temperature ϑv and the heat input ω are input variables of the pro-
cess. The outlet temperature ϑ is process output variable. It is quite clear that
every change of input variables ϑv, ω results in a change of output variable ϑ.
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From this fact follows direction of information transfer of the process. The
process is in the steady state if the input and output variables remain constant
in time t.

The heat balance in the steady state is of the form

qρcp(ϑs − ϑs
v) = ωs (1.1)

where

ϑs is the output liquid temperature in the steady state,
ϑs

v is the input liquid temperature in the steady state,
ωs is the heat input in the steady state,
q is volume flow rate of the liquid,
ρ is liquid density,
cp is specific heat capacity of the liquid.

ϑs
v is the desired input temperature. For the suitable exchanger design, the

output temperature in the steady state ϑs should be equal to the desired
temperature ϑw. So the following equation follows

qρcp(ϑw − ϑs
v) = ωs (1.2)

It is clear, that if the input process variable ωs is constant and if the
process conditions change, the temperature ϑ would deviate from ϑw. The
change of operational conditions means in our case the change in ϑv. The input
temperature ϑv is then called disturbance variable and ϑw setpoint variable.

The heat exchanger should be designed in such a way that it can be possible
to change the heat input so that the temperature ϑ would be equal to ϑw or
be in its neighbourhood for all operational conditions of the process.

1.2.3 Process Control

Control of the heat transfer process in our case means to influence the process
so that the output temperature ϑ will be kept close to ϑw. This influence is
realised with changes in ω which is called manipulated variable. If there is a
deviation ϑ from ϑw, it is necessary to adjust ω to achieve smaller deviation.
This activity may be realised by a human operator and is based on the ob-
servation of the temperature ϑ. Therefore, a thermometer must be placed on
the outlet of the exchanger. However, a human is not capable of high qual-
ity control. The task of the change of ω based on error between ϑ and ϑw

can be realised automatically by some device. Such control method is called
automatic control.

1.2.4 Dynamical Properties of the Process

In the case that the control is realised automatically then it is necessary to
determine values of ω for each possible situation in advance. To make control
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decision in advance, the changes of ϑ as the result of changes in ω and ϑv

must be known. The requirement of the knowledge about process response to
changes of input variables is equivalent to knowledge about dynamical prop-
erties of the process, i.e. description of the process in unsteady state. The heat
balance for the heat transfer process for a very short time Δt converging to
zero is given by the equation

(qρcpϑvdt+ ωdt) − (qρcpϑdt) = (V ρcpdϑ) (1.3)

where V is the volume of the liquid in the exchanger. The equation (1.3) can
be expressed in an abstract way as

(inlet heat) − (outlet heat) = (heat accumulation)

The dynamical properties of the heat exchanger given in Fig. 1.1 are given
by the differential equation

V ρcp
dϑ
dt

+ qρcpϑ = qρcpϑv + ω (1.4)

The heat balance in the steady state (1.1) may be derived from (1.4) in the
case that dϑ

dt = 0. The use of (1.4) will be given later.

1.2.5 Feedback Process Control

As it was given above, process control may by realised either by human or au-
tomatically via control device. The control device performs the control actions
practically in the same way as a human operator, but it is described exactly
according to control law. The control device specified for the heat exchanger
utilises information about the temperature ϑ and the desired temperature ϑw

for the calculation of the heat input ω from formula formulated in advance.
The difference between ϑw and ϑ is defined as control error. It is clear that we
are trying to minimise the control error. The task is to determine the feedback
control law to remove the control error optimally according to some criterion.
The control law specifies the structure of the feedback controller as well as its
properties if the structure is given.

The considerations above lead us to controller design that will change the
heat input proportionally to the control error. This control law can be written
as

ω(t) = qρcp(ϑw − ϑs
v) + ZR(ϑw − ϑ(t)) (1.5)

We speak about proportional control and proportional controller. ZR is called
the proportional gain. The proportional controller holds the heat input corre-
sponding to the steady state as long as the temperature ϑ is equal to desired
ϑw. The deviation between ϑ and ϑw results in nonzero control error and the
controller changes the heat input proportionally to this error. If the control
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error has a plus sign, i.e. ϑ is greater as ϑw, the controller decreases heat input
ω. In the opposite case, the heat input increases. This phenomenon is called
negative feedback. The output signal of the process ϑ brings to the controller
information about the process and is further transmitted via controller to the
process input. Such kind of control is called feedback control. The quality of
feedback control of the proportional controller may be influenced by the choice
of controller gain ZR. The equation (1.5) can be with the help of (1.2) written
as

ω(t) = ωs + ZR(ϑw − ϑ(t)) (1.6)

1.2.6 Transient Performance of Feedback Control

Putting the equation (1.6) into (1.4) we get

V ρcp
dϑ
dt

+ (qρcp + ZR)ϑ = qρcpϑv + ZRϑw + ωs (1.7)

This equation can be arranged as

V

q

dϑ
dt

+
qρcp + ZR

qρcp
ϑ = ϑv +

ZR

qρcp
ϑw +

1
qρcp

ωs (1.8)

The variable V/q = T1 has dimension of time and is called time constant of
the heat exchanger. It is equal to time in which the exchanger is filled with
liquid with flow rate q. We have assumed that the inlet temperature ϑv is
a function of time t. For steady state ϑs

v is the input heat given as ωs. We
can determine the behaviour of ϑ(t) if ϑv, ϑw change. Let us assume that the
process is controlled with feedback controller and is in the steady state given
by values of ϑs

v, ω
s, ϑs. In some time denoted by zero, we change the inlet

temperature with the increment Δϑv. Idealised change of this temperature
may by expressed mathematically as

ϑv(t) =
{
ϑs

v + Δϑv t ≥ 0
ϑs

v t < 0 (1.9)

To know the response of the process with the feedback proportional con-
troller for the step change of the inlet temperature means to know the solution
of the differential equation (1.8). The process is at t = 0 in the steady state
and the initial condition is

ϑ(0) = ϑw (1.10)

The solution of (1.8) if (1.9), (1.10) are valid is given as

ϑ(t) = ϑw + Δϑv
qρcp

qρcp + ZR

(
1 − e−

qρcp+ZR
qρcp

q
V t
)

(1.11)
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The response of the heat transfer process controlled with the proportional
controller for the step change of inlet temperature ϑv given by Eq. (1.9) is
shown in Fig. 1.2 for several values of the controller gain ZR. The investigation
of the figure shows some important facts. The outlet temperature ϑ converges
to some new steady state for t → ∞. If the proportional controller is used,
steady state error results. This means that there exists a difference between
ϑw and ϑ at the time t = ∞. The steady state error is the largest if ZR = 0. If
the controller gain ZR increases, steady state error decreases. If ZR = ∞, then
the steady state error is zero. Therefore our first intention would be to choose
the largest possible ZR. However, this would break some other closed-loop
properties as will be shown later.

ϑw+ Δϑv

∞ZR =

V/q

t

ZR = 0

0

ϑw

ϑ

0,35=ZR

2= ρq  cZR

ρq  cp

p

Fig. 1.2. Response of the process controlled with proportional feedback controller
for a step change of disturbance variable ϑv

If the disturbance variable ϑv changes with time in the neighbourhood of its
steady state value, the choice of large ZR may cause large control deviations.
However, it is in our interest that the control deviations are to be kept under
some limits. Therefore, this kind of disturbance requires rather smaller values
of controller gain ZR and its choice is given as a compromise between these
two requirements.

The situation may be improved if the controller consists of a proportional
and integral part. Such a controller may remove the steady state error even
with smaller gain.

It can be seen from (1.11) that ϑ(t) cannot grow beyond limits. We note
however that the controlled system was described by the first order differential
equation and was controlled with a proportional controller.

We can make the process model more realistic, for example, assuming
the accumulation ability of its walls or dynamical properties of temperature
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measurement device. The model and the feedback control loop as well will
then be described by a higher order differential equation. The solution of
such a differential equation for similar conditions as in (1.11) can result in ϑ
growing into infinity. This case represents unstable response of the closed loop
system. The problem of stability is usually included into the general problem
of control quality.

1.2.7 Block Diagram

In the previous sections the principal problems of feedback control were dis-
cussed. We have not dealt with technical issues of the feedback control imple-
mentation.

Consider again feedback control of the heat exchanger in Fig. 1.1. The
necessary assumptions are i) to measure the outlet temperature ϑ and ii) the
possibility of change of the heat input ω. We will assume that the heat input
is realised by an electrical heater.

vϑ

ϑ
q

q

(t)

(t)ω

wϑ

m (t)u

m(t)
Transmitter

Heater

Thermocouple

Temperature
controller

Fig. 1.3. The scheme of the feedback control for the heat exchanger

If the feedback control law is given then the feedback control of the heat
exchanger may be realised as shown in Fig. 1.3. This scheme may be simplified
for needs of analysis. Parts of the scheme will be depicted as blocks. The block
scheme in Fig. 1.3 is shown in Fig. 1.4. The scheme gives physical interconnec-
tions and the information flow between the parts of the closed loop system.
The signals represent physical variables as for example ϑ or instrumentation
signals as for example m. Each block has its own input and output signal.

The outlet temperature is measured with a thermocouple. The thermo-
couple with its transmitter generates a voltage signal corresponding to the
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measured temperature. The dashed block represents the entire temperature
controller and m(t) is the input to the controller. The controller realises three
activities:

1. the desired temperature ϑw is transformed into voltage signal mw,
2. the control error is calculated as the difference between mw and m(t),
3. the control signal mu is calculated from the control law.

All three activities are realised within the controller. The controller output
mu(t) in volts is the input to the electric heater producing the corresponding
heat input ω(t). The properties of each block in Fig. 1.4 are described by
algebraic or differential equations.

HeaterConverter

Controller

[V]

mw

[V]

ϑw

[K] [V]

um (t) ω (t)

[W]

ϑ (t)

[K]

[V]

m(t)

−

− m(t)mw
Heat

exchanger
Control law
realisation

v
[K]
ϑ (t)

Thermocouple
transmitter

Fig. 1.4. The block scheme of the feedback control of the heat exchanger

Block schemes are usually simplified for the purpose of the investigation
of control loops. The simplified block scheme consists of 2 blocks: control
block and controlled object. Each block of the detailed block scheme must
be included into one of these two blocks. Usually the simplified control block
realizes the control law.

1.2.8 Feedforward Control

We can also consider another kind of the heat exchanger control when the
disturbance variable ϑv is measured and used for the calculation of the heat
input ω. This is called feedforward control. The effect of control is not com-
pared with the expected result. In some cases of process control it is necessary
and/or suitable to use a combination of feedforward and feedback control.
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1.3 Development of Process Control

The history of automatic control began about 1788. At that time J. Watt
developed a revolution controller for the steam engine. An analytic expression
of the influence between controller and controlled object was presented by
Maxwell in 1868. Correct mathematical interpretation of automatic control is
given in the works of Stodola in 1893 and 1894. E. Routh in 1877 and Hurwitz
in 1895 published works in which stability of automatic control and stability
criteria were dealt with. An important contribution to the stability theory was
presented by Nyquist (1932). The works of Oppelt (1939) and other authors
showed that automatic control was established as an independent scientific
branch.

Rapid development of discrete time control began in the time after the
second world war. In continuous time control, the theory of transformation was
used. The transformation of sequences defined as Z-transform was introduced
independently by Cypkin (1950), Ragazzini and Zadeh (1952).

A very important step in the development of automatic control was the
state-space theory, first mentioned in the works of mathematicians as Bellman
(1957) and Pontryagin (1962). An essential contribution to state-space meth-
ods belongs to Kalman (1960). He showed that the linear-quadratic control
problem may be reduced to a solution of the Riccati equation. Paralel to the
optimal control, the stochastic theory was being developed.

It was shown that automatic control problems have an algebraic character
and the solutions were found by the use of polynomial methods (Rosenbrock,
1970).

In the fifties, the idea of adaptive control appeared in journals. The de-
velopment of adaptive control was influenced by the theory of dual control
(Feldbaum, 1965), parameter estimation (Eykhoff, 1974), and recursive algo-
rithms for adaptive control (Cypkin, 1971).

The above given survey of development in automatic control also influ-
enced development in process control. Before 1940, processes in the chemical
industry and in industries with similar processes, were controlled practically
only manually. If some controller were used, these were only very simple. The
technologies were built with large tanks between processes in order to atten-
uate the influence of disturbances.

In the fifties, it was often uneconomical and sometimes also impossible
to build technologies without automatic control as the capacities were larger
and the demand of quality increased. The controllers used did not consider
the complexity and dynamics of controlled processes.

In 1960-s the process control design began to take into considerations dy-
namical properties and bindings between processes. The process control used
knowledge applied from astronautics and electrotechnics.

The seventies brought the demands on higher quality of control systems
and integrated process and control design.
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In the whole process control development, knowledge of processes and their
modelling played an important role.

The development of process control was also influenced by the develop-
ment of computers. The first ideas about the use of digital computers as
a part of control system emerged in about 1950. However, computers were
rather expensive and unreliable to use in process control. The first use was in
supervisory control. The problem was to find the optimal operation conditions
in the sense of static optimisation and the mathematical models of processes
were developed to solve this task. In the sixties, the continuous control devices
began to be replaced with digital equipment, the so called direct digital pro-
cess control. The next step was an introduction of mini and microcomputers
in the seventies as these were very cheap and also small applications could be
equipped with them. Nowadays, the computer control is decisive for quality
and effectivity of all modern technology.
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Mathematical Modelling of Processes

This chapter explains general techniques that are used in the development of
mathematical models of processes. It contains mathematical models of liquid
storage systems, heat and mass transfer systems, chemical, and biochemical
reactors. The remainder of the chapter explains the meaning of systems and
their classification.

2.1 General Principles of Modelling

Schemes and block schemes of processes help to understand their qualitative
behaviour. To express quantitative properties, mathematical descriptions are
used. These descriptions are called mathematical models. Mathematical mod-
els are abstractions of real processes. They give a possibility to characterise
behaviour of processes if their inputs are known. The validity range of models
determines situations when models may be used. Models are used for control
of continuous processes, investigation of process dynamical properties, optimal
process design, or for the calculation of optimal process working conditions.

A process is always tied to an apparatus (heat exchangers, reactors, distil-
lation columns, etc.) in which it takes place. Every process is determined with
its physical and chemical nature that expresses its mass and energy bounds.
Investigation of any typical process leads to the development of its mathe-
matical model. This includes basic equations, variables and description of its
static and dynamic behaviour. Dynamical model is important for control pur-
poses. By the construction of mathematical models of processes it is necessary
to know the problem of investigation and it is important to understand the
investigated phenomenon thoroughly. If computer control is to be designed, a
developed mathematical model should lead to the simplest control algorithm.
If the basic use of a process model is to analyse the different process conditions
including safe operation, a more complex and detailed model is needed. If a
model is used in a computer simulation, it should at least include that part
of the process that influences the process dynamics considerably.
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Mathematical models can be divided into three groups, depending on how
they are obtained:

Theoretical models developed using chemical and physical principles.
Empirical models obtained from mathematical analysis of process data.
Empirical-theoretical models obtained as a combination of theoretical and

empirical approach to model design.

From the process operation point of view, processes can be divided into
continuous and batch. It is clear that this fact must be considered in the design
of mathematical models.

Theoretical models are derived from mass and energy balances. The bal-
ances in an unsteady-state are used to obtain dynamical models. Mass bal-
ances can be specified either in total mass of the system or in component
balances. Variables expressing quantitative behaviour of processes are natural
state variables. Changes of state variables are given by state balance equa-
tions. Dynamical mathematical models of processes are described by differen-
tial equations. Some processes are processes with distributed parameters and
are described by partial differential equations (p.d.e). These usually contain
first partial derivatives with respect to time and space variables and second
partial derivatives with respect to space variables. However, the most impor-
tant are dependencies of variables on one space variable. The first partial
derivatives with respect to space variables show an existence of transport
while the second derivatives follow from heat transfer, mass transfer resulting
from molecular diffusion, etc. If ideal mixing is assumed, the modelled process
does not contain changes of variables in space and its mathematical model is
described by ordinary differential equations (o.d.e). Such models are referred
to as lumped parameter type.

Mass balances for lumped parameter processes in an unsteady-state are
given by the law of mass conservation and can be expressed as

d(ρV )
dt

=
m∑

i=1

ρiqi −
r∑

j=1

ρqj (2.1)

where

ρ, ρi - density,
V - volume,
qi, qj - volume flow rates,
m - number of inlet flows,
r - number of outlet flows.

Component mass balance of the k-th component can be expressed as

d(ckV )
dt

=
m∑

i=1

ckiqi −
r∑

j=1

ckqj + rkV (2.2)

where
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ck, cki - molar concentration,
V - volume,
qi, qj - volume flow rates,
m - number of inlet flows,
r - number of outlet flows,
rk - rate of reaction per unit volume for k-th component.

Energy balances follow the general law of energy conservation and can be
written as

d(ρV cpϑ)
dt

=
m∑

i=1

ρiqicpiϑi −
r∑

j=1

ρqjcpϑ+
s∑

l=1

Ql (2.3)

where

ρ, ρi - density,
V - volume,
qi, qj - volume flow rates,
cp, cpi - specific heat capacities,
ϑ, ϑi - temperatures,
Ql - heat per unit time,
m - number of inlet flows,
r - number of outlet flows,
s - number of heat sources and consumptions as well as heat brought in and

taken away not in inlet and outlet streams.

To use a mathematical model for process simulation we must ensure that
differential and algebraic equations describing the model give a unique rela-
tion among all inputs and outputs. This is equivalent to the requirement of
unique solution of a set of algebraic equations. This means that the number of
unknown variables must be equal to the number of independent model equa-
tions. In this connection, the term degree of freedom is introduced. Degree
of freedom Nv is defined as the difference between the total number of un-
specified inputs and outputs and the number of independent differential and
algebraic equations. The model must be defined such that

Nv = 0 (2.4)

Then the set of equations has a unique solution.
An approach to model design involves the finding of known constants and

fixed parameters following from equipment dimensions, constant physical and
chemical properties and so on. Next, it is necessary to specify the variables
that will be obtained through a solution of the model differential and algebraic
equations. Finally, it is necessary to specify the variables whose time behaviour
is given by the process environment.
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2.2 Examples of Dynamic Mathematical Models

In this section we present examples of mathematical models for liquid storage
systems, heat and mass transfer systems, chemical, and biochemical reactors.
Each example illustrates some typical properties of processes.

2.2.1 Liquid Storage Systems

Single-Tank Process

Let us examine a liquid storage system shown in Fig. 2.1. Input variable is
the inlet volumetric flow rate q0 and state variable the liquid height h. Mass
balance for this process yields

d(Fhρ)
dt

= q0ρ− q1ρ (2.5)

where

t - time variable,
h - height of liquid in the tank,
q0, q1 - inlet and outlet volumetric flow rates,
F - cross-sectional area of the tank,
ρ - liquid density.

q0

h

q1

Fig. 2.1. A liquid storage system

Assume that liquid density and cross-sectional area are constant, then

F
dh
dt

= q0 − q1 (2.6)

q0 is independent of the tank state and q1 depends on the liquid height in the
tank according to the relation

q1 = k1f1
√

2g
√
h (2.7)

where
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k1 - constant,
f1 - cross-sectional area of outflow opening,
g - acceleration gravity.

or

q1 = k11

√
h (2.8)

Substituting q1 from the equation (2.8) into (2.6) yields

dh
dt

=
q0
F

− k11

F

√
h (2.9)

Initial conditions can be arbitrary

h(0) = h0 (2.10)

The tank will be in a steady-state if

dh
dt

= 0 (2.11)

Let a steady-state be given by a constant flow rate qs
0. The liquid height

hs then follows from Eq. (2.9) and (2.11) and is given as

hs =
(qs

0)
2

(k11)2
(2.12)

Interacting Tank-in-Series Process

Consider the interacting tank-in-series process shown in Fig. 2.2. The process
input variable is the flow rate q0.

q0

h

q1

h

q2

1

2

Fig. 2.2. An interacting tank-in-series process

The process state variables are heights of liquid in tanks h1, h2. Mass
balance for the process yields
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d(F1h1ρ)
dt

= q0ρ− q1ρ (2.13)

d(F2h2ρ)
dt

= q1ρ− q2ρ (2.14)

where

t - time variable,
h1, h2 - heights of liquid in the first and second tanks,
q0 - inlet volumetric flow rate to the first tank,
q1 - inlet volumetric flow rate to the second tank,
q2 - outlet volumetric flow rate from the second tank,
F1, F2 - cross-sectional area of the tanks,
ρ - liquid density.

Assuming that ρ, F1, F2 are constant we can write

F1
dh1

dt
= q0 − q1 (2.15)

F2
dh2

dt
= q1 − q2 (2.16)

Inlet flow rate q0 is independent of tank states whereas q1 depends on the
difference between liquid heights

q1 = k1f1
√

2g
√
h1 − h2 (2.17)

where

k1 - constant,
f1 - cross-sectional area of the first tank outflow opening.

Outlet flow rate q2 depends on liquid height in the second tank

q2 = k2f2
√

2g
√
h2 (2.18)

where

k2 - constant,
f2 - cross-sectional area of the second tank outflow opening.

Equations (2.17) and (2.18) can then be written as

q1 = k11

√
h1 − h2 (2.19)

q2 = k22

√
h2 (2.20)

Substituting q1 from Eq. (2.19) and q2 from (2.20) into (2.15), (2.16) we
get

dh1

dt
=
q0
F1

− k11

F1

√
h1 − h2 (2.21)

dh2

dt
=
k11

F1

√
h1 − h2 −

k22

F2

√
h2 (2.22)
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with arbitrary initial conditions

h1(0) = h10 (2.23)
h2(0) = h20 (2.24)

The tanks will be in a steady-state if

dh1

dt
= 0 (2.25)

dh2

dt
= 0 (2.26)

Assume a steady-state flow rate qs
0. The steady-state liquid levels in both

tanks can be calculated from Eqs (2.21), (2.22), (2.25), (2.26) as

hs
1 = (qs

0)
2

(
1

(k11)2
+

1
(k22)2

)
(2.27)

hs
2 = (qs

0)
2 1
(k22)2

(2.28)

2.2.2 Heat Transfer Processes

Heat Exchanger

Consider a heat exchanger for the heating of liquids shown in Fig. 2.3. The
input variables are the temperatures ϑv, ϑp. The state variable is temperature
ϑ.

steam

condensed steam

V

c

q

ϑ

ϑ

ρ

ϑ

p

v

p

q
ϑ

Fig. 2.3. Continuous stirred tank heated by steam in jacket
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Assume that the wall accumulation ability is small compared to the liquid
accumulation ability and can be neglected. Further assume spatially constant
temperature inside of the tank as the heater is well mixed, constant liquid flow
rate, density, and heat capacity. Then the heat balance equation becomes

V ρcp
dϑ
dt

= qρcpϑv − qρcpϑ+ αF (ϑp − ϑ) (2.29)

where

t - time variable,
ϑ - temperature inside of the exchanger and in the outlet stream,
ϑv - temperature in the inlet stream,
ϑp - jacket temperature,
q - liquid volumetric flow rate,
ρ - liquid density,
V - volume of liquid in the tank,
cp - liquid specific heat capacity,
F - heat transfer area of walls,
α - heat transfer coefficient.

Equation (2.29) can be rearranged as

V ρcp
qρcp + αF

dϑ
dt

= −ϑ+
αF

qρcp + αF
ϑp +

qρcp
qρcp + αF

ϑv (2.30)

or as

T1
dϑ
dt

= −ϑ+ Z1ϑp + Z2ϑv (2.31)

where T1 =
V ρcp

qρcp + αF
, Z1 =

αF

qρcp + αF
, Z2 =

qρcp
qρcp + αF

. The initial con-

dition of Eq. (2.30) can be arbitrary

ϑ(0) = ϑ0 (2.32)

The heat exchanger will be in a steady-state if

dϑ
dt

= 0 (2.33)

Assume steady-state values of the input temperatures ϑs
p, ϑ

s
v. The steady-

state outlet temperature ϑs can be calculated from Eqs. (2.30), (2.33) as

ϑs =
αF

qρcp + αF
ϑs

p +
qρcp

qρcp + αF
ϑs

v (2.34)
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Series of Heat Exchangers

Consider a series of heat exchangers where a liquid is heated (Fig. 2.4). Assume
that heat flows from heat sources into liquid are independent from liquid
temperature. Further assume ideal liquid mixing and zero heat losses. We
neglect accumulation ability of exchangers walls. Hold-ups of exchangers as
well as flow rates, liquid specific heat capacity are constant.

Under these circumstances following heat balances result

V1ρcp
dϑ1

dt
= qρcpϑ0 − qρcpϑ1 + ω1

V2ρcp
dϑ2

dt
= qρcpϑ1 − qρcpϑ2 + ω2

...

Vnρcp
dϑn

dt
= qρcpϑn−1 − qρcpϑn + ωn

(2.35)

where

t - time variable,
ϑ1, . . . , ϑn - temperature inside of the heat exchangers,
ϑ0 - liquid temperature in the first tank inlet stream,
ω1, . . . , ωn - heat inputs,
q - liquid volumetric flow rate,
ρ - liquid density,
V1, . . . , Vn - volumes of liquid in the tanks,
cp - liquid specific heat capacity.

1ϑ

0ϑ

ω1 ω2

1ϑ

2ϑV2
V1

2ϑ n-1ϑ

Vn nϑ

nϑ

ωn

Fig. 2.4. Series of heat exchangers

The process input variables are heat inputs ωi and inlet temperature ϑ0.
The process state variables are temperatures ϑ1, . . . , ϑn and initial conditions
are arbitrary
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ϑ1(0) = ϑ10, . . . , ϑn(0) = ϑn0 (2.36)

The process will be in a steady-state if

dϑ1

dt
=

dϑ2

dt
= · · · =

dϑn

dt
= 0 (2.37)

Let the steady-state values of the process inputs ωi, ϑ0 be given. The steady-
state temperatures inside the exchangers are

ϑs
1 = ϑs

0 +
ωs

1

qρcp

ϑs
2 = ϑs

1 +
ωs

2

qρcp

...

ϑs
n = ϑs

n−1 +
ωs

n

qρcp

(2.38)

Double-Pipe Heat Exchanger

Figure 2.5 represents a single-pass, double-pipe steam-heated exchanger in
which a liquid in the inner tube is heated by condensing steam. The process
input variables are ϑp(t), ϑ(0, t). The process state variable is the temperature
ϑ(σ, t). We assume the steam temperature to be a function only of time, heat
transfer only between inner and outer tube, plug flow of the liquid and zero
heat capacity of the exchanger walls. We neglect heat conduction effects in
the direction of liquid flow. It is further assumed that liquid flow, density, and
specific heat capacity are constant.

Heat balance equation on the element of exchanger length dσ can be de-
rived according to Fig. 2.6

Fσdσρcp
∂ϑ

∂t
= qρcpϑ− qρcp

(
ϑ+

∂ϑ

∂σ
dσ

)
+ αFddσ(ϑp − ϑ) (2.39)

where

t - time variable,
σ - space variable,
ϑ = ϑ(σ, t) - liquid temperature in the inner tube,
ϑp = ϑp(t) - liquid temperature in the outer tube,
q - liquid volumetric flow rate in the inner tube,
ρ - liquid density in the inner tube,
α - heat transfer coefficient,
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L

δ δv

ϑp
s

ϑs

dσ σσ

σ

Fig. 2.5. Double-pipe steam-heated exchanger and temperature profile along the
exchanger length in steady-state

ϑp

ϑ
dσ

+
∂
∂
ϑ

d
t

tϑ +
∂ϑ
∂σ dσ

ϑ +
∂ϑ
∂σ dσ

Fig. 2.6. Temperature profile of ϑ in an exchanger element of length dσ for time dt

cp - liquid specific heat capacity,
Fd - area of heat transfer per unit length,
Fσ - cross-sectional area of the inner tube.

The equation (2.39) can be rearranged to give

Fσρcp
αFd

∂ϑ

∂t
= −qρcp

αFd

∂ϑ

∂σ
− ϑ+ ϑp (2.40)

or

T1
∂ϑ

∂t
= −vσT1

∂ϑ

∂σ
− ϑ+ ϑp (2.41)

where T1 =
Fσρcp
αFd

, vσ =
q

Fσ
.

Boundary condition of Eq. (2.41) is

ϑ(0, t) = ϑ0(t) (2.42)

and initial condition is



24 2 Mathematical Modelling of Processes

ϑ(σ, 0) = ϑ0(σ) (2.43)

Assume a steady-state inlet liquid temperature ϑ0s and steam temperature
ϑs

p. The temperature profile in the inner tube in the steady-state can be derived
if

∂ϑ

∂t
= 0 (2.44)

as

ϑs(σ) = ϑs
p − (ϑs

p − ϑ0s)e
−

σ

vσT1 (2.45)

If α = 0, Eq. (2.39) reads

∂ϑ

∂t
= −vσ

∂ϑ

∂σ
(2.46)

while boundary and initial conditions remain the same. If the input variable
is ϑ0(t) and the output variable is ϑ(L, t), then Eq. (2.46) describes pure time
delay with value

Td =
L

vσ
(2.47)

Heat Conduction in a Solid Body

Consider a metal rod of length L in Fig. 2.7. Assume ideal insulation of the rod.
Heat is brought in on the left side and withdrawn on the right side. Changes
of densities of heat flows q0ω, q

0
L influence the rod temperature ϑ(σ, t). Assume

that heat conduction coefficient, density, and specific heat capacity of the rod
are constant. We will derive unsteady heat flow through the rod. Heat balance
on the rod element of length dσ for time dt can be derived from Fig. 2.7 as

Insulation

L

Lqωq 0
ω qω(σ ) qω

σ dσ

(σ+dσ)

Fig. 2.7. A metal rod
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Fσdσρcp
∂ϑ

∂t
= Fσ[qω(σ) − qω(σ + dσ)] (2.48)

or

Fσdσρcp
∂ϑ

∂t
= −Fσ

∂qω
∂σ

dσ (2.49)

where

t - time variable,
σ - space variable,
ϑ = ϑ(σ, t) - rod temperature,
ρ - rod density,
cp - rod specific heat capacity,
Fσ - cross-sectional area of the rod,
qω(σ) - heat flow density (heat transfer velocity through unit area) at length
σ,

qω(σ + dσ) - heat flow density at length σ + dσ.

From the Fourier law follows

qω = −λ∂ϑ
∂σ

(2.50)

where λ is the coefficient of thermal conductivity.
Substituting Eq. (2.50) into (2.49) yields

∂ϑ

∂t
= a

∂2ϑ

∂σ2
(2.51)

where

a =
λ

ρcp
(2.52)

is the factor of heat conductivity. The equation (2.51) requires boundary and
initial conditions. The boundary conditions can be given with temperatures or
temperature derivatives with respect to σ at the ends of the rod. For example

ϑ(0, t) = ϑ0(t) (2.53)
ϑ(L, t) = ϑL(t) (2.54)

The initial condition for Eq. (2.51) is

ϑ(σ, 0) = ϑ0(σ) (2.55)

Consider the boundary conditions (2.53), (2.54). The process input variables
are ϑ0(t), ϑL(t) and the state variable is ϑ(σ, t).

Assume steady-state temperatures ϑ0s, ϑLs. The temperature profile of the
rod in the steady-state can be derived if
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∂ϑ

∂t
= 0 (2.56)

as

ϑs(σ) = ϑ0s +
ϑLs − ϑ0s

L
σ (2.57)

2.2.3 Mass Transfer Processes

Packed Absorption Column

A scheme of packed countercurrent absorption column is shown in Fig. 2.8
where

t - time variable,
σ - space variable,
L - height of column,
G - molar flow of gas phase,
cy = cy(σ, t) - molar fraction concentration of a transferable component in

gas phase,
Q - molar flow of liquid phase,
cx = cx(σ, t) - molar fraction concentration of a transferable component in

liquid phase.

G Q

G Q

Lσ

cy cx

d

σ

Fig. 2.8. A scheme of a packed countercurrent absorption column

Absorption represents a process of absorbing components of gaseous sys-
tems in liquids.

We assume ideal filling, plug flow of gas and liquid phases, negligible mixing
and mass transfer in phase flow direction, uniform concentration profiles in
both phases at cross surfaces, linear equilibrium curve, isothermal conditions,
constant mass transfer coefficients, and constant flow rates G,Q.

Considering only the process state variables cx, cy and the above given
simplifications and if only the physical process of absorption is considered then
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mass transfer is realised only in one direction. Then, the following equations
result from general law of mass conservation.

For gas phase

−N = Hy
∂cy
∂t

+G
∂cy
∂σ

(2.58)

Hy is gas molar hold-up in the column per unit length.
For liquid phase

N = Hx
∂cx
∂t

−G
∂cx
∂σ

(2.59)

Hx is liquid molar hold-up in the column per unit length.
Under the above given conditions the following relation holds for mass

transfer

N = KG(cy − c∗y) (2.60)

where

KG - mass transfer coefficient [mol m−1 s−1],
c∗y - equilibrium concentration of liquid phase.

In the assumptions we stated that the equilibrium curve is linear, that is

c∗y = Kcx (2.61)

and K is some constant. Equations (2.58), (2.59) in conjunction with (2.60),
(2.61) yield

Hy
∂cy
∂t

+G
∂cy
∂σ

= KG(Kcx − cy) (2.62)

Hx
∂cx
∂t

−G
∂cx
∂σ

= KG(cy −Kcx) (2.63)

In the case of the concurrent absorption column, the second term on the left
side of Eq. (2.63) would have a positive sign, i.e. +G(∂cx/∂σ).

Boundary conditions of Eqs. (2.62), (2.63) are

cy(0, t) = c0y(t) (2.64)

cx(L, t) = cLx (t) (2.65)

and c0y, c
L
x are the process input variables.

Initial conditions of Eqs. (2.62), (2.63) are

cy(σ, 0) = cy0(σ) (2.66)
cx(σ, 0) = cx0(σ) (2.67)

Consider steady-state input concentration c0s
y , c

0s
x . Profiles csy(σ), csx(σ) can

be calculated if
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∂cy
∂t

= 0 (2.68)

∂cx
∂t

= 0 (2.69)

as solution of equations

G
dcsy
dσ

= KG(Kcsx − csy) (2.70)

−Qdc
s
x

dσ
= KG(csy −Kcsx) (2.71)

with boundary conditions

csy(0) = c0s
y (2.72)

csx(L) = cLs
x (2.73)

Binary Distillation Column

Distillation column represents a process of separation of liquids. A liquid
stream is fed into the column, distillate is withdrawn from the condenser and
the bottom product from the reboiler. Liquid flow falls down, it is collected
in the reboiler where it is vaporised and as vapour flow gets back into the col-
umn. Vapour from the top tray condenses and is collected in the condenser.
A part of the condensate is returned back to the column. The scheme of the
distillation column is shown in Fig. 2.9.

Fig. 2.9. Scheme of a distillation column, Co - condenser; Bo - reboiler;
1, . . . , i, . . . , k, . . . , j, . . . , h - tray number

We assume a binary system with constant relative volatility along the
column with theoretical trays (100% efficiency - equilibrium between gas and
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liquid phases on trays). Vapour exiting the trays is in equilibrium with the
tray liquid. Feed arriving on the feed tray boils. Vapour leaving the top tray
is totally condensed in the condenser, the condenser is ideally mixed and the
liquid within boils. We neglect the dynamics of the pipework. Liquid in the
column reboiler is ideally mixed and boils. Liquid on every tray is well mixed
and liquid hold-ups are constant in time. Vapour hold-up is negligible. We
assume that the column is well insulated, heat losses are zero, and temperature
changes along the column are small. We will not assume heat balances. We
also consider constant liquid flow along the column and constant pressure.

Mathematical model of the column consists of mass balances of a more
volatile component. Feed composition is usually considered as a disturbance
and vapour flow as a manipulated variable.

Situation on i-th tray is represented in Fig. 2.10 where

G - vapour molar flow rate,
cyi, cyi−1 - vapour molar fraction of a more volatile component,
R - reflux molar flow rate,
F - feed molar flow rate,
cxi, cxi−1 - liquid molar fraction of a more volatile component,
Hyi,Hxi - vapour and liquid molar hold-ups on i-th tray.

i+
R + F

c

i

yi

xi

yi-1

v

R + F

G

G

G

H

H

c

c

c

c

c

c

yi
yi yi

xi

xi

1
xi+1

Fig. 2.10. Model representation of i-th tray

Mass balance of a more volatile component in the liquid phase on the i-th
tray (stripping section) is given as

Hxi
dcxi

dt
= (R+ F )(cxi+1 − cxi) +G(cyi−1 − cvyi) (2.74)

where t is time. Under the assumption of equilibrium on the tray follows

cvyi = c∗yi = f(cxi) (2.75)

Mass balance of a more volatile component in the vapour phase is

Hyi
dcyi

dt
= G(cvyi − cyi) (2.76)
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We assume that vapour molar hold-up is small and the following simplification
holds

cyi
.= cvyi (2.77)

and the i-th tray is described by

Hxi
dcxi

dt
= (R+ F )(cxi+1 − cxi) +G[f(cxi−1) − f(cxi)] (2.78)

Mass balance for k-th tray (feed tray) can be written as

Hxk
dcxk

dt
= Rcxk+1 + FcxF − (R+ F )cxk +G[f(cxk−1) − f(cxk)] (2.79)

where cxF is a molar fraction of a more volatile component in the feed stream.
Mass balances for other sections of the column are analogous:

• j-th tray (enriching section)

Hxj
dcxj

dt
= R(cxj+1 − cxj) +G[f(cxj−1) − f(cxj)] (2.80)

• h-th tray (top tray)

Hxh
dcxh

dt
= R(cxD − cxh) +G[f(cxh−1) − f(cxh)] (2.81)

• Condenser

HxC
dcxD

dt
= −(R+D)cxD +G[f(cxh)] (2.82)

where

D - distillate molar flow,
cxD - molar fraction of a more volatile component in condenser,
HxC - liquid molar hold-up in condenser.

• first tray

Hx1
dcx1

dt
= (R+ F )(cx2 − cx1) +G[f(cxW ) − f(cx1)] (2.83)

where cxW is molar fraction of a more volatile component in the bottom
product.

• Reboiler

HxW
dcxW

dt
= (R+ F )cx1 −WcxW −G[f(cxW )] (2.84)

where W is a molar flow of the bottom product and HxW is the reboiler molar
hold-up.
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The process state variables correspond to a liquid molar fraction of a more
volatile component on trays, in the reboiler, and the condenser. Initial condi-
tions of Eqs. (2.74)-(2.84) are

cxz(0) = cxz0, z ∈ {i, k, j, h,D, 1,W} (2.85)

The column is in a steady-state if all derivatives with respect to time in
balance equations are zero. Steady-state is given by the choices of Gs and csxF

and is described by the following set of equations

0 = (R+ F )(csxi+1 − csxi) +Gs[f(csxi−1) − f(csxi)] (2.86)
0 = Rcsxk+1 + FcsxF − (R+ F )csxk +Gs[f(csxk−1) − f(csxk)] (2.87)
0 = R(csxj+1 − csxj) +Gs[f(csxj−1) − f(csxj)] (2.88)
0 = R(csxD − csxh) +Gs[f(csxh−1) − f(csxh)] (2.89)
0 = −(R+D)csxD +Gs[f(csxh)] (2.90)
0 = (R+ F )(csx2 − csx1) +Gs[f(csxW ) − f(csx1)] (2.91)
0 = (R+ F )csx1 − (R+ F −Gs)csxW +Gs[f(csxW )] (2.92)

2.2.4 Chemical and Biochemical Reactors

Continuous Stirred-Tank Reactor (CSTR)

Chemical reactors together with mass transfer processes constitute an im-
portant part of chemical technologies. From a control point of view, reactors
belong to the most difficult processes. This is especially true for fast exother-
mal processes.

V
c

c

ϑ
A

Av

cA
ϑ

ϑc

ϑv

Fig. 2.11. A nonisothermal CSTR

We consider CSTR with a simple exothermal reaction A→ B (Fig. 2.11).
For the development of a mathematical model of the CSTR, the following
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assumptions are made: neglected heat capacity of inner walls of the reactor,
constant density and specific heat capacity of liquid, constant reactor volume,
constant overall heat transfer coefficient, and constant and equal input and
output volumetric flow rates. As the reactor is well-mixed, the outlet stream
concentration and temperature are identical with those in the tank.

Mass balance of component A can be expressed as

V
dcA
dt

= qcAv − qcA − V r(cA, ϑ) (2.93)

where

t - time variable,
cA - molar concentration of A (mole/volume) in the outlet stream,
cAv - molar concentration of A (mole/volume) in the inlet stream,
V - reactor volume,
q - volumetric flow rate,
r(cA, ϑ) - rate of reaction per unit volume,
ϑ - temperature of reaction mixture.

The rate of reaction is a strong function of concentration and temperature
(Arrhenius law)

r(cA, ϑ) = kcA = k0e−
E

Rϑ cA (2.94)

where k0 is the frequency factor, E is the activation energy, and R is the gas
constant.

Heat balance gives

V ρcp
dϑ
dt

= qρcpϑv − qρcpϑ− αF (ϑ− ϑc) + V (−ΔH)r(cA, ϑ) (2.95)

where

ϑv - temperature in the inlet stream,
ϑc - cooling temperature,
ρ - liquid density,
cp - liquid specific heat capacity,
α - overall heat transfer coefficient,
F - heat transfer area,
(−ΔH) - heat of reaction.

Initial conditions are

cA(0) = cA0 (2.96)
ϑ(0) = ϑ0 (2.97)

The process state variables are concentration cA and temperature ϑ. The
input variables are ϑc, cAv, ϑv and among them, the cooling temperature can
be used as a manipulated variable.
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The reactor is in the steady-state if derivatives with respect to time in
equations (2.93), (2.95) are zero. Consider the steady-state input variables
ϑs

c, c
s
Av, ϑ

s
v. The steady-state concentration and temperature can be calculated

from the equations

0 = qcsAv − qcsA − V r(csA, ϑ
s) (2.98)

0 = qρcpϑ
s
v − qρcpϑ

s − αF (ϑs − ϑs
c) + V (−ΔH)r(csA, ϑ

s) (2.99)

Bioreactor

Consider a typical bioprocess realised in a fed-batch stirred bioreactor. As an
example of bioprocess, alcohol fermentation is assumed. Mathematical models
of bioreactors usually include mass balances of biomass, substrate and product.
Their concentrations in the reactor are process state variables. Assuming ideal
mixing and other assumptions that are beyond the framework of this section,
a mathematical model of alcohol fermentation is of the form

dx
dt

= μx−Dx (2.100)

ds
dt

= −vsx+D(sf − s) (2.101)

dp
dt

= vpx−Dp (2.102)

where

x - biomass concentration,
s - substrate concentration,
p - product (alcohol) concentration,
sf - inlet substrate concentration,
D - dilution rate,
μ - specific rate of biomass growth,
vs - specific rate of substrate consumption,
vp - specific rate of product creation.

The symbols x, s, p representing the process state variables are used in bio-
chemical literature. The dilution rate can be used as a manipulated variable.
The process kinetic properties are given by the relations

μ = function1(x, s, p) (2.103)
vp = function2(x, s, p) (2.104)
vs = function3(x, s, p) (2.105)

2.3 General Process Models

A general process model can be described by a set of ordinary differential and
algebraic equations or in matrix-vector form. For control purposes, linearised
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mathematical models are used. In this section, deviation and dimensionless
variables are explained. We show how to convert partial differential equations
describing processes with distributed parameters into models with ordinary
differential equations. Finally, we illustrate the use of these techniques on
examples.

State Equations

As stated above, a suitable model for a large class of continuous technological
processes is a set of ordinary differential equations of the form

dx1(t)
dt

= f1(t, x1(t), . . . , xn(t), u1(t), . . . , um(t), r1(t), . . . , rs(t))
dx2(t)

dt
= f2(t, x1(t), . . . , xn(t), u1(t), . . . , um(t), r1(t), . . . , rs(t))
...

dxn(t)
dt

= fn(t, x1(t), . . . , xn(t), u1(t), . . . , um(t), r1(t), . . . , rs(t))

(2.106)

where

t - time variable,
x1, . . . , xn - state variables,
u1, . . . , um - manipulated variables,
r1, . . . , rs - disturbance variables, nonmanipulable variables,
f1, . . . , fn - functions.

Typical technological processes can be described as complex systems. As
processes are usually connected to other processes, the complexity of result-
ing systems increases. It is therefore necessary to investigate the problem of
influence of processes and their contact to the environment which influences
process with disturbances and manipulated variables. Process state variables
are usually not completely measurable. A model of process measurement can
be written as a set of algebraic equations

y1(t) = g1(t, x1(t), . . . , xn(t), u1(t), . . . , um(t), rm1(t), . . . , rmt(t))
y2(t) = g2(t, x1(t), . . . , xn(t), u1(t), . . . , um(t), rm1(t), . . . , rmt(t))

...
yr(t) = gr(t, x1(t), . . . , xn(t), u1(t), . . . , um(t), rm1(t), . . . , rmt(t))

(2.107)

where

y1, . . . , yr - measurable process output variables,
rm1, . . . , rmt - disturbance variables,
g1, . . . , gr - functions.
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If the vectors of state variables x, manipulated variables u, disturbance
variables r, and vectors of functions f are defined as

x =

⎛
⎜⎝
x1

...
xn

⎞
⎟⎠ , u =

⎛
⎜⎝
u1

...
um

⎞
⎟⎠ , r =

⎛
⎜⎝
r1
...
rs

⎞
⎟⎠ , f =

⎛
⎜⎝
f1
...
fn

⎞
⎟⎠ (2.108)

then the set of the equations (2.106) can be written more compactly

dx(t)
dt

= f(t,x(t),u(t), r(t)) (2.109)

If the vectors of output variables y, disturbance variables rm, and vectors
of functions g are defined as

y =

⎛
⎜⎝
y1
...
yr

⎞
⎟⎠ , rm =

⎛
⎜⎝
rm1

...
rmt

⎞
⎟⎠ , g =

⎛
⎜⎝
g1
...
gr

⎞
⎟⎠ (2.110)

then the set of the algebraic equations is rewritten as

y(t) = g(t,x(t),u(t), rm(t)) (2.111)

There are two approaches of control design for processes with distributed
parameters. The first approach called late pass to lumped parameter models
uses model with partial differential equations (p.d.e.) for control design and
the only exception is the final step - numerical solution. This approach pre-
serves the nature of distributed systems which is advantageous, however it is
also more demanding on the use of the advanced control theory of distributed
systems.

The second approach called early pass to lumped parameter models is
based on space discretisation of p.d.e’s at the beginning of the control design
problem.

Space discretisation means the division of a distributed process to a finite
number of segments and it is assumed that each segment represents a lumped
parameter system. The result of space discretisation is a process model de-
scribed by a set of interconnected ordinary differential equations. The lumped
parameter model can also be derived when partial derivatives with respect
to space variables are replaced with corresponding differences. For the state
variable x(σ, t), 0 ≤ σ ≤ L holds

∂x(σ, t)
∂σ

∣∣∣∣
k

.=
x(σk, t) − x(σk−1, t)

Δσ
(2.112)

∂2x(σ, t)
∂σ2

∣∣∣∣
k

.=
x(σk+1, t) − 2x(σk, t) + x(σk−1, t)

(Δσ)2
(2.113)

where Δσ = L/n. L is the length of the process. The process is divided
into n parts over the interval [0, L], k = 1, . . . , n. It can easily be shown
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that process models obtained directly from process segmentation and models
derived by substitution of derivatives by differences are the same. There are
many combinations of finite difference methods. When applied correctly, all
are equivalent for n→ ∞.

An advantage of the early pass to lumped parameter models exists in fact
that it is possible to use well developed control methods for lumped processes.
However, a drawback can be found later as the controller derived does not
necessarily satisfy all requirements laid on control quality. But in the majority
of cases this approach produces satisfactory results. Space discretisation of
processes with distributed parameters leads to models of type (2.109), (2.111).

The general state-variable equations (the general form of the state-space
model) consist of the state equations (2.109) and the output equations (2.111).

For comparison of process properties in various situations it is advanta-
geous to introduce dimensionless variables. These can be state, input, and
output variables. Sometimes also dimensionless time and space variables are
used.

Example 2.1: Heat exchanger - state equation
The heat exchanger shown in Fig. 2.3 is described by the differential
equation

dϑ
dt

= − 1
T1
ϑ+

Z1

T1
ϑp +

Z2

T1
ϑv

If
x1 = ϑ

u1 = ϑp

r1 = ϑv

then the state equation is

dx1

dt
= f1(x1, u1, r1)

where f1(x1, u1, r1) = − 1
T1
ϑ+ Z1

T1
ϑp + Z2

T1
ϑv.

The output equation if temperature ϑ is measured is

y = x1

Example 2.2: CSTR - state equations
Equations describing the dynamics of the CSTR shown in Fig. 2.11 are

dcA
dt

=
q

V
cAv − q

V
cA − r(cA, ϑ)

dϑ
dt

=
q

V
ϑv − q

V
ϑ+

αF

V ρcp
(ϑ− ϑc) +

(−ΔH)
ρcp

r(cA, ϑ)

Introducing
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x1 = cA

x2 = ϑ

u1 = ϑc

r1 = cAv

r2 = ϑv

and assuming that temperature measurement of ϑ is available, state and
output equations are given as

dx

dt
= f(x,u, r)

y1 = (0 1)x
where

x =
(
x1

x2

)
, u = u1, r =

(
r1
r2

)
, f =

(
f1
f2

)

f1 =
q

V
cAv − q

V
cA − r(cA, ϑ)

f2 =
q

V
ϑv − q

V
ϑ+

αF

V ρcp
(ϑ− ϑc) +

(−ΔH)
ρcp

r(cA, ϑ)

Example 2.3: Double-pipe steam-heated exchanger - state equations
Processes with distributed parameters are usually approximated by a se-
ries of well-mixed lumped parameter processes. This is also the case for
the heat exchanger shown in Fig. 2.5 which is divided into n well-mixed
heat exchangers. The space variable is divided into n equal lengths within
the interval [0, L]. However, this division can also be realised differently.
Mathematical model of the exchanger is of the form

∂ϑ

∂t
= −vσ

∂ϑ

∂σ
− 1
T1
ϑ+

1
T1
ϑp

Introduce

x1(t) = ϑ

(
L

n
, t

)

x2(t) = ϑ

(
2L
n
, t

)

...
xn(t) = ϑ(L, t)
u1(t) = ϑp(t)
r1(t) = ϑ(0, t)

and replace ∂ϑ/∂σ with the corresponding difference. The resulting model
consits of a set of ordinary differential equations
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dx1

dt
= −vσn

L
(x1 − r1) −

1
T1
x1 +

1
T1
u1

dx2

dt
= −vσn

L
(x2 − x1) −

1
T1
x2 +

1
T1
u1

...
dxn

dt
= −vσn

L
(xn − xn−1) −

1
T1
xn +

1
T1
u1

The state equation is given as

dx

dt
= Ax + Bu1 + Hr1

where
x = (x1 . . . xn)T

A =

⎛
⎜⎜⎜⎝
−(vσn

L + 1
T1

) 0 0 . . . 0 0
vσn
L −(vσn

L + 1
T1

) 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . vσn
L −(vσn

L + 1
T1

)

⎞
⎟⎟⎟⎠

B =
1
T1

(1 . . . 1)T

H =
(vσn

L
0 . . . 0

)T

Assume that temperature is measured at σ1 = 2L/n and/or σ2 = L. Then
the output equation is of the form

y = Cx

where

y =
(
y1
y2

)
, C =

(
0 1 0 . . . 0
0 0 0 . . . 1

)

or

y1 = Cx, C = (0 0 0 . . . 1)

Example 2.4: Heat exchanger - dimensionless variables
The state equation for the heat exchanger shown in Fig. 2.3 is

dϑ
dt′

= − 1
T1
ϑ+

Z1

T1
ϑp +

Z2

T1
ϑv

where t′ is time variable. The exchanger is in a steady-state if dϑ/dt′ = 0.
Denote steady-state temperatures ϑs

p, ϑ
s
v, ϑ

s. For the steady-state yields

ϑs = Z1ϑ
s
p + Z2ϑ

s
v
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Define dimensionless variables
x1 =

ϑ

ϑs

u1 =
ϑp

ϑs
p

r1 =
ϑv

ϑs
v

t =
t′

T1
then the state equation is given as

dx1

dt
= −x1 +

Z1ϑ
s
p

ϑs
u1 +

Z2ϑ
s
v

ϑs
r1

with initial condition

x1(0) = x10 =
ϑ(0)
ϑs

2.4 Linearisation

Linearisation of nonlinear models plays an important role in practical con-
trol design. The principle of linearisation of nonlinear equations consists in
supposition that process variables change very little and their deviations from
steady-state remain small. Linear approximation can be obtained by using the
Taylor series expansion and considering only linear terms. This approxima-
tion is then called linearised model. An advantage of linear models is their
simplicity and their use can yield to analytical results.

Let us recall the Taylor theorem: Let a, x be different numbers, k ≥ 0 and
J is a closed interval with endpoints a, x. Let f be a function with continuous
k-th derivative on J and k + 1-th derivative within this interval. Then there
exists a point ζ within J such that

f(x) = f(a) +
ḟ(a)
1!

(x− a) +
f̈(a)
2!

(x− a)2 + · · ·+ f (k)(a)
k!

(x− a)k +Rk(x)

(2.114)

where Rk(x) = f(k+1)(ζ)
(k+1)! (x− a)k+1 is the rest of the function f after the k-th

term of the Taylor’s polynomial.
Consider a process described by a set of equations

dx′i
dt

= fi(x′,u′) = fi(x′1, . . . , x
′
n, u

′
1, . . . , u

′
m), i = 1, . . . , n (2.115)

where
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x′ - vector of state variables x′1, . . . , x
′
n,

u′ - vector of manipulated variables u′1, . . . , u
′
m.

Let the process state variables x′i change in the neighbourhood of the
steady-state x′si under the influence of the manipulated variables u′i. Then it
is possible to approximate the process nonlinearities. The steady-state is given
by the equation

0 = fi(x′s,u′s) = fs
i (2.116)

We suppose that the solution of these equations is known for some u′sj , j =
1, . . . ,m. The function fi(•) is approximated by the Taylor series expansion
truncated to only first order terms as

fi(x′,u′) .= fi(x′s,u′s) +

+
(
∂fi

∂x′1

)s

(x′1 − x′s1 ) + · · · +
(
∂fi

∂x′n

)s

(x′n − x′sn ) +

+
(
∂fi

∂u′1

)s

(u′1 − u′s1 ) + · · · +
(
∂fi

∂u′m

)s

(u′m − u′sm) (2.117)

(∂fi/∂x
′
l)

s, l = 1, . . . , n and
(
∂fi/∂u

′
j

)s, j = 1, . . . ,m denote partial deriva-
tives for x′l = x′sl and u′j = u′sj , respectively. Therefore, these partial deriva-
tives are constants

ail =
(
∂fi

∂x′l

)s

l = 1, . . . , n (2.118)

bij =

(
∂fi

∂u′j

)s

j = 1, . . . ,m (2.119)

From Eq. (2.116) follows that the first term on the right side of (2.117) is
zero. Introducing state and manipulated deviation variables

xi = x′i − x′si (2.120)
uj = u′j − u′sj (2.121)

gives

dx′1
dt

=
dx1

dt
= a11x1 + · · · + a1nxn + b11u1 + · · · + b1mum

dx′2
dt

=
dx2

dt
= a21x1 + · · · + a2nxn + b21u1 + · · · + b2mum

...
dx′n
dt

=
dxn

dt
= an1x1 + · · · + annxn + bn1u1 + · · · + bnmum

(2.122)

We denote x the vector of deviation state variables and u the vector of devi-
ation manipulated variables. Then (2.122) can be written as
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dx

dt
= Ax + Bu (2.123)

where

A =

⎛
⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
an1 an2 . . . ann

⎞
⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎝
b11 b12 . . . b1m

b21 b22 . . . b2m

...
... . . .

...
bn1 bn2 . . . bnm

⎞
⎟⎟⎟⎠

Equation (2.123) is a linearised differential equation. If initial state of (2.115)
also represent steady-state of the modelled process then

x(0) = 0 (2.124)

Equations (2.115), (2.123) describe dynamics of a process. The differences
are as follows:

1. equation (2.123) is only an approximation,
2. equation (2.123) uses deviation variables,
3. equation (2.123) is linear with constant coefficients.

Linearisation of the process dynamics must be completed with linearisation
of the output equation if this is nonlinear.

Consider the output equation of the form

y′k = gk(x′,u′), k = 1, . . . , r (2.125)

where y′k are the output variables. In the steady-state holds

y′sk = gk(x′s,u′s) (2.126)

Introducing output deviation variables

yk = y′k − y′sk (2.127)

follows

yk = gk(x′s + x,u′s + u) − gk(x′s,u′s) (2.128)

Using the Taylor series expansion with only linear terms the following approx-
imation holds

gk(x′,u′) .= gk(x′s,u′s) +
n∑

l=1

(
∂gk

∂x′l

)s

(x′l − x′sl )

+
m∑

j=1

(
∂gk

∂u′j

)s

(u′j − u′sj ) (2.129)
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and again the partial derivatives in (2.129) are constants

ckl =
(
∂gk

∂x′l

)s

l = 1, . . . , n (2.130)

dkj =

(
∂gk

∂u′j

)s

j = 1, . . . ,m (2.131)

Output deviation variables are then of the form

y1 = c11x1 + · · · + c1nxn + d11u1 + · · · + d1mum

y2 = c21x1 + · · · + c2nxn + d21u1 + · · · + d2mum

...
yr = cr1x1 + · · · + crnxn + dr1u1 + · · · + drmum

(2.132)

If y denotes the vector of output deviation variables then the previous equation
can more compactly be written as

y = Cx + Du (2.133)

where

C =

⎛
⎜⎜⎜⎝
c11 c12 . . . c1n

c21 c22 . . . c2n

...
... . . .

...
cr1 cr2 . . . crn

⎞
⎟⎟⎟⎠

D =

⎛
⎜⎜⎜⎝
d11 d12 . . . d1m

d21 d22 . . . d2m

...
... . . .

...
dr1 dr2 . . . drm

⎞
⎟⎟⎟⎠

Equations (2.123) and (2.133) constitute together the general linear state
process model. When it is obtained from the linearisation procedure, then it
can only be used in the neighbourhood of the steady-state where linearisation
was derived.

Example 2.5: Liquid storage tank - linearisation
Consider the liquid storage tank shown in Fig. 2.1. The state equation of
this process is

dh
dt

= f1(h, q0)

where

f1(h, q0) = −k11

F

√
h+

1
F
q0

The steady-state equation is
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f1(hs, qs
0) = −k11

F

√
hs +

1
F
qs
0 = 0

Linearised state equation for a neighbourhood of the steady-state given
by qs

0, h
s can be written as

dh
dt

=
d(h− hs)

dt
= − k11

2F
√
hs

(h− hs) +
1
F

(q0 − qs
0)

Introducing deviation variables
x1 = h− hs

u1 = q0 − qs
0

and assuming that the level h is measured then the linearised model of
the tank is of the form

dx1

dt
= a11x1 + b11u1

y1 = x1

where

a11 = − k11

2F
√
hs
, b11 =

1
F

Example 2.6: CSTR - linearisation
Consider the CSTR shown in Fig. 2.11. The state equations for this reactor
are

dcA
dt

= f1(cA, cAv, ϑ)

dϑ
dt

= f2(cA, ϑ, ϑv, ϑc)
where

f1(cA, cAv, ϑ) =
q

V
cAv − q

V
cA − r(cA, ϑ)

f2(cA, ϑ, ϑv, ϑc) =
q

V
ϑv − q

V
ϑ− αF

V ρcp
(ϑ− ϑc) +

(−ΔH)
ρcp

r(cA, ϑ)

Linearised dynamics equations for the neighbourhood of the steady-state
given by steady-state input variables ϑs

c, c
s
Av, ϑ

s
v and steady-state process

state variables csA, ϑ
s are of the form

dcA
dt

=
d(cA − csA)

dt
=
(
− q

V
− ṙcA

(csA, ϑ
s)
)

(cA − csA)

+ (−ṙϑ(csA, ϑ
s))(ϑ− ϑs) +

q

V
(cAv − csAv)

dϑ
dt

=
d(ϑ− ϑs)

dt
=
(

(−ΔH)
ρcp

ṙcA
(csA, ϑ

s)
)

(cA − csA)

+
(
− q

V
− αF

V ρcp
+

(−ΔH)
ρcp

ṙϑ(csA, ϑ
s)
)

(ϑ− ϑs)

+
αF

V ρcp
(ϑc − ϑs

c) +
q

V
(ϑv − ϑs

v)
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where

ṙcA
(csA, ϑ

s) =
∂r(cA, ϑ)
∂cA

∣∣∣∣ cA = csA
ϑ = ϑs

ṙϑ(csA, ϑ
s) =

∂r(cA, ϑ)
∂ϑ

∣∣∣∣ cA = csA
ϑ = ϑs

Introducing deviation variables
x1 = cA − csA

x2 = ϑ− ϑs

u1 = ϑc − ϑs
c

r1 = cAv − csAv

r2 = ϑv − ϑs
v

and considering temperature measurements of ϑ then for the linearised
process model follows

dx1

dt
= a11x1 + a12x2 + h11r1

dx2

dt
= a21x1 + a22x2 + b21u1 + h22r2

y1 = x2

where
a11 = − q

V
− ṙcA

(csA, ϑ
s), a12 = −ṙϑ(csA, ϑ

s)

a21 =
(−ΔH)
ρcp

ṙcA
(csA, ϑ

s), a22 = − q

V
− αF

V ρcp
+

(−ΔH)
ρcp

ṙϑ(csA, ϑ
s))

b21 =
αF

V ρcp

h11 = h22 =
q

V
If the rate of reaction is given as (the first order reaction)

r(cA, ϑ) = cAk0e−
E

Rϑ

then

ṙcA
(csA, ϑ

s) = k0e
−
E

Rϑs

ṙϑ(csA, ϑ
s) = csAk0

E

R(ϑs)2
e
−
E

Rϑs

The deviation variables have the same meaning as before: x1, x2 are state
deviation variables, u1 is a manipulated deviation variable, and r1, r2 are
disturbance deviation variables.
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2.5 Systems, Classification of Systems

A deterministic single-input single-output (SISO) system is a physical device
which has only one input u(t) and the result of this influence is an observable
output variable y(t). The same initial conditions and the same function u(t)
lead to the same output function y(t). This definition is easily extended to
deterministic multi-input multi-output (MIMO) systems whose input variables
are u1(t), . . . , um(t) and output variables are y1(t), . . . , yr(t). The concept of
a system is based on the relation between cause and consequence of input and
output variables.

Continuous-time (CT) systems are systems with all variables defined for
all time values.

Lumped parameter systems have influence between an input and output
variables given by ordinary differential equations with derivatives with respect
to time. Systems with distributed parameters are described by partial differ-
ential equations with derivatives with respect to time and space variables.

If the relation between an input and output variable for deterministic CT
SISO system is given by ordinary differential equations with order greater than
one, then it is necessary for determination of y(t), t > t0 to know u(t), t >
t0 and output variable y(t0) with its derivatives at t0 or some equivalent
information. The necessity of knowledge about derivatives avoids introduction
of concept of state.

Linear systems obey the law of superposition.
The systems described in Section 2.2 are examples of physical systems.

The systems determined only by variables that define a relation between the
system elements or between the system and its environment are called abstract.
Every physical system has a corresponding abstract model but not vice versa.
A notation of oriented systems can be introduced. This is every controlled
system with declared input and output variables.

The relation between objects (processes) and systems can be explained
as follows. If a process has defined some set of typical important properties
significant for our investigations then we have defined a system on the process.

We note that we will not further pursue special details and differences
between systems and mathematical relations describing their behaviour as it
is not important for our purposes.

Analogously as continuous-time systems were defined, discrete-time (DT)
systems have their variables defined only in certain time instants.

The process model examples were chosen to explain the procedure for sim-
plification of models. Usually, two basic steps were performed. Models given
by partial differential equations were transformed into ordinary differential
equations and nonlinear models were linearised. Step-wise simplifications of
process models led to models with linear differential equations. As computer
control design is based on DT signals, the last transformation is toward DT
systems.
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A Stochastic system is characterised by variables known only with some
probability.

Therefore, classification of dynamical systems can be clearly given as in
Fig. 2.12.

Dynamical
systems

lumped
parameters

distributed
parameters

deterministic stochastic

linear nonlinear

with constant
coefficients

with variable
coefficients

discrete continuous

Fig. 2.12. Classification of dynamical systems
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2.7 Exercises

Exercise 2.1:
Consider the liquid storage tank shown in Fig. 2.13. Assume constant liquid
density and constant flow rate q1. Flow rate q2 can be expressed as
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q2 = k10h+ k11

√
h

2q

max
h

h

r0q

1q

Fig. 2.13. A cone liquid storage process

Find:
1. state equation,
2. linearised process model.

Exercise 2.2:
A double vessel is used as a heat exchanger between two liquids separated by
a wall (Fig. 2.14).

1ϑ 2ϑ

1vϑ 2vϑ

1α 2α

cp1 cp2

q1 q2

1ρ 2ρV1 V2

Vwwϑ

wρcpw

1ϑ
q1

2ϑ
q2

Fig. 2.14. Well mixed heat exchanger

Assume heating of a liquid with a constant volume V2 with a liquid with a
constant volume V1. Heat transfer is considered only in direction vertical to
the wall with temperature ϑw(t), volume Vw, density ρw, and specific heat
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capacity cpw. Heat transfer from the process toits environment is neglected.
Further, assume spatially constant temperatures ϑ1 and ϑ2, constant densities
ρ1, ρ2, flow rates q1, q2, specific heat capacities cp1, cp2. α1 is the heat transfer
coefficient from liquid to wall and α2 is the heat transfer coefficient from
wall to liquid. The process state variables are ϑ1, ϑ2, ϑw. The process input
variables are ϑ1v, ϑ2v.
1. Find state equations,
2. introduce dimensionless variables and rewrite the state equations.

Exercise 2.3:
A tank is used for blending of liquids (Fig. 2.15). The tank is filled up with
two pipelines with flow rates q1, q2. Both streams contain a component with
constant concentrations c0, c1. The outlet stream has a flow rate q2 and con-
centration c2. Assume that the concentration within tank is c2.

F

qc0 0
qc1 1

qc2 2

c2
1

h

Fig. 2.15. A well mixed tank

Find:
1. state equations,
2. linearised process model.

Exercise 2.4:
An irreversible reaction A→ B occurs in a series of CSTRs shown in Fig. 2.16.
The assumptions are the same as for the reactor shown in Fig. 2.11.
1. Find state equations,
2. construct linearised process model.

Exercise 2.5:
Consider the gas tank shown in Fig. 2.17. A gas with pressure p0(t) flows
through pneumatic resistance (capillary) R1 to the tank with volume V . The
pressure in the tank is p1(t). Molar flow rate G of the gas through resistance
R1 is

G =
p0 − p1

R1
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Av
c

vϑ

1ϑ
c1ϑ

V1

1ϑ

V2

2ϑ
c2ϑ

2ϑ

A2c

A2cA1c

A1c

Fig. 2.16. Series of two CSTRs

Assume that the ideal gas law holds. Find state equation of the tank.

V p1
p0

Fig. 2.17. A gas storage tank
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Analysis of Process Models

Mathematical models describing behaviour of a large group of technological
processes can under some simplifications be given by linear differential equa-
tions with constant coefficients. Similarly, other blocks of control loops can
also be described by linear differential equations with constant coefficients.
For investigation of the dynamical properties of processes it is necessary to
solve differential equations with time as independent variable. Linear differen-
tial equations with constant coefficients can be very suitably solved with the
help of the Laplace transform.

Analysis of dynamical systems is based on their state-space representation.
The spate-space representation is closely tied to input-output representation
of the systems that are described by input-output process models. In this
chapter we will define the Laplace transform and show how to solve by means
of it linear differential equations with constant coefficients. We introduce the
definition of transfer function and transfer function matrix. Next, the concept
of states and connection between state-space and input-output models will be
given. We examine the problem of stability, controllability, and observability
of continuous-time processes.

3.1 The Laplace Transform

The Laplace transform offers a very simple and elegant vehicle for the solution
of differential equations with constant coefficients. It further enables to derive
input-output models which are suitable for process identification and control.
Moreover, it simplifies the qualitative analysis of process responses subject to
various input signals.

3.1.1 Definition of the Laplace Transform

Consider a function f(t). The Laplace transform is defined as
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L{f(t)} =
∫ ∞

0

f(t)e−stdt (3.1)

where L is an operator defined by the integral, f(t) is some function of time.
The Laplace transform is often written as

F (s) = L{f(t)} (3.2)

The function f(t) given over an interval 0 ≤ t <∞ is called the time original
and the function F (s) its Laplace transform. The function f(t) must satisfy
some conditions. It must be piecewise continuous for all times from t = 0 to
t = ∞. This requirement practically always holds for functions used in mod-
elling and control. It follows from the definition integral that we transform
the function from the time domain into s domain where s is a complex vari-
able. Further it is clear that the Laplace transform of a function exists if the
definition integral is bounded. This condition is fulfilled for all functions we
will deal with.

The function F (s) contains no information about f(t) for t < 0. This is
no real obstacle as t is the time variable usually defined as positive. Variables
and systems are then usually defined such that

f(t) ≡ 0 for t < 0 (3.3)

If the equation (3.3) is valid for the function f(t), then this is uniquely given
except at the points of incontinuities with the L transform

f(t) = L−1 {F (s)} (3.4)

This equation defines the inverse Laplace transform.
The Laplace transform is a linear operator and satisfies the principle of

superposition

L{k1f1(t) + k2f2(t)} = k1L{f1(t)} + k2L{f2(t)} (3.5)

where k1, k2 are some constants. The proof follows from the definition integral

L{k1f1(t) + k2f2(t)} =
∫ ∞

0

[k1f1(t) + k2f2(t)]e−stdt

= k1

∫ ∞

0

f1(t)e−stdt+ k2

∫ ∞

0

f2(t)e−stdt

= k1L{f1(t)} + k2L{f2(t)}
An important advantage of the Laplace transform stems from the fact

that operations of derivation and integration are transformed into algebraic
operations.



3.1 The Laplace Transform 53

3.1.2 Laplace Transforms of Common Functions

Step Function

The Laplace transform of step function is very important as step functions
and unit step functions are often used to investigate the process dynamical
properties and in control applications.

�

�
tt = 0

f(t)

A

Fig. 3.1. A step function

The step function shown in Fig. 3.1 can be written as

f(t) = A1(t) (3.6)

and 1(t) is unit step function. This is defined as

1(t) =
{

1, t ≥ 0
0, t < 0 (3.7)

The Laplace transform of step function is

L{A1(t)} =
A

s
(3.8)

Proof:

L{A1(t)} =
∫ ∞

0

A1(t)e−stdt = A

∫ ∞

0

e−stdt

= A

[
−1
s
e−st

]∞
0

= A
1

(−s) (e−s∞ − e−s0)

=
A

s

The Laplace transform of the unit step functions is

L{1(t)} =
1
s

(3.9)
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Exponential Function

The Laplace transform of an exponential function is of frequent use as expo-
nential functions appear in the solution of linear differential equations. Con-
sider an exponential function of the form

f(t) = e−at1(t) (3.10)

hence f(t) = e−at for t ≥ 0 and f(t) = 0 for t < 0. The Laplace transform of
this function is

L
{
e−at1(t)

}
=

1
s+ a

(3.11)

Proof :

L
{
e−at1(t)

}
=
∫ ∞

0

e−at1(t)e−stdt =
∫ ∞

0

e−(s+a)tdt

= − 1
s+ a

[
e−(s+a)t

]∞
0

=
1

s+ a

From (3.10) follows that

L
{
eat1(t)

}
=

1
s− a

(3.12)

Ramp Function

Consider a ramp function of the form

f(t) = at1(t) (3.13)

The Laplace transform of this function is

L{at1(t)} =
a

s2
(3.14)

Proof :

L{at1(t)} =
∫ ∞

0

at1(t)e−stdt

Let us denote u = at and v̇ = e−st and use the rule of integrating by parts

(u̇v) = uv̇ + u̇v∫
uv̇dt = uv −

∫
u̇vdt
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As u̇ = a and v = − 1
se−st, the Laplace transform of the ramp function is

L{at1(t)} =
[
at

1
(−s)e−st

]∞
0

− a

∫ ∞

0

1
(−s)e−stdt

= (0 − 0) +
a

s

[
at

1
(−s)e−st

]∞
0

=
a

s2

Trigonometric Functions

Functions sinωt and cosωt are used in investigation of dynamical properties of
processes and control systems. The process response to input variables of the
form sinωt or cosωt is observed, where ω is the frequency in radians per time.
The Laplace transform of these functions can be calculated using integration
by parts or using the Euler identities

ejωt = cosωt+ j sinωt
e−jωt = cosωt− j sinωt
ejωt + e−jωt = 2 cosωt
ejωt − e−jωt = 2j sinωt

(3.15)

Consider a trigonometric function of the form

f(t) = (sinωt)1(t) (3.16)

The Laplace transform of this function is

L{(sinωt)1(t)} =
ω

s2 + ω2
(3.17)

Proof :

L{(sinωt)1(t)} =
∫ ∞

0

(sinωt)1(t)e−stdt =
∫ ∞

0

ejωt − e−jωt

2j
e−stdt

=
∫ ∞

0

1
2j

e−(s−jω)tdt−
∫ ∞

0

1
2j

e−(s+jω)tdt

=
1
2j

[
e−(s−jω)t

−(s− jω)

]∞
0

+
1
2j

[
e−(s+jω)t

−(s+ jω)

]∞
0

=
1
2j

(
1

s− jω

)
− 1

2j

(
1

s+ jω

)
=

ω

s2 + ω2

The Laplace transform of other functions can be calculated in a similar
manner. The list of the most commonly used functions together with their
Laplace transforms is given in Table 3.1.
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Table 3.1. The Laplace transforms for common functions

f(t) F (s)

δ(t) - unit impulse function 1

1(t) - unit step function 1
s

1(t) − 1(t − Tv), Tv is a time constant 1−e−sTv

s

at1(t), a is a constant (ramp) a
s2

atn−11(t), n > 1 a (n−1)!
sn

e−at1(t) 1
s+a

1
T1

e
− t

T1 1(t) 1
T1s+1

(1 − e−at)1(t) a
s(s+a)

(1 − e
− t

T1 )1(t) 1
s(T1s+1)(

1
a−b

(e−bt − e−at)
)

1(t), a, b are constants 1
(s+a)(s+b)(

c−a
b−a

e−at + c−b
a−b

e−bt
)

1(t), c is a constant s+c
(s+a)(s+b)

tn−1e−at

(n−1)!
1(t), n ≥ 1 1

(s+a)n(
1
a
t − 1−e−at

a2

)
1(t) 1

s2(s+a)(
1
ab

+ 1
a(a−b)

e−at + 1
b(b−a)

e−bt
)

1(t) 1
s(s+a)(s+b)(

c
ab

+ c−a
a(a−b)

e−at + c−b
b(b−a)

e−bt
)

1(t) s+c
s(s+a)(s+b)

sin ωt 1(t), ω is a constant ω
s2+ω2

cos ωt 1(t) s
s2+ω2

e−at sin ωt 1(t) ω
(s+a)2+ω2

e−at cos ωt 1(t) s+a
(s+a)2+ω2{

1 − e
− ζt

Tk

[
cos

(√
1 − ζ2 t

Tk

)
+ ζ

1−ζ2 sin
(√

1 − ζ2 t
Tk

)]}
1(t) 1

s(T2
k

s2+2ζTks+1)

0 ≤ |ζ| < 1[
1 − 1√

1−ζ2
e
− ζt

Tk sin
(√

1 − ζ2 t
Tk

+ ϕ
)]

1(t) 1
s(T2

k
s2+2ζTks+1)

ϕ = arctan

√
1−ζ2

ζ
, 0 ≤ |ζ| < 1
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3.1.3 Properties of the Laplace Transform

Derivatives

The Laplace transform of derivatives are important as derivatives appear in
linear differential equations. The transform of the first derivative of f(t) is

L
{

df(t)
dt

}
= sF (s) − f(0) (3.18)

Proof :

L
{

df(t)
dt

}
=
∫ ∞

0

ḟ(t)e−stdt

=
[
f(t)e−st

]∞
0

−
∫ ∞

0

f(t)e−st(−s)dt

= sF (s) − f(0)

The Laplace transform of the second derivative of f(t) is

L
{

d2f(t)
dt2

}
= s2F (s) − sf(0) − ḟ(0) (3.19)

Proof : Let us define a new function f̄(t) = df(t)/dt. Applying the equa-
tion (3.18) yields (3.19). Similarly for higher-order derivatives follows

L
{

dnf(t)
dtn

}
= snF (s) − sn−1f(0) − sn−2ḟ(0) − · · · − f (n−1)(0) (3.20)

Integral

The Laplace transform of the integral of f(t) is

L
{∫ t

0

f(τ)dτ
}

=
F (s)
s

(3.21)

Proof :

L
{∫ t

0

f(τ)dτ
}

=
∫ ∞

0

[∫ t

0

f(τ)dτ
]

e−stdt

Let us denote u =
∫ t

0
f(τ)dτ, v̇ = e−st and use integration by parts. Because

u̇ = f(t), v = 1
(−s)e

−st, the transform gives

L
{∫ t

0

f(τ)dτ
}

=
[∫ t

0

f(τ)dτ
1

(−s)e−st

]∞
0

−
∫ ∞

0

f(t)
1

(−s)e−stdt

= (0 − 0) +
1
s

∫ ∞

0

f(t)e−stdt

=
F (s)
s
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Convolution

The Laplace transform of convolution is important in situations when input
variables of processes are general functions of time. Let functions f1(t) and
f2(t) be transformed as F1(s) and F2(s) respectively. The convolution of the
functions is defined as

f1(t) � f2(t) =
∫ t

0

f1(τ)f2(t− τ)dτ (3.22)

The Laplace transform of convolution is

L
{∫ t

0

f1(τ)f2(t− τ)dτ
}

= L
{∫ t

0

f1(t− τ)f2(τ)dτ
}

= F1(s)F2(s)

(3.23)

Proof.

L
{∫ t

0

f1(τ)f2(t− τ)dτ
}

=
∫ ∞

0

∫ t

0

f1(τ)f2(t− τ)dτe−stdt

Introduce a substitution η = t− τ,dη = dt. Then

L
{∫ t

0

f1(τ)f2(t− τ)dτ
}

=
∫ ∞

η=−τ

∫ ∞

τ=0

f1(τ)f2(η)e−s(η+τ)dτdη

=
∫ ∞

0

f1(τ)e−sτdτ
∫ ∞

0

f2(η)e−sηdη

= F1(s)F2(s)

	


Final Value Theorem

The asymptotic value of f(t), t→ ∞ can be found (if limt→∞ f(t) exists) as

f(∞) = lim
t→∞ f(t) = lim

s=0
[sF (s)] (3.24)

Proof. To prove the above equation we use the relation for the transform of
a derivative (3.18)∫ ∞

0

df(t)
dt

e−stdt = sF (s) − f(0)

and taking the limit as s→ 0∫ ∞

0

df(t)
dt

lim
s→0

e−stdt = lim
s→0

[sF (s) − f(0)]

lim
t→∞ f(t) − f(0) = lim

s→0
[sF (s)] − f(0)

lim
t→∞ f(t) = lim

s→0
[sF (s)]
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Initial Value Theorem

It can be proven that an initial value of a function can be calculated as

lim
t→0

f(t) = lim
s→∞[sF (s)] (3.25)

Time Delay

Time delays are phenomena commonly encountered in chemical and food pro-
cesses and occur in mass transfer processes. Time delays exist implicitly in
distributed parameter processes and explicitly in pure mass transport through
piping. A typical example are some types of automatic gas analysers that are
connected to a process via piping used for transport of analysed media. In this
case, time delay is defined as time required for transport of analysed media
from the process into the analyser.

Consider a function f(t) given for 0 ≤ t < ∞, f(t) ≡ 0 for t < 0. If the
Laplace transform of this function is F (s) then

L{f(t− Td)} = e−TdsF (s) (3.26)

where Td is a time delay.
Proof : The relation between functions f(t) and f(t − Td) is shown in

Fig. 3.2.

t = 0 t = Td t

f(t) f(t− Td)

Fig. 3.2. An original and delayed function

Applying the definition integral to the function f(t− Td) yields

L{f(t− Td)} =
∫ ∞

0

f(t− Td)e−stdt

= e−sTd

∫ ∞

0

f(t− Td)e−s(t−Td)d(t− Td)
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because dt = d(t− Td). Denoting τ = t− Td follows

L{f(t− Td)} = e−sTd

∫ ∞

0

f(τ)e−sτdτ

= e−sTdF (s)

Unit Impulse Function

Unit impulse function plays a fundamental role in control analysis and syn-
thesis. Although the derivation of its Laplace transform logically falls into
the section dealing with elementary functions, it can be derived only with
knowledge of the Laplace transform of delayed function.

Consider a function f(t) = A1(t) −A1(t− Td) illustrated in Fig. 3.3. The
Laplace transform of this function is

L{A1(t) −A1(t− Td)} =
A

s
− Ae−sTd

s

=
A(1 − e−sTd)

s

0 t = Td t

A

f(t)

Fig. 3.3. A rectangular pulse function

If we substitute in the function f(t) for A = 1/Td and take the limit case
for Td approaching zero, we obtain a function that is zero except for the point
t = 0 where its value is infinity. The area of the pulse function in Fig. 3.3 is
equal to one. This is also the way of defining a function usually denoted by
δ(t) and for which follows

∫ ∞

−∞
δ(t)dt = 1 (3.27)

It is called the unit impulse function or the Dirac delta function.
The Laplace transform of the unit impulse function is

L{δ(t)} = 1 (3.28)
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Proof :

L{δ(t)} = lim
Td→0

1 − e−sTd

Tds

The limit in the above equation can easily be found by application of
L’Hospital’s rule. Taking derivatives with respect to Td of both numerator
and denominator,

L{δ(t)} = lim
Td→0

se−sTd

s
= 1

The unit impulse function is used as an idealised input variable in investi-
gations of dynamical properties of processes.

3.1.4 Inverse Laplace Transform

When solving differential equations using the Laplace transform technique,
the inverse Laplace transform can often be obtained from Table 3.1. However,
a general function may not exactly match any of the entries in the table.
Hence, a more general procedure is required. Every function can be factored
as a sum of simpler functions whose Laplace transforms are in the table:

F (s) = F1(s) + F2(s) + · · · + Fn(s) (3.29)

Then the original solution can be found as

f(t) = f1(t) + f2(t) + · · · + fn(t) (3.30)

where fi(t) = L−1 {Fi(s)}, i = 1, . . . , n.
The function F (s) is usually given as a rational function

F (s) =
M(s)
N(s)

(3.31)

where

M(s) = m0 +m1s+ · · · +mms
m - numerator polynomial,

N(s) = n0 + n1s+ · · · + nns
n - denominator polynomial.

If M(s) is a polynomial of a lower degree than N(s), the function (3.31) is
called strictly proper rational function. Otherwise, it is nonstrictly proper and
can be written as a sum of some polynomial T (s) and some strictly proper
rational function of the form

M(s)
N(s)

= T (s) +
Z(s)
N(s)

(3.32)

Any strictly proper rational function can be written as a sum of strictly
proper rational functions called partial fractions and the method of obtaining
the partial fractions is called partial fraction expansion.

An intermediate step in partial fraction expansion is to find roots of the
N(s) polynomial. We can distinguish two cases when N(s) has:
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1. n different roots,
2. multiple roots.

Different Roots

If the denominator of (3.31) has the roots s1, . . . , sn, the the function F (s)
can be written as

F (s) =
M(s)

nn(s− s1)(s− s2) . . . (s− sn)
(3.33)

Expansion of F (s) into partial fractions yields

F (s) =
K1

s− s1
+

K2

s− s2
+ · · · + Kn

s− sn
(3.34)

and the original f(t) is

f(t) = K1es1t +K2es2t + · · · +Knesnt (3.35)

Note that if N(s) has complex roots s1,2 = a± jb, then for F (s) follows

F (s) =
K1

s− (a+ jb)
+

K2

s− (a− jb)
+ · · · (3.36)

=
β0 + β1s

α0 + α1s+ s2
+ · · · (3.37)

The original function corresponding to this term can be found by an inverse
Laplace transform using the combination of trigonometric entries in Table 3.1
(see example 3.3b).

Multiple Roots

If a root s1 of the polynomial N(s) occurs k-times, then the function F (s)
must be factored as

F (s) =
K1

s− s1
+

K2

(s− s1)2
+ · · · + Kk

(s− s1)k
+ · · · (3.38)

and the corresponding original f(t) can be found from Table 3.1.

3.1.5 Solution of Linear Differential Equations
by Laplace Transform Techniques

Linear differential equations are solved by the means of the Laplace transform
very simply with the following procedure:

1. Take Laplace transform of the differential equation,
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2. solve the resulting algebraic equation,
3. find the inverse of the transformed output variable.

Example 3.1: Solution of the 1st order ODE with zero initial condition
Consider the heat exchanger shown in Fig. 2.3. The state equation is of
the form

dϑ(t)
dt

= − 1
T1
ϑ(t) +

Z1

T1
ϑp(t) +

Z2

T1
ϑv(t)

The exchanger is in a steady-state if dϑ(t)/dt = 0. Let the steady-state
temperatures be given as ϑs

p, ϑ
s
v, ϑ

s. Introduce deviation variables
x1(t) = ϑ(t) − ϑs

u1(t) = ϑp(t) − ϑs
p

r1(t) = ϑv(t) − ϑs
v

then the state equation is

dx1(t)
dt

= − 1
T1
x1(t) +

Z1

T1
u1(t) +

Z2

T1
r1(t)

The output equation if temperature ϑ is measured is

y1(t) = x1(t)

so the differential equation describing the heat exchanger is

dy1(t)
dt

= − 1
T1
y1(t) +

Z1

T1
u1(t) +

Z2

T1
r1(t)

Let us assume that the exchanger is up to time t in the steady-state, hence

y1(0) = 0, u1(0) = 0, r1(0) = 0 for t < 0

Let us assume that at time t = 0 begins the input u1(t) to change as
a function of time u1(t) = Zue−t/Tu . The question is the behaviour of
y1(t), t ≥ 0. From a pure mathematical point of view this is equivalent to
the solution of a differential equation

T1
dy1(t)

dt
+ y1(t) = Z1Zue−t/Tu

with initial condition y1(0) = 0. The first step is the Laplace transform of
this equation which yields

T1L
{

dy1(t)
dt

}
+ L{y1(t)} = Z1ZuL

{
e−t/Tu

}

T1sY1(s) + Y1(s) = Z1Zu
Tu

Tus+ 1
Solution of this equation for Y1(s) is
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Y1(s) =
Z1ZuTu

(T1s+ 1)(Tus+ 1)

The right hand side of these equations can be factored as

Y1(s) =
A

T1s+ 1
+

B

Tus+ 1
=
Z1ZuTu

T1 − Tu

(
T1

T1s+ 1
− Tu

Tus+ 1

)

The inverse Laplace transform can be calculated using Table 3.1 and is
given as

y1(t) =
Z1ZuTu

T1 − Tu

(
e−

t
T1 − e−

t
Tu

)

Example 3.2: Solution of the 1st order ODE with a nonzero initial condition
Consider the previous example but with the conditions y1(0) = y10 and
u1(t) = 0 for t ≥ 0. This is mathematically equivalent to the differential
equation

T1
dy1(t)

dt
+ y1(t) = 0, y1(0) = y10

Taking the Laplace transform, term by term using Table 3.1 :

T1L
{

dy1(t)
dt

}
+ L{y1(t)} = 0

T1[sY1(s) − y1(0)] + Y1(s) = 0
Rearranging and factoring out Y1(s), we obtain

Y1(s) =
y10

T1s+ 1

Now we can take the inverse Laplace transform and obtain

y1(t) =
y10
T1

e−
t

T1 .

Example 3.3: Solution of the 2nd order ODE
a) Consider a second order differential equation

ÿ(t) + 3ẏ(t) + 2y(t) = 2u(t)

and assume zero initial conditions y(0) = ẏ(0) = 0. This case frequently
occurs for process models with deviation variables that are up to time t = 0
in a steady-state. Let us find the solution of this differential equation for
unit step function u(t) = 1(t).
After taking the Laplace transform, the differential equation gives
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(s2 + 3s+ 2)Y (s) = 2
1
s

Y (s) =
2

s(s2 + 3s+ 2)

Y (s) =
2

s(s+ 1)(s+ 2)
The denominator roots are all different and partial fraction expansion is
of the form

2
s(s+ 1)(s+ 2)

=
K1

s
+

K2

s+ 1
+

K3

s+ 2

The coefficients K1,K2,K3 can be calculated by multiplying both sides of
this equation with the denominator and equating the coefficients of each
power of s:

s2 : K1 +K2 +K3 = 0
s1 : 3K1 + 2K2 +K3 = 0
s0 : 2K1 = 2

⎫⎬
⎭K1 = 1,K2 = −2,K3 = 1

The solution of the differential equation can now be read from Table 3.1:

y(t) = 1 − 2e−t + e−2t

b) Consider a second order differential equation

ÿ(t) + 2ẏ(t) + 5y(t) = 2u(t)

and assume zero initial conditions y(0) = ẏ(0) = 0. Find the solution of
this differential equation for unit step function u(t) = 1(t).
Take the Laplace transform

(s2 + 2s+ 5)Y (s) = 2
1
s

Y (s) =
2

s(s2 + 2s+ 5)
The denominator has one real root and two complex conjugate roots,
hence the partial fraction expansion is of the form

2
s(s2 + 2s+ 5)

=
K1

s
+

K2s+K3

s2 + 2s+ 5
=

2
5

(
1
s
− 2 + s

s2 + 2s+ 5

)

where the coefficients K1,K2,K3 have been found as in the previous ex-
ample. The second term on the right side of the previous equation is not
in Table 3.1 but can be manipulated to obtain a sum of trigonometric
terms. Firstly, the denominator is rearranged by completing the squares
to (s+ 1)2 + 4 and the numerator is then rewritten to match numerators
of trigonometric expressions. Hence
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1 + 2s
s2 + 2s+ 5

=
2 + s

(s+ 1)2 + 4
=

(s+ 1) − 1
22

(s+ 1)2 + 4

=
s+ 1

(s+ 1)2 + 4
− 1

2
2

(s+ 1)2 + 4
and Y (s) can be written as

Y (s) =
2
5

(
1
s
− s+ 1

(s+ 1)2 + 4
− 1

2
2

(s+ 1)2 + 4

)

Taking the inverse Laplace transform, term by term, yields

Y (s) =
2
5

(
1 − e−t cos 2t− 1

2
e−t sin 2t

)

c) Consider a second order differential equation

ÿ(t) + 2ẏ(t) + 1y(t) = 2, y(0) = ẏ(0) = 0

Take the Laplace transform

(s2 + 2s+ 1)Y (s) = 2
1
s

Y (s) =
2

s(s2 + 2s+ 1)

Y (s) =
2

s(s+ 1)2
The denominator has one single root s1 = 0 and one double root s2,3 = −1.
The partial fraction expansion is of the form

2
s(s+ 1)2

=
K1

s
+

K2

s+ 1
+

K3

(s+ 1)2

and the solution from Table 3.1 reads

y(t) = 2 − 2(1 − t)e−t

3.2 State-Space Process Models

Investigation of processes as dynamical systems is based on theoretical state-
space balance equations. State-space variables may generally be abstract. If
a model of a process is described by state-space equations, we speak about
state-space representation. This representation includes a description of linear
as well as nonlinear models. In this section we introduce the concept of state,
solution of state-space equations, canonical representations and transforma-
tions, and some properties of systems.
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3.2.1 Concept of State

Consider a continuous-time MIMO system with m input variables and r out-
put variables. The relation between input and output variables can be ex-
pressed as (see also Section 2.3)

dx(t)
dt

= f(x(t),u(t)) (3.39)

y(t) = g(x(t),u(t)) (3.40)

where x(t) is a vector of state-space variables, u(t) is a vector of input vari-
ables, and y(t) is a vector of output variables.

The state of a system at time t0 is a minimum amount of information which
(in the absence of external excitation) is sufficient to determine uniquely the
evolution of the system for t ≥ t0.

If the vector x(t0) and the vector of input variables u(t) for t > t0 are
known then this knowledge suffices to determine y(t), t > t0, thus

y(t0, t] = y{x(t0),u(t0, t]} (3.41)

where u(t0, t],y(t0, t] are vectors of input and output variables over the inter-
val (t0, t] respectively.

The above equation is equivalent to

x(t0, t] = x{x(t0),u(t0, t]} (3.42)

Therefore, the knowledge about the states at t = t0 removes the necessity
to know the past behavior of the system in order to forecast its future and
the future evolution of states is dependent only on its present state and future
inputs.

This definition of state will be clearer when we introduce a solution of
state-space equation for the general functions of input variables.

3.2.2 Solution of State-Space Equations

Solution of state-space equations will be specified only for linear systems with
constant coefficients with the aid of Laplace transform techniques. Firstly, a
simple example will be given and then it will be generalised.

Example 3.4: Mixing process - solution of state-space equations
Consider a process of mixing shown in Fig. 3.4 with mathematical model
described by the equation

V
dc1
dt

= qc0 − qc1

where c0, c1 are concentrations with dimensions mass/volume, V is a con-
stant volume of the vessel, and q is a constant volumetric flow rate.
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V

q

q
1c(t)

0c(t)

1c(t)

Fig. 3.4. A mixing process

In the steady-state holds

qcs0 − qcs1 = 0

Introduce deviation variables
x = c1 − cs1

u = c0 − cs0
and define the process output variable y = x. Then the process state-space
equations are of the form

dx
dt

= ax+ bu

y = cx
where a = −1/T1, b = 1/T1, c = 1. T1 = V/q is the process time constant.
Assume that the system is at t0 = 0 in the state x(0) = x0. Then the time
solution can be calculated by applying the Laplace transform:

sX(s) − x(0) = aX(s) + bU(s)

X(s) =
1

s− a
x(0) +

b

s− a
U(s)

The time domain description x(t) can be read from Table 3.1 for the first
term and from the convolution transformation for the second term and is
given as

x(t) = eatx(0) +
∫ t

0

ea(t−τ)bu(τ)dτ

and for y(t)

y(t) = ceatx(0) + c

∫ t

0

ea(t−τ)bu(τ)dτ

After substituting for the constants yields for y(t)

y(t) = e−
q
V tx(0) +

V

q

∫ t

0

e−
q
V (t−τ)u(τ)dτ



3.2 State-Space Process Models 69

Solution of State-Space Equations for the Multivariable Case

The solution for the multivariable case is analogous as in the previous example.
Each state equation is transformed with the Laplace transform applied and
transformed back into the time domain. The procedure is simplified if we use
matrix notation.

Consider state-space equations

dx(t)
dt

= Ax(t) + Bu(t), x(0) = x0 (3.43)

y(t) = Cx(t) (3.44)

Taking the Laplace transform yields

sX(s) − x0 = AX(s) + BU(s) (3.45)

X(s) = (sI − A)−1x0 + (sI − A)−1BU(s) (3.46)

and after the inverse transformation for x(t),y(t) hold

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)BU(τ)dτ (3.47)

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)BU(τ)dτ (3.48)

eAt = L−1
{
(sI − A)−1

}
(3.49)

The equation (3.48) shows some important properties and features. Its
solution consists of two parts: initial conditions term (zero-input response)
and input term dependent on u(t) (zero-state response).

The solution of (3.43) for free system (u(t) = 0) is

x(t) = eAtx(0) (3.50)

and the exponential term is defined as

eAt =
∞∑

i=1

Ai t
i

i!
(3.51)

The matrix

Φ(t) = eAt = L−1
{
(sI − A)−1

}
(3.52)

is called the state transition matrix, (fundamental matrix, matrix exponential).
The solution of (3.43) for u(t) is then

x(t) = Φ(t− t0)x(t0) (3.53)

The matrix exponential satisfies the following identities:
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x(t0) = Φ(t0 − t0)x(t0) ⇒ Φ(0) = I (3.54)
x(t2) = Φ(t2 − t1)x(t1) (3.55)
x(t2) = Φ(t2 − t1)Φ(t1 − t0)x(t0) (3.56)

The equation (3.52) shows that the system matrix A plays a crucial role in
the solution of state-space equations. Elements of this matrix depend on coef-
ficients of mass and heat transfer, activation energies, flow rates, etc. Solution
of the state-space equations is therefore influenced by physical and chemical
properties of processes.

The solution of state-space equations depends on roots of the character-
istic equation

det(sI − A) = 0 (3.57)

This will be clarified from the next example

Example 3.5: Calculation of matrix exponential
Consider a matrix

A =
(
−1 −1
0 −2

)

The matrix exponential corresponding to A is defined in equation (3.52)
as

Φ(t) = L−1

{[
s

(
1 0
0 1

)
−
(
−1 −1
0 −2

)]−1
}

= L−1

{[
s+ 1 1

0 s+ 2

]−1
}

= L−1

⎧⎪⎪⎨
⎪⎪⎩

1

det
(
s+ 1 1

0 s+ 2

)
(
s+ 2 −1

0 s+ 1

)
⎫⎪⎪⎬
⎪⎪⎭

= L−1

{
1

(s+1)(s+2)

(
s+ 2 −1

0 s+ 1

)}

= L−1

{( 1
s+1

−1
(s+1)(s+2)

0 1
s+2

)}

The elements of Φ(t) are found from Table 3.1 as

Φ(t) =
(

e−t e−2t − e−t

0 e−2t

)

3.2.3 Canonical Transformation

Eigenvalues of A, λ1, . . . , λn are given as solutions of the equation
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det(A − λI) = 0 (3.58)

If the eigenvalues of A are distinct, then a nonsingular matrix T exists, such
that

Λ = T−1AT (3.59)

is an diagonal matrix of the form

Λ =

⎛
⎜⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0
...

...
0 0 . . . λn

⎞
⎟⎟⎟⎠ (3.60)

The canonical transformation (3.59) can be used for direct calculation of
e−At. Substituting A from (3.59) into the equation

dx(t)
dt

= Ax(t), x(0) = I (3.61)

gives

d(T−1x)
dt

= ΛT−1x, T−1x(0) = T−1 (3.62)

Solution of the above equation is

T−1x = e−ΛtT−1 (3.63)

or

x = T e−ΛtT−1 (3.64)

and therefore

Φ(t) = T e−ΛtT−1 (3.65)

where

eΛt =

⎛
⎜⎜⎜⎝

eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
0 0 . . . eλnt

⎞
⎟⎟⎟⎠ (3.66)

3.2.4 Stability, Controllability, and Observability
of Continuous-Time Systems

Stability, controllability, and observability are basic properties of systems
closely related to state-space models. These properties can be utilised for
system analysis and synthesis.
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Stability of Continuous-Time Systems

An important aspect of system behaviour is stability. System can be defined
as stable if its response to bounded inputs is also bounded. The concept of
stability is of great practical interest as nonstable control systems are unac-
ceptable. Stability can also be determined without an analytical solution of
process equations which is important for nonlinear systems.

Consider a system

dx(t)
dt

= f(x(t),u(t), t), x(t0) = x0 (3.67)

Such a system is called forced as the vector of input variables u(t) appears on
the right hand side of the equation. However, stability can be studied on free
(zero-input) systems given by the equation

dx(t)
dt

= f(x(t), t), x(t0) = x0 (3.68)

u(t) does not appear in the previous equation, which is equivalent to processes
with constant inputs. If time t appears explicitly as an argument in process
dynamics equations we speak about nonautonomous system, otherwise about
autonomous system.

In our discussion about stability of (3.68) we will consider stability of mo-
tion of xs(t) that corresponds to constant values of input variables. Let us for
this purpose investigate any solution (motion) of the forced system x(t) that
is at t = 0 in the neighbourhood of xs(t). The problem of stability is closely
connected to the question if for t ≥ 0 remains x(t) in the neighbourhood of
xs(t). Let us define deviation

x̃(t) = x(t) − xs(t) (3.69)

then,

dx̃(t)
dt

+
dxs(t)

dt
= f(x̃(t) + xs(t),u(t), t)

dx̃(t)
dt

= f(x̃(t) + xs(t),u(t), t) − f(xs(t), t)

dx̃(t)
dt

= f̃(x̃(t),u(t), t) (3.70)

The solution xs(t) in (3.70) corresponds for all t > 0 to relation x̃(t) = 0
and ˙̃x(t) = 0. Therefore the state x̃(t) = 0 is called equilibrium state of
the system described by (3.70). This equation can always be constructed and
stability of equilibrium point can be interpreted as stability in the beginning
of the state-space.

Stability theorems given below are valid for nonautonomous systems. How-
ever, such systems are very rare in common processes. In connection to the
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above ideas about equilibrium point we will restrict our discussion to systems
given by

dx(t)
dt

= f(x(t)), x(t0) = x0 (3.71)

The equilibrium state xe = 0 of this system obeys the relation

f(0) = 0 (3.72)

as dx/dt = 0
We assume that the solution of the equation (3.71) exists and is unique.
Stability can be intuitively defined as follows: If xe = 0 is the equilibrium

point of the system (3.71), then we may say that xe = 0 is the stable equilib-
rium point if the solution of (3.71) x(t) = x[x(t0), t] that begins in some state
x(t0) “close” to the equilibrium point xe = 0 remains in the neighbourhood
of xe = 0 or the solution approaches this state.

The equilibrium state xe = 0 is unstable if the solution x(t) = x[x(t0), t]
that begins in some state x(t0) diverges from the neighbourhood of xe = 0.

Next, we state the definitions of stability from Lyapunov asymptotic sta-
bility and asymptotic stability in large.

Lyapunov stability : The system (3.71) is stable in the equilibrium state
xe = 0 if for any given ε > 0, there exists δ(ε) > 0 such that for all x(t0) such
that ‖x(t0)‖ ≤ δ implies ‖x[x(t0), t]‖ ≤ ε for all t ≥ 0.

Asymptotic (internal) stability : The system (3.71) is asymptotically stable
in the equilibrium state xe = 0 if it is Lyapunov stable and if all x(t) =
x[x(t0), t] that begin sufficiently close to the equilibrium state xe = 0 satisfy
the condition limt→∞ ‖x(t)‖ = 0.

Asymptotic stability in large: The system (3.71) is asymptotically stable
in large in the equilibrium state xe = 0 if it is asymptotic stable for all initial
states x(t0).

In the above definitions, the notation ‖x‖ has been used for the Euclidean
norm of a vector x(t) that is defined as the distance of the point given by the
coordinates of x from equilibrium point xe = 0 and given as ‖x‖ = (xT x)1/2.

Note 3.1. Norm of a vector is some function transforming any vector x ∈ Rn

to some real number ‖x‖ with the following properties:

1. ‖x‖ ≥ 0,
2. ‖x‖ = 0 iff x = 0,
3. ‖kx‖ = |k| ‖x‖ for any k,
4. ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Some examples of norms are ‖x‖ = (xT x)1/2, ‖x‖ =
∑n

i=1 |xi|, ‖x‖ =
max |xi|. It can be proven that all these norms satisfy properties 1-4.

Example 3.6: Physical interpretation – U-tube
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h

h
L

pv

Fig. 3.5. A U-tube

Consider a U-tube as an example of the second order system. Mathemat-
ical model of this system can be derived from Fig. 3.5 considering the
equilibrium of forces.
We assume that if specific pressure changes, the force with which the liquid
flow is inhibited, is proportional to the speed of the liquid. Furthermore, we
assume that the second Newton law is applicable. The following equation
holds for the equilibrium of forces

Fpv = 2Fgρh+ kF
dh
dt

+ FLρ
d2h

dt2

or

d2h

dt2
+

k

Lρ

dh
dt

+
2g
L
h =

1
Lρ

pv

where
F - inner cross-sectional area of tube,
k - coefficient,
pv - specific pressure,
g - acceleration of gravity,
ρ - density of liquid.

If the input is zero then the mathematical model is of the form

d2x1

dt2
+ a1

dx1

dt
+ a0x1 = 0

where x1 = h − hs, a0 = 2g/L, a1 = k/Lρ. The speed of liquid flow will
be denoted by x2 = dx1/dt. If x1, x2 are elements of state vector x then
the dynamics of the U-tube is given as

dx1

dt
= x2

dx2

dt
= −a0x1 − a1x2
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If we consider a0 = 1, a1 = 1,x(0) = (1, 0)T then the solution of the
differential equations is shown in Fig. 3.6. At any time instant the total
system energy is given as a sum of kinetic and potential energies of liquid

V (x1, x2) = FLρ
x2

2

2
+
∫ x1

0

2Fgρxdx

Energy V satisfies the following conditions: V (x) > 0,x = 0 and
V (0) = 0.
These conditions show that the sum of kinetic and potential energies is
positive with the exception when liquid is in the equilibrium state xe = 0
when dx1/dt = dx2/dt = 0.
The change of V in time is given as

dV
dt

=
∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
dV
dt

= 2Fgρx1x2 + FLρx2

(
−2g
L
x1 −

k

Lρ
x2

)

dV
dt

= −Fkx2
2

As k > 0, time derivative of V is always negative except if x2 = 0 when
dV/dt = 0 and hence V cannot increase. If x2 = 0 the dynamics of the
tube shows that

dx2

dt
= −2g

L
x1

is nonzero (except xe = 0). The system cannot remain in a nonequilibrium
state for which x2 = 0 and always reaches the equilibrium state which is
stable. The sum of the energies V is given as

V (x1, x2) = 2Fgρ
x2

1

2
+ FLρ

x2
2

2

V (x1, x2) =
Fρ

2
(2gx2

1 + Lx2
2)

Fig. 3.7 shows the state plane with curves of constant energy levels V1 <
V2 < V3 and state trajectory corresponding to Fig. 3.6 where x1, x2 are
plotted as function of parameter t.

Conclusions about system behaviour and about state trajectory in the
state plane can be generalised by general state-space. It is clear that some
results about system properties can also be derived without analytical solution
of state-space equations.

Stability theory of Lyapunov assumes the existence of the Lyapunov func-
tion V (x). The continuous function V (x) with continuous derivatives is called
positive definite in some neighbourhood Δ of state origin if

V (0) = 0 (3.73)

and
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Fig. 3.6. Time response of the U-tube for initial conditions (1, 0)T
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Fig. 3.7. Constant energy curves and state trajectory of the U-tube in the state
plane

V (x) > 0 (3.74)

for all x = 0 within Δ. If (3.74) is replaced by

V (x) ≥ 0 (3.75)

for all x ∈ Δ then V (x) is positive semidefinite. Definitions of negative definite
and negative semidefinite functions follow analogously.

Various definitions of stability for the system dx(t)/dt = f(x),f(0) = 0
lead to the following theorems:

Stability in Lyapunov sense: If a positive definite function V (x) can be
chosen such that

dV
dt

=
(
∂V

∂x

)T

f(x) ≤ 0 (3.76)

then the system is stable in origin in the Lyapunov sense.
The function V (x) satisfying this theorem is called the Lyapunov function.
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Asymptotic stability : If a positive definite function V (x) can be chosen
such that

dV
dt

=
(
∂V

∂x

)T

f(x) < 0, x = 0 (3.77)

then the system is asymptotically stable in origin.
Asymptotic stability in large: If the conditions of asymptotic stability are

satisfied for all x and if V (x) → ∞ for ‖x‖ → ∞ then the system is asymp-
totically stable by large in origin.

There is no general procedure for the construction of the Lyapunov func-
tion. If such a function exists then it is not unique. Often it is chosen in the
form

V (x) =
n∑

k=1

n∑
r=1

Krkxkxr (3.78)

Krk are real constants, Krk = Kkr so (3.78) can be written as

V (x) = xT Kx (3.79)

and K is symmetric matrix. V (x) is positive definite if and only if the deter-
minants

K11,

∣∣∣∣K11, K12

K21, K22

∣∣∣∣ ,
∣∣∣∣∣∣
K11, K12, K13

K21, K22, K23

K31, K32, K33

∣∣∣∣∣∣ , . . . (3.80)

are greater than zero.
Asymptotic stability of linear systems: Linear system

dx(t)
dt

= Ax(t) (3.81)

is asymptotically stable (in large) if and only if one of the following properties
is valid:

1. Lyapunov equation

AT K + KA = −μ (3.82)

where μ is any symmetric positive definite matrix, has a unique positive
definite symmetric solution K.

2. all eigenvalues of system matrix A, i.e. all roots of characteristic polyno-
mial det(sI − A) have negative real parts.

Proof : We prove only the sufficient part of 1. Consider the Lyapunov func-
tion of the form

V (x) = xT Kx (3.83)
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if K is a positive definite then

V (x) > 0 , x = 0 (3.84)
V (0) = 0 (3.85)

and for dV/dt holds

dV (x)
dt

=
(

dx

dt

)T

Kx + xT K
dx

dt
(3.86)

Substituting dx/dt from Eq. (3.81) yields

dV (x)
dt

= xT AT Kx + xT KAx (3.87)

dV (x)
dt

= xT (AT K + KA)x (3.88)

Applying (3.82) we get

dV (x)
dt

= −xT μx (3.89)

and because μ is a positive definite matrix then

dV (x)
dt

< 0 (3.90)

for all x = 0 and the system is asymptotically stable in origin. As the Lya-
punov function can be written as

V (x) = ‖x‖2 (3.91)

and therefore

V (x) → ∞ for ‖x‖ → ∞ (3.92)

The corresponding norm is defined as (xT Kx)1/2. It can easily be shown that
K exists and all conditions of the theorem on asymptotic stability by large in
origin are fulfilled. The second part of the proof - necessity - is much harder
to prove.

The choice of μ for computations is usually

μ = I (3.93)

Controllability of Continuous-Time Systems

The concept of controllability together with observability is of fundamental
importance in theory of automatic control.

Definition of controllability of linear system
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dx(t)
dt

= A(t)x(t) + B(t)u(t) (3.94)

is as follows: A state x(t0) = 0 of the system (3.94) is controllable if the
system can be driven from this state to state x(t1) = 0 by applying suitable
u(t) within finite time t1 − t0, t ∈ [t0, t1].

If every state is controllable then the system is completely controllable.
Definition of reachable of linear systems: A state x(t1) of the system (3.94)

is reachable if the system can be driven from the state x(t0) = 0 to x(t1) by
applying suitable u(t) within finite time t1 − t0, t ∈ [t0, t1].

If every state is reachable then the system is completely reachable.
For linear systems with constant coefficients (linear time invariant sys-

tems) are all reachable states controllable and it is sufficient to speak about
controllability. Often the definitions are simplified and we can speak that the
system is completely controllable (shortly controllable) if there exists such
u(t) that drives the system from the arbitrary initial state x(t0) to the final
state x(t1) within a finite time t1 − t0, t ∈ [t0, t1].

Theorem (Controllability of linear continuous systems with constant coef-
ficients): The system

dx(t)
dt

= Ax(t) + Bu(t) (3.95)

y(t) = Cx(t) (3.96)

is completely controllable if and only if rank of controllability matrix Qc is
equal to n. Qc[n× nm] is defined as

Qc = (B AB A2B . . .An−1B) (3.97)

where n is the dimension of the vector x and m is the dimension of the vector
u.
Proof : We prove only the “if” part. Solution of the Eq. (3.95) with initial
condition x(t0) is

x(t) = eAtx(t0) +
∫ t

0

eA(t−τ)Bu(τ)dτ (3.98)

For t = t1 follows

x(t1) = eAt1x(t0) + eAt1

∫ t1

0

e−AτBu(τ)dτ (3.99)

The function e−Aτ can be rewritten with the aid of the Cayley-Hamilton
theorem as

e−Aτ = k0(τ)I + k1(τ)A + k2(τ)A2 + · · · + kn−1(τ)An−1 (3.100)

Substituting for e−Aτ from (3.100) into (3.99) yields



80 3 Analysis of Process Models

x(t1) = eAt1x(t0) + eAt1

∫ t1

0

(
k0(τ)B + k1(τ)AB +

+k2(τ)A2B + · · · + kn−1(τ)An−1B
)
u(τ)dτ (3.101)

or

x(t1) = eAt1x(t0) +

+eAt1

∫ t1

0

(B AB A2B . . .An−1B) ×

×

⎛
⎜⎜⎜⎜⎜⎝

k0(τ)u(τ)
k1(τ)u(τ)
k2(τ)u(τ)

...
kn−1(τ)u(τ)

⎞
⎟⎟⎟⎟⎟⎠

dτ (3.102)

Complete controllability means that for all x(t0) = 0 there exists a finite
time t1 − t0 and suitable u(t) such that

−x(t0) = (B AB A2B . . .An−1B)
∫ t1

0

⎛
⎜⎜⎜⎜⎜⎝

k0(τ)u(τ)
k1(τ)u(τ)
k2(τ)u(τ)

...
kn−1(τ)u(τ)

⎞
⎟⎟⎟⎟⎟⎠

dτ (3.103)

From this equation follows that any vector −x(t0) can be expressed as a linear
combination of the columns of Qc. The system is controllable if the integrand
in (3.102) allows the influence of u to reach all the states x. Hence complete
controllability is equivalent to the condition of rank of Qc being equal to n.
The controllability theorem enables a simple check of system controllability
with regard to x. The test with regard to y can be derived analogously and
is given below.

Theorem (Output controllability of linear systems with constant coeffi-
cients): The system output y of (3.95), (3.96) is completely controllable if
and only if the rank of controllability matrix Qy

c [r × nm] is equal to r (with
r being dimension of the output vector) where

Qy
c = (CB CAB CA2B . . .CAn−1B) (3.104)

We note that the controllability conditions are also valid for linear systems
with time-varying coefficients if A(t),B(t) are known functions of time. The
conditions for nonlinear systems are derived only for some special cases. For-
tunately, in the majority of practical cases, controllability of nonlinear systems
is satisfied if the corresponding linearised system is controllable.

Example 3.7: CSTR - controllability
Linearised state-space model of CSTR (see Example 2.6) is of the form
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dx1(t)
dt

= a11x1(t) + a12x2(t)

dx2(t)
dt

= a21x1(t) + a22x2(t) + b21u1(t)
or

dx(t)
dt

= Ax(t) + Bu1(t)

where

A =
(
a11 a12

a21 a22

)
, B =

(
0
b21

)

The controllability matrix Qc is

Qc = (B|AB) =
(

0 a12b21
b21 a22b21

)

and has rank equal to 2 and the system is completely controllable. It is
clear that this is valid for all steady-states and hence the corresponding
nonlinear model of the reactor is controllable.

Observability

States of a system are in the majority of cases measurable only partially or
they are nonmeasurable. Therefore it is not possible to realise a control that
assumes knowledge of state variables. In this connection a question arises
whether it is possible to determine state vector from output measurements. We
speak about observability and reconstructibility. To investigate observability,
only a free system can be considered.

Definition of observability : A state x(t0) of the system

dx(t)
dt

= A(t)x(t) (3.105)

y(t) = C(t)x(t) (3.106)

is observable if it can be determined from knowledge about y(t) within a finite
time t ∈ [t0, t1]. If every state x(t0) can be determined from the output vector
y(t) within arbitrary finite interval t ∈ [t0, t1] then the system is completely
observable.

Definition of reconstructibility : A state of system x(t0) is reconstructible
if it can be determined from knowledge about y(t) within a finite time
t ∈ [t00, t0]. If every state x(t0) can be determined from the output vector
y(t) within arbitrary finite interval t ∈ [t00, t0] then the system is completely
reconstructible.

Similarly as in the case of controllability and reachability, the terms observ-
ability of a system and reconstructibility of a system are used for simplicity.
For linear time-invariant systems, both terms are interchangeable.
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Theorem: Observability of linear continuous systems with constant coeffi-
cients: The system

dx(t)
dt

= Ax(t) (3.107)

y(t) = Cx(t) (3.108)

is completely observable if and only if rank of observability matrix Qo is equal
to n. The matrix Qo[nr × n] is given as

Qo =

⎛
⎜⎜⎜⎜⎜⎝

C
CA
CA2

...
CAn−1

⎞
⎟⎟⎟⎟⎟⎠

(3.109)

Proof : We prove only the “if” part. Solution of the Eq. (3.107) is

x(t) = eAtx(t0) (3.110)

According to the Cayley-Hamilton theorem, the function e−At can be written
as

e−At = k0(t)I + k1(t)A + k2(t)A2 + · · · + kn−1(t)An−1 (3.111)

Substituting Eq. (3.111) into (3.110) yields

x(t) = [k0(t)I + k1(t)A + k2(t)A2 + · · · + kn−1(t)An−1]x(t0) (3.112)

Equation (3.108) now gives

y(t) = [k0(t)C+k1(t)CA+k2(t)CA2+· · ·+kn−1(t)CAn−1]x(t0) (3.113)

or

x(t0) =
[∫ t1

t0

(k(t)Qo)T (k(t)Qo)dt
]−1 ∫ t1

t0

(k(t)Qo)T y(t)dt (3.114)

where k(t) = [k0(t), k1(t), . . . , kn−1(t)].
If the system is observable, it must be possible to determine x(t0) from

(3.114). Hence the inverse of
∫ t1

t0
(k(t)Qo)T (k(t)Qo)dt must exist and the ma-

trix∫ t1

t0

(k(t)Qo)T (k(t)Qo)dt = Qo
T

∫ t1

t0

(kT (t)k(t)dtQo (3.115)

must be nonsingular. It can be shown that the matrix kT (t)k(t) is nonsingular
and observability is satisfied if and only if rank(Qo) = n.
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We note that observability and reconstructibility conditions for linear con-
tinuous systems with constant coefficients are the same.

Example 3.8: CSTR - observability
Consider the linearised model of CSTR from Example 2.6

dx1(t)
dt

= a11x1(t) + a12x2(t)

dx2(t)
dt

= a21x1(t) + a22x2(t)

y1(t) = x2(t)
The matrices A,C are

A =
(
a11 a12

a21 a22

)
, C = (0, 1)

and for Qo yields

Qo =
(

0 1
a21 a22

)

Rank of Qo is 2 and the system is observable.
(Recall that a21 = (−ΔH)ṙcA

(csa, ϑ
s)/ρcp )

3.2.5 Canonical Decomposition

Any continuous linear system with constant coefficients can be transformed
into a special state-space form such that four separated subsystems result:

(A)controllable and observable subsystem,
(B)controllable and nonobservable subsystem,
(C)noncontrollable and observable subsystem,
(D)noncontrollable and nonobservable subsystem.

This division is called canonical decomposition and is shown in Fig. 3.8.
Only subsystem A can be calculated from input and output relations.

The system eigenvalues can be also divided into 4 groups:

(A)controllable and observable modes,
(B)controllable and nonobservable modes,
(C)noncontrollable and observable modes,
(D)noncontrollable and nonobservable modes.

State-space model of continuous linear systems with constant coefficients
is said to be minimal if it is controllable and observable.

State-space models of processes are more general than I/O models as they
can also contain noncontrollable and nonobservable parts that are cancelled
in I/O models.

Sometimes the notation detectability and stabilisability is used. A system
is said to be detectable if all nonobservable eigenvalues are asymptotically
stable and it is stabilisable if all nonstable eigenvalues are controllable.
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(D)

(C)

(A)

(B)�

�

�

�u y

Fig. 3.8. Canonical decomposition

3.3 Input-Output Process Models

In this section we focus our attention to transfer properties of processes. We
show the relations between state-space and I/O models.

3.3.1 SISO Continuous Systems with Constant Coefficients

Linear continuous SISO (single input, single output) systems with constant
coefficients with input u(t) and output y(t) can be described by a differential
equation in the form

an
dny(t)
dtn

+an−1
dn−1y(t)
dtn−1

+ · · ·+a0y(t) = bm
dmu(t)

dtm
+ · · ·+b0u(t) (3.116)

where we suppose that u(t) and y(t) are deviation variables. After taking the
Laplace transform and assuming zero initial conditions we get

(ans
n + an−1s

n−1 + · · · + a0)Y (s) = (bmsm + · · · + b0)U(s) (3.117)

or

G(s) =
Y (s)
U(s)

=
B(s)
A(s)

(3.118)

where

B(s) = bms
m + bm−1s

m−1 + · · · + b0
A(s) = ans

n + an−1s
n−1 + · · · + a0
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G(s) is called a transfer function of the system and is defined as the ratio
between the Laplace transforms of output and input with zero initial condi-
tions.

Note 3.2. Transfer functions use the variable s of the Laplace transform. In-
troducing the derivation operator p = d/dt then the relation

G(p) =
Y (p)
U(p)

=
B(p)
A(p)

(3.119)

is only another way of writing Eq. (3.116).

A transfer function G(s) corresponds to physical reality if

n ≥ m (3.120)

Consider the case when this condition is not fulfilled, when n = 1,m = 0

a0y = b1
du
dt

+ b0u (3.121)

If u(t) = 1(t) (step change) then the system response is given as a sum of two
functions. The first function is an impulse function and the second is a step
function. As any real process cannot show on output impulse behaviour, the
case n < m does not occur in real systems and the relation (3.120) is called
the condition of physical realisability.

The relation

Y (s) = G(s)U(s) (3.122)

can be illustrated by the block scheme shown in Fig. 3.9 where the block
corresponds to G(s). The scheme shows that if input to system is U(s) then
output is the function G(s)U(s).

G(s)� �U(s) Y (s)

Fig. 3.9. Block scheme of a system with transfer function G(s)

Example 3.9: Transfer function of a liquid storage system
Consider the tank shown in Fig. 2.1. State-space equations for this system
are of the form (see 2.5)

dx1

dt
= a11x1 + b11u

y1 = x1

where x1 = h − hs, u = q0 − qs
0. After taking the Laplace transform and

considering the fact that x1(0) = 0 follows
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sX1(s) = a11X1(s) + b11U(s)
Y1(s) = X1(s)

and

(s− a11)Y1(s) = b11U(s)

Hence, the transfer function of this process is

G1(s) =
b0

a1s+ 1
=

Z1

T1s+ 1

where a1 = T1 = (2F
√
hs)/k11, b0 = Z1 = (2

√
hs)/k11. T1 is time constant

and Z1 gain of the first order system.

Example 3.10: Two tanks in a series - transfer function
Consider two tanks shown in Fig. 3.10. The level h1 is not influenced by
the level h2.

q0

h

q1

h

1

2

q2

F1

F2

Fig. 3.10. Two tanks in a series

The dynamical properties of the first tank can be described as

F1
dh1

dt
= q0 − q1

and the output equation is of the form

q1 = k11

√
h1

The dynamical properties can also be written as

dh1

dt
= f1(h1, q0)
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where

f1(h1, q0) = −k11

F1

√
h1 +

1
F1
q0

For the steady-state follows

0 = −k11

F1

√
hs

1 +
1
F1
qs
0

qs
1 = k11

√
hs

1

Linearised dynamical properties in the neighbourhood of the steady-state
are of the form

dh1

dt
=

d(h1 − hs
1)

dt
= − k11

2F1

√
hs

1

(h1 − hs
1) +

1
F1

(q0 − qs
0)

and linearised output equation is

q1 − qs
1 =

k11

2
√
hs

1

(h1 − hs
1)

Let us introduce deviation variables
x1 = h1 − hs

1

u = q0 − qs
0

y1 = q1 − qs
1

Linear state-space model of the first tank is
dx1

dt
= a11x1 + b11u

y1 = c11x1

where

a11 = − k11

2F1

√
hs

1

, b11 =
1
F1
, c11 =

k11

2
√
hs

1

.

After applying the Laplace transform to these equations and using the
fact that initial conditions are zero we obtain

sX1(s) = a11X1(s) + b11U(s)
Y (s) = c11X1(s)

or

(s− a11)Y (s) = c11b11U(s)

The first tank transfer function G1(s) is

G1(s) =
Y1(s)
U(s)

=
1

a1s+ 1
=

1
T1s+ 1

where a1 = T1 = (2F
√
hs

1)/k11 and the gain is equal to one.
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The transfer function of the second tank G2(s) can be derived when con-
sidering deviation variables x2 = y = h2−hs

2 and the relation q2 = k22

√
h2

and is given as

G2(s) =
Y (s)
Y1(s)

=
Z2

T2s+ 1

where T2 = (2F2

√
hs

2)/k22, Z2 = (2
√
hs

2)/k22. The output Y (s) can be
written as

Y (s) =
Z2

T2s+ 1
Y1(s)

Y (s) =
Z2

T2s+ 1
1

T1s+ 1
U(s)

The overall transfer function of both tanks in a series is then

G(s) =
Y (s)
U(s)

=
Z2

T2s+ 1
1

T1s+ 1

Block scheme of this system is shown in Fig. 3.11.

1
T1s+1

Z2
T2s+1

� �U(s) Y1(s) �Y (s)

Fig. 3.11. Block scheme of two tanks in a series

Note 3.3. The example given above shows serial connection of two systems
where the second system does not influence the behaviour of the first
system. We can speak about “one-way” effect.

When the systems influence each other, the overall transfer function can-
not be obtained as a product of transfer functions of subsystems. This
is shown in the next example dealing with the interacting two tanks in
a series (See Fig. 2.2). Mathematical model of this system described by
equations (2.21) and (2.22) can be linearised in the neighbourhood of the
steady-state given by flow rate qs

0 and levels hs
1, h

s
2 as

dh1

dt
=

d(h1 − hs
1)

dt
=

1
F1

(q0 − qs
0)

− k11

2F1

√
hs

1 − hs
2

[(h1 − hs
1) − (h2 − hs

2)]

dh2

dt
=

d(h2 − hs
2)

dt
=

k11

2F2

√
hs

1 − hs
2

[(h1 − hs
1) − (h2 − hs

2)]

− k22

2F2

√
hs

2

(h2 − hs
2)

Introducing deviation variables
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x1 = h1 − hs
1, u = q0 − qs

0, y = x2 = h2 − hs
2

yields the linear model
dx1

dt
= a11x1 + a12x2 + b11u

dx2

dt
= a21x1 + a22x2

y = x2

where
a11 = − k11

2F1

√
hs

1 − hs
2

, a12 = −a11, b11 =
1
F1

a21 = − k11

2F2

√
hs

1 − hs
2

, a22 = −a21 −
k22

2F2

√
hs

2

,

Taking the Laplace transform yields
sX1(s) = a11X1(s) + a12X2(s) + b11U(s)
sX2(s) = a21X1(s) + a22X2(s)
Y (s) = X2(s)

or

(s2 − (a11 + a22)s+ (a11a22 − a12a21))Y (s) = a21b11U(s)

and hence the transfer function is given as

G(s) =
Y (s)
U(s)

=
b0

a2s2 + a1s+ 1

where
b0 =

a21b11
a11a22 − a12a21

a2 =
1

a11a22 − a12a21

a1 = − a11 + a22

a11a22 − a12a21

Example 3.11: n tanks in a series - transfer function
Assume n tanks in a series as shown in Fig. 3.12 and the corresponding
block scheme in Fig. 3.13. The variable U(s) denotes the Laplace transform
of u(t) = q0(t) − qs

0, Yi(s) are the Laplace transforms of yi(t) = qi(t) −
qs
0, i = 1 . . . n − 1, Y (s) is the Laplace transform of y(t) = hn(t) − hs

n.
T1, T2, . . . , Tn are time constants and Zn is gain.
Similarly as in the case of the two tanks without interaction, the partial
input and output variables are tied up with the following relations



90 3 Analysis of Process Models

q0

h

h

1

2

hi

hn

qi

qn-1

qn

. . . . . .

. . . . . .

qi-1

q1

q2

Fig. 3.12. Serial connection of n tanks

1
T1s+1

1
T2s+1

1
Tis+1

Zn

Tns+1
� � � � � � �. . . . . .U(s) Y1(s) Yi−1(s)

Yi(s)
Yn−1(s) Y (s)

Fig. 3.13. Block scheme of n tanks in a series

Y1(s) =
1

T1s+ 1
U(s)

Y2(s) =
1

T2s+ 1
Y1(s)

...

Yi(s) =
1

Tis+ 1
Yi−1(s)

...

Y (s) =
Zn

Tns+ 1
Yn−1(s)

The overall input variable is U(s) and the overall output variable is Y (s).
The overall transfer function is then

G(s) =
Y (s)
U(s)

=
Zn∏n

i=1(Tis+ 1)

Simplified block scheme of this system is shown in Fig. 3.14.

Example 3.12: U-tube : transfer function
Mathematical model of the U-tube shown in Fig. 3.5 is of the form
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Zn∏n

i=1
(Tis+1)

� �U(s) Y (s)

Fig. 3.14. Simplified block scheme of n tanks in a series

L

2g
d2h

dt2
+

k

2gρ
dh
dt

+ h =
1

2gρ
pv

Steady-state is determined by level of liquid h = hs = 0. We denote the
output deviation variable as y = h and the input deviation variable as
u = hv = pv/2gρ. Further let us introduce 1/ω2

k = L/2g, 2ζ/ωk = k/2gρ
where ωk is a critical frequency and ζ is a damping coefficient. The terms
critical frequency and damping coefficient will become clear from analysis
of the solution of the differential equation describing dynamical properties
of the U-tube. Mathematical model can be then rewritten as

1
ω2

k

d2y

dt2
+ 2

ζ

ωk

dy
dt

+ y = u

and the corresponding transfer function as

G(s) =
Y (s)
U(s)

=
1

T 2
k s

2 + 2ζTks+ 1

where Tk = 1/ωk.

Note 3.4. Mathematical model of the U-tube shows that step function on input
can result in an oscillatory response. Therefore, U-tube is able of to produce
its own oscillations. This is in contrast to other systems of the second order
that can be decomposed into two systems of the first order and cannot produce
the oscillations.

Example 3.13: Heat exchanger - transfer function
Mathematical model of a heat exchanger was developed in the Section 2.2
and was shown to be in the form

T1
dy1
dt

+ y1 = Z1u1 + Z2r1

where y1 = ϑ = ϑs, u1 = ϑp − ϑs
p, r1 = ϑv − ϑs

v and T1, T2, Z2 are
constants. The output variable is the natural state variable y1 = x1.
To determine the heat exchanger response to the change of inlet temper-
ature ϑv it is necessary to set u1 = 0 and analogously if response of the
process to the jacket temperature change is desired then r1 = 0. The vari-
able u1 is usually assumed to be a manipulated variable and r1 acts as a
disturbance.
Taking the Laplace transform and considering zero initial conditions yields
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(T1s+ 1)Y1(s) = Z1U1(s) + Z2R1(s)

if R1(s) = 0 then

G1(s) =
Y1(s)
U1(s)

=
Z1

T1s+ 1

if U1(s) = 0 then

G2(s) =
Y1(s)
R1(s)

=
Z2

T1s+ 1

Y1(s) can be written as

Y1(s) =
Z1

T1s+ 1
U1(s) +

Z2

T1s+ 1
R1(s)

Y1(s) = G1(s)U1(s) +G2(s)R1(s)
Block scheme of this process is shown in Fig. 3.15 or in Fig. 3.16 where r1
is moved from output to input to the system. This has an importance in
design of control systems because modified block scheme simplifies some
considerations.

Z1
T1s+1

Z2
T1s+1

�

�

��

�
�

R1(s)

U1(s)

Y1(s)

Fig. 3.15. Block scheme of a heat exchanger

Z2
Z1

Z1
T1s+1

�

�

� � ��

R1(s)

U1(s) Y1(s)

Fig. 3.16. Modified block scheme of a heat exchanger

Example 3.14: CSTR - transfer function
Consider the CSTR shown in Fig. 2.11. Let us introduce deviation vari-
ables

y1 = x1 = cA − csA

y2 = x2 = ϑ− ϑs

u1 = cAv − csAv

u2 = ϑc − ϑs
c
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The linearised mathematical model is then of the form
dx1

dt
= a11x1 + a12x2 + b11u1

dx2

dt
= a21x1 + a22x2 + b22u2

Compared to the Example 2.6, b11 = h11, b22 = b21 and inlet temperature
is assumed to be constant. We define the following transfer functions

G11(s) =
Y1(s)
U1(s)

G12(s) =
Y1(s)
U2(s)

G21(s) =
Y2(s)
U1(s)

G22(s) =
Y2(s)
U2(s)

Taking the Laplace transform of linearised mathematical model follows
sX1(s) = a11X1(s) + a12X2(s) + b11U1(s)
sX2(s) = a21X1(s) + a22X2(s) + b22U2(s)

The transfer function G11(s) can be derived if U2(s) = 0. Analogously,
other transfer functions can also be obtained.

G11(s) =
b11s− a22b11

s2 − (a11 + a22)s+ (a11a22 − a12a21)

G12(s) =
a12b22

s2 − (a11 + a22)s+ (a11a22 − a12a21)

G21(s) =
a21b11

s2 − (a11 + a22)s+ (a11a22 − a12a21)

G22(s) =
b22s− a11b22

s2 − (a11 + a22)s+ (a11a22 − a12a21)

3.3.2 Transfer Functions of Systems with Time Delays

Consider a process described by the differential equation

∂x1(σ, t)
∂t

+ vσ
∂x1(σ, t)
∂σ

= 0, x1(σ, 0) = 0 (3.123)

This equation is a description of a mathematical model of the double pipe heat
exchanger shown in Fig. 2.5 with α = 0 and x1 being deviation temperature
in the inner pipe. The process input variable is

u(t) = x1(0, t) = x0
1(t) (3.124)

and the output variable is defined as

y(t) = x1(L, t) (3.125)

The system defined with the above equations is called pure time delay.
After taking the Laplace transform with argument t we get

vσ
∂X1(σ, s)

∂σ
+ sX1(σ, s) = 0 (3.126)
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where

X1(σ, s) =
∫ ∞

0

x1(σ, t)e−stdt (3.127)

Applying the Laplace transform with argument σ yields

vσqX̄1(q, s) − vσU(s) + sX̄1(q, s) = 0 (3.128)

where

X̄1(q, s) =
∫ ∞

0

X1(σ, s)e−qσdσ (3.129)

U(s) = X1(0, s) (3.130)

From Eq. (3.128) follows

X̄1(q, s) =
1

q + s
vσ

U(s) (3.131)

This equation can be transformed back into σ domain

X1(σ, s) = e−
σ

vσ
sU(s) (3.132)

The corresponding transfer function of pure time delay for any σ ∈ [0, L] is

Gdσ =
X1(σ, s)
U(s)

= e−
σ

vσ
s (3.133)

and for σ = L

Gd =
Y (s)
U(s)

= e−Tds (3.134)

where Td = L/vσ.
Let us now consider only part of the process of length Δσ that is perfectly

mixed. The equation (3.123) can be approximated as

dx1(Δσ, t)
dt

= vσ
−x1(Δσ, t) + u(t)

Δσ
(3.135)

This equation after taking the Laplace transform is of the form

X1(Δσ, t)
U(s)

=
1

1 + Δσ
vσ
s

(3.136)

Because the term e
Δσ
vσ

s can be written as

1

e
Δσ
vσ

s
=

1
1 + Δσ

vσ
s+ 1

2
Δσ2

v2
σ
s2 + · · ·

(3.137)
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then the right hand side term of (3.136) can be viewed as the first order
approximation of time delay term.

Let us further assume mass balance of the process of length Δσ of the
form

d
dt

(
u(t) + x1(Δσ, t)

2

)
= vσ

−x1(Δσ, t) + u(t)
Δσ

(3.138)

Taking the Laplace transform becomes

X1(Δσ, t)
U(s)

=
1 − 1

2
Δσ
vσ
s

1 + 1
2

Δσ
vσ
s

(3.139)

This equation can be understood as the first order Pade approximation of
time delay term. Similarly for the second order Pade approximation yields

X1(Δσ, t)
U(s)

=
1 − 1

2
Δσ
vσ
s+ 1

12
Δσ2

v2
σ
s2

1 + 1
2

Δσ
vσ
s+ 1

12
Δσ2

v2
σ
s2

(3.140)

Example 3.15: Double-pipe heat exchanger - transfer functions
Consider the heat exchanger shown in Fig. 2.5. It can be described by the
following differential equation

T1
∂ϑ(σ, t)
∂t

+ vσT1
∂ϑ(σ, t)
∂σ

+ ϑ(σ, t) = ϑp(t)

Assume boundary and initial conditions of the form
ϑ(0, t) = ϑ0(t)

ϑ(σ, 0) = ϑs(σ) = ϑs
p − (ϑs

p − ϑ0s
p )e−

σ
vσT1

ϑp(t) = ϑs
p, t < 0

ϑ0(t) = ϑ0s, t < 0
and deviation variables

x1(σ, t) = ϑ(σ, t) − ϑs(σ)
u1(t) = ϑp(t) − ϑs

p

u2(t) = ϑ0(t) − ϑ0s

The differential equation of the heat exchanger then becomes

T1
∂x1(σ, t)

∂t
+ vσT1

∂x1(σ, t)
∂σ

+ x1(σ, t) = u1(t)

with boundary and initial conditions
x1(0, t) = u2(t)
x1(σ, 0) = 0
u1(t) = 0, t < 0
u2(t) = 0, t < 0
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Taking the Laplace transform with an argument t yields

(T1s+ 1)X1(σ, s) + vσT1
∂X1(σ, s)

∂σ
= U1(s)

where

X1(σ, s) =
∫ ∞

0

x1(σ, t)e−stdt

The second Laplace transform gives

(T1s+ vσT1q + 1)X̄1(q, s) =
1
q
U1(s) + vσT1U2(s)

where
X̄1(q, s) =

∫ ∞

0

X1(σ, s)e−qσdσ

U2(s) = X1(0, s)
X̄1(q, s) can be written as

X̄1(q, s) =
1

T1s+ 1
a

q(q + a)
U1(s) +

1
q + a

U2(s)

where a = (T1s+ 1)/vσT1.
The inverse Laplace transform according to σ gives

X1(σ, s) =
1

T1s+ 1

(
1 − e−

T1s+1
vσT1

σ
)
U1(s) + e−

T1s+1
vσT1

σU2(s)

which shows that the transfer functions are of the form

G1k =
Yk(s)
U1(s)

=
1

T1s+ 1

(
1 − e−

σk
vσT1 e−

σk
vσ

s
)

G2k =
Yk(s)
U2(s)

= e−
σk

vσT1 e−
σk
vσ

s

where

Yk(s) = X1(σk, s), k = 1, 2, . . . , r; 0 ≤ σk ≤ L

Block scheme of the double-pipe heat exchanger is shown in Fig. 3.17.

3.3.3 Algebra of Transfer Functions for SISO Systems

Investigation of block schemes reveals the fact that all schemes can be decom-
posed into 3 basic connections: serial, parallel, and feedback. The rules that
enable to determine the overall transfer function of a system composed from
basic blocks are called algebra of transfer functions.
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exp
(
− σk

vσT1

)
exp

(
−σk

vσ
s
)

1
T1s+1

�

�

� �� �

�
��

�U1(s)

U2(s) −

Yk(s)

Fig. 3.17. Block scheme of a double-pipe heat exchanger

Serial Connection

Serial connection results in a situation when the output variable of the first
block is the input variable of the second block (Fig. 3.18). The overall transfer
function can be written as

G(s) = G1(s)G2(s) (3.141)

G1(s) G2(s) G1(s)G2(s)� � � � �U(s) Y1(s) Y (s)
≡

U(s) Y (s)

Fig. 3.18. Serial connection

Generally when n blocks are connected in series, the transfer function is
given as a product of partial transfer functions:

G(s) = G1(s)G2(s) . . . Gn(s) (3.142)

Parallel Connection

G1(s) +G2(s)

G2(s)

G1(s)

� �≡
U(s) Y (s)�

�

�

��

�

U(s)

Y1(s)

Y2(s)

Y (s)

Fig. 3.19. Parallel connection

Parallel connection is characterised by one input variable for all systems.
Output variable is given as the sum of partial outputs (Fig. 3.19). Parallel
connection is characterised by the equations
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Y1(s) = G1(s)U(s) (3.143)
Y2(s) = G2(s)U(s) (3.144)
Y (s) = Y1(s) + Y2(s) (3.145)

Substituting Y1(s) from (3.143) and Y2(s) from (3.144) into (3.145) yields

Y (s) = [G1(s) +G2(s)]U(s) = G(s)U(s) (3.146)

and

G(s) = G1(s) +G2(s) (3.147)

In general, the overall transfer functions is given as the sum of partial
transfer functions

G(s) =
n∑

i=1

Gi(s) (3.148)

Feedback Connection

Feedback connection of two blocks results when output variables of each block
are fed back as the input of the other block (Fig. 3.20).

G1(s)
1±G1(s)G2(s)

G2(s)

G1(s)

� �≡
U(s) Y (s)

��
�

� �

�

U(s) E(s) Y (s)

Y1(s)

+ ∓

Fig. 3.20. Feedback connection

For the feedback connection holds

Y (s) = G1(s)E(s) (3.149)
Y1(s) = G2(s)Y (s) (3.150)
E(s) = U(s) ∓ Y1(s) (3.151)

The minus sign in the Eq. (3.151) corresponds to negative feedback and the
plus sign to positive feedback. From these equations follow

Y1(s) = G1(s)G2(s)E(s) (3.152)

E(s) =
1

1 ±G1(s)G2(s)
U(s) (3.153)

Y (s) =
G1(s)

1 ±G1(s)G2(s)
U(s) = G(s)U(s) (3.154)
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The overall transfer function is then given as

G(s) =
G1(s)

1 ±G1(s)G2(s)
(3.155)

The feedback transfer function is a ratio with the numerator given as the
transfer function between the input and output signals and with the denomi-
nator given as a sum (negative feedback) or difference (positive feedback) of
1 and transfer function of the corresponding open-loop system.

Rule for Moving of the Branching Point

When the branching point is moved against the direction of the previous signal
then the moved branch must contain all blocks which are between the original
and new branching point (Fig. 3.21).

G(s)

G(s)

G(s)� �

�

� �

��

≡

Y Y

Fig. 3.21. Moving of the branching point against the direction of signals

The opposite situation is when the branching point is moved in the direc-
tion of the signal flow. In this case the moved branch contains inverses of the
relevant blocks (Fig. 3.22).

G(s)

G−1(s)

G(s)� � � �

���

� �≡

Y Y

Fig. 3.22. Moving of the branching point in the direction of signals

Rule for Moving of the Summation Point

Moving of the summation point is an inverse action to moving of the branching
point. The rules are shown in Figs. 3.23 and 3.24.
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G(s) G(s)

G(s)

� �� � � � �
�

�

�

�

U U

≡

Fig. 3.23. Moving of the summation point in the direction of signals

G(s)

G−1(s)

G(s)� � �� � � � �

�

��
≡

U U

Fig. 3.24. Moving of the summation point against the direction of signals

3.3.4 Input Output Models of MIMO Systems - Matrix
of Transfer Functions

The standard and natural description of MIMO systems is in the form of
state-space equations

dx(t)
dt

= Ax(t) + Bu(t) (3.156)

y(t) = Cx(t) + Du(t) (3.157)

where x[n × 1] is the vector of state variables, u[m × 1] is the vector of
input variables, y[r× 1] is the vector of output variables, and A,B,C,D are
constant matrices of appropriate dimensions.

When all variables are deviation variables and x(0) = 0 then the input-
output (I/O) properties of this system can be determined from the convolution
multiplication

y(t) =
∫ t

0

g(t− τ)u(τ)dτ (3.158)

where g(t) is matrix of impulse responses of the [r ×m] system and is given
as

g(t) =
{

0 t < 0
CeAtB + Dδ(t) t ≥ 0 (3.159)

and δ(t) is the Dirac delta function.
Consider now the system given by Eqs. (3.156), (3.157). Taking the Laplace

transform yields
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Y (s) =
(
C(sI − A)−1B + D

)
U(s) (3.160)

or

Y (s) = G(s)U(s) (3.161)

where

G(s) = C(sI − A)−1B + D (3.162)

is [r ×m] transfer function matrix of linear continuous system with constant
coefficients. This matrix is the Laplace transform of matrix g(t)

G(s) =
∫ ∞

0

g(t)e−stdt (3.163)

The matrix G(s) derived from the original state-space model is the same as
the transfer function matrix of controllable and observable part of this system.
The noncontrollable and nonobservable modes of the system are cancelled in
the process of transformation from state-space models into I/O models. Often,
there are tasks of the inverse transformation from I/O to state-space (SS)
model. It must be emphasised that one I/O model corresponds to an infinite
number of state-space models. We then speak about a state-space realisation
of I/O model. Minimum realisation fulfils the properties of controllability and
observability. Hence an unambiguous relation between G(s) and its state-
space realisation exists only if the state-space model is minimal.

If we deal with SISO systems we can write

G(s) = C(sI − A)−1B + D =
B(s)
A(s)

(3.164)

If the state-space model is the minimal realisation of G(s) then

det(sI − A) = A(s) (3.165)

The degree of characteristic polynomial A(s) is equal to n where n is the
number of states of state-space model. We call n as system order.

Any transfer function can be one of the following forms:

1.

G(s) =
bms

m + bm−1s
m−1 + · · · + b0

ansn + an−1sn−1 + · · · + a0
, n ≥ m (3.166)

2.

G(s) =
bm(s− sN1)(s− sN2) . . . (s− sNm)
an(s− s1)(s− s2) . . . (s− sn)

(3.167)

Roots of the characteristic polynomial s1, . . . , sn are system poles. Roots
of numerator polynomial sN1, . . . , sNn are system zeros.
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3.

G(s) = Zs
(TN1s+ 1)(TN2s+ 1) . . . (TNms+ 1)

(T1s+ 1)(T2s+ 1) . . . (Tns+ 1)
(3.168)

where T1, . . . , Tn, TN1, . . . , TNm are time constants and Zs = b0/a0 is the
system gain. This expression for transfer function can only be written if all
poles and zeros are real. Time constants correspond to negative inverses
of poles and zeros.

Transfer function matrix G(s) has dimensions [r×m]. An element of this
matrixGkj(s) is the transfer function corresponding to input uj and output yk.

Gkj(s) =
Yk(s)
Uj(s)

(3.169)

The matrix G(s) can also be written as

G(s) =
Cadj(sI − A)B + Dd(s)

d(s)
(3.170)

where d(s) = |sI − A|.
As all elements of adj(sI − A) are polynomials with a degree less than or

equal to n − 1 and polynomial d(s) is of degree n then all transfer functions
Gkj(s) have a degree of numerator less than or equal to the degree of the
denominator. G(s) is proper rational function matrix. When D = 0 then all
numerator degrees are less than the denominator degrees and G(s) is strictly
proper rational function matrix.

Definition of proper and strictly proper transfer function matrix G(s):
A rational matrix G(s)[r × m] is proper if all its transfer functions satisfy
lim|s|→∞Gkj(s) < ∞. A rational matrix G(s) is strictly proper if for all its
elements hold lim|s|→∞Gkj(s) = 0. The numerator degree of a proper SISO
system is smaller or equal to the denominator degree. The numerator degree
of a strictly proper SISO system is smaller as the denominator degree.

Roots of polynomial d(s) are poles of G(s). If no cancellation of roots
occurs during the calculation of G(s) then the matrix poles are the same as
system poles.

If all poles of G(s) are located in the left half plane of the complex plane
then the frequency transfer function matrix that is defined as Fourier trans-
formation of g(t) exists and can be obtained by the substitution s = jω, i.e.

G(jω) = C(jωI − A)−1B + D (3.171)

The Fourier transform is defined as

F (jω) ≡
∫ ∞

−∞
f(t)e−jωtdt (3.172)
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G(jω) is called the frequency transfer function matrix. The values of G(jω)
are for any real ω given as values of G(s) for s = jω.

G(jω) = G(s)|s=jω (3.173)

This function can be introduced not only for stable but for arbitrary transfer
functions. However, if G(s) has a root on imaginary axis si = jβi then G(jω)
has an infinite value for ω = βi.

Example 3.16: CSTR - transfer function matrix
Consider the CSTR shown in Fig. 2.11 and assume the same notation as
in the Example 3.14. The state-space model matrices are

A =
(
a11 a12

a21 a22

)
,B =

(
b11 0
0 b22

)
,C = I2

From (3.162) follows

G(s) = I2

[
sI2 −

(
a11 a12

a21 a22

)]−1(
b11 0
0 b22

)

=
(
s− a11 −a12

−a21 s− a22

)−1(
b11 0
0 b22

)

=
1

(s− a11)(s− a22) − a12a21

(
s− a22 a12

a21 s− a11

)(
b11 0
0 b22

)

=
1

(s− a11)(s− a22) − a12a21

(
b11s− a22b11 a12b22

a21b11 b22s− a11b22

)

The partial transfer functions of G(s) are the same as in the example 3.14.

3.3.5 BIBO Stability

BIBO stability plays an important role among different definitions of stability.
The abbreviation stands for Bounded Input, Bounded Output. Roughly said,
a system is BIBO stable if any bounded input gives a bounded output. This is
also the reason why we sometimes speak about BIBO stability as of external
stability.

Definition of BIBO stability : A linear continuous system with constant
coefficients (3.156), (3.157) with zero initial state x(t0) is BIBO stable if for
all t0 and for all inputs u(t) that are finite on [t0,∞) is output y(t) also finite
on [t0,∞).

Theorem: BIBO stability. A linear continuous system with constant coef-
ficients (3.156), (3.157) is BIBO stable if and only if

∫ ∞

0

‖g(τ)‖ dτ <∞ (3.174)



104 3 Analysis of Process Models

where the norm is induced by the norm on u.
An alternate theorem about BIBO stability states: A linear continuous

system with constant coefficients (3.156), (3.157) is BIBO stable if and only
if all poles of transfer function matrix G(s) lie in the open left half plane of
the complex plane.

Asymptotic stability of linear continuous systems with constant coefficients
implies BIBO stability but the opposite case need not be true.

3.3.6 Transformation of I/O Models into State-Space Models

In the previous sections we found out that an input-output model can be
transformed into infinitely many state-space models. In this section we show
the procedures of this transformation that lead to controllable and observable
canonical forms for SISO systems.

Controllable Canonical Form

Consider a system with transfer function in the form

G(s) =
bms

m + bm−1s
m−1 + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
, n ≥ m (3.175)

Let us introduce an auxiliary variable z(t) and its Laplace transform Z(s)
such that

Y (s)
Z(s)

= bms
m + bm−1s

m−1 + · · · + b1s+ b0 (3.176)

Z(s)
U(s)

=
1

sn + an−1sn−1 + · · · + a1s+ a0
(3.177)

Equation (3.177) corresponds to the following differential equation

dnz(t)
dtn

+ an−1
dn−1z(t)
dtn−1

+ · · · + a1ż(t) + a0z(t) = u(t) (3.178)

Now let us define state variables by the following relations

diz(t)
dti

= xi+1(t), i = 0, 1, . . . , n− 1 (3.179)

dxi(t)
dt

= xi+1(t), i = 1, 2, . . . , n− 1 (3.180)

(3.181)

Equation (3.178) can now be transformed into n first order differential
equations
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dx1(t)
dt

= x2(t)

dx2(t)
dt

= x3(t)

... (3.182)
dxn−1(t)

dt
= xn(t)

dxn(t)
dt

=
dnz(t)
dtn

= −an−1xn − · · · − a1x2(t) − a0x1(t) + u(t)

When n = m then Eq. (3.176) corresponds to

y(t) = b0x1(t) + b1x2(t) + · · · + bn−1xn(t) + bnẋn(t) (3.183)

ẋn(t) from this equation can be obtained from Eq. (3.182) and yields

y(t) = (b0 − a0bn)x1(t) + (b1 − a1bn)x2(t) + · · · +
+(bn−1 − an−1bn)xn(t) + bnu(t) (3.184)

Equations (3.182) and (3.184) form a general state-space model of the form

dx(t)
dt

= Acx(t) + Bcu(t) (3.185)

y(t) = Ccx(t) + Dcu(t) (3.186)

where x = (x1, x2, . . . , xn)T ,

Ac =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎞
⎟⎟⎟⎟⎟⎠
, Bc =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

Cc =
(
b0 − a0bn b1 − a1bn . . . bn−1 − an−1bn

)
, Dc = bn

We see that if m < n then D = 0. This system of state-space equations can be
shown to be always controllable but it need not be observable. We speak about
controllable canonical form of a system. The corresponding block scheme is
shown in Fig. 3.25.

Example 3.17: Controllable canonical form of a second order system
Consider a system described by the following differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t)

and corresponding transfer function

Y (s)
U(s)

=
b1s+ b0

s2 + a1s+ a0
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−a0

1
s

1
s

1
s b0

bn

bn−1

bn−2

b1

� �� � � � � � � �
�����	

��
���

−an−1

−an−2

−a1

�

�

�

�

�

�

�

�

. . .
u(t) ẋn xn xn−1 x2 x1 y(t)

Fig. 3.25. Block scheme of controllable canonical form of a system

We introduce Z(s) such the following equations hold
Y (s)
Z(s)

= b1s+ b0

Z(s)
U(s)

=
1

s2 + a1s+ a0

State-space equations can be written as
dx1(t)

dt
= x2(t)

dx2t)
dt

= −a0x1(t) − a1x2(t) + u(t)

y(t) = b0x1(t) + b1x2(t)
and the corresponding block scheme is shown in Fig. 3.26.
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−a1

1
s

−a0

1
s

b1

b0� �� � � � � ��

�

�

�

���

u(t) x2 x1 y(t)

Fig. 3.26. Block scheme of controllable canonical form of a second order system

Observable Canonical Form

Consider again the system with transfer function given by (3.175) and assume
n = m. Observable canonical form of this system is given by

dx(t)
dt

= Aox(t) + Bou(t) (3.187)

y(t) = Cox(t) + Dou(t) (3.188)

where x = (x1, x2, . . . , xn)T ,

Ao =

⎛
⎜⎜⎜⎜⎜⎝

−an−1 1 0 . . . 0
−an−2 0 1 . . . 0

...
. . .

...
−a1 0 0 . . . 1
−a0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠
, Bo =

⎛
⎜⎜⎜⎜⎜⎝

bn−1 − an−1bn
bn−2 − an−2bn

...
b1 − a1bn
b0 − a0bn

⎞
⎟⎟⎟⎟⎟⎠

Co =
(
1 0 . . . 0

)
,Do = bn

The corresponding block scheme is shown in Fig. 3.27.

3.3.7 I/O Models of MIMO Systems - Matrix Fraction
Descriptions

Transfer function matrices provide a way to describe I/O ( external) models of
MIMO linear continuous systems. An alternate way is to give descriptions of
such systems in polynomial matrix fractions that provide a natural generalisa-
tion of the singlevariable concept. A fundamental element of such descriptions
is the polynomial matrix or matrix polynomial.

Real polynomial matrix is a matrix
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� � � �
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� � � � � � � �
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u(t)

xn x2 x1 y(t)
. . .

...

� . . .

�

Fig. 3.27. Block scheme of observable canonical form of a system

P (s) =

⎛
⎜⎜⎜⎝
p11(s) p12(s) . . . p1m(s)
p21(s) p22(s) . . . p2m(s)

...
...

pn1(s) pn2(s) . . . pnm(s)

⎞
⎟⎟⎟⎠ (3.189)

with elements being polynomials

pij(s) = pij0 + pij1s+ · · · + pijdij
sdij (3.190)

where pijk are real numbers and i = 1 . . . n, j = 1 . . .m, k = 0 . . . dij .
An element pij(s) identically equal to zero has according to definition a

degree equal to minus one.
Row degree of i-th row of P is denoted by ri and it is the maximum

degree of all polynomials in the i-th row (ri = maxj dij). Analogously are
defined column degrees cj as maxi dij .

Degree of polynomial matrix P is denoted by deg P and is defined as the
maximum degree of all polynomials of P (maxij dij).

An alternate way of writing (3.189) is as matrix polynomial

P (s) = P 0 + P 1s+ · · · + P ds
d (3.191)

where
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P k =

⎛
⎜⎜⎜⎝
p11k p12k . . . p1mk

p21k p22k . . . p2mk

...
...

pn1k pn2k . . . pnmk

⎞
⎟⎟⎟⎠ k = 0, . . . , d

d = deg P

A square polynomial matrix P (s) is nonsingular if detP (s) is not identi-
cally equal to zero.

Roots of a square polynomial matrix are roots of the determinant of the
polynomial matrix. A polynomial matrix is stable if all its roots lie in the open
left half plane of the complex plane.

An unimodular polynomial matrix is a square polynomial matrix with a
determinant equal to a nonzero constant. P (s) is unimodular if its inverse is
also unimodular.

Rank of polynomial matrix is the highest order of a nonzero minor of this
matrix.

For any P (s) there exist unimodular matrices U(s) and V (s) such that

U(s)P (s)V (s) = Λ(s) (3.192)

where

Λ(s) =

⎛
⎜⎜⎜⎜⎜⎝

λ1(s) 0 . . . 0 0
0 λ2(s) . . . 0 0
...

...
...

0 0 . . . λr(s) 0
0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠

λi are unique monic polynomials (i.e. polynomials with a unit first coefficient)
for which holds λi divides λj for i < j ≤ r and r is equal to rank P (s). The
matrix Λ(s)[n×m] is called the Smith form of polynomial matrix.

Elementary row (column) operations on P (s) are:

1. interchange of any two rows (columns) of P (s),
2. multiplication of any row (column) of P (s) by any nonzero number,
3. addition to any row (column) of a polynomial multiple of any other row

(column).

For any polynomial matrix we can find elementary row and column oper-
ations transforming the matrix into the Smith form.

A [r ×m] transfer function matrix G(s) can be of the form

G(s) =
M(s)
d(s)

(3.193)

where d(s) is the least common multiplier of denominators of elements of G(s)
and M(s) is a polynomial matrix. The matrix G(s) from Eq. (3.193) can also
be written as



110 3 Analysis of Process Models

G(s) = BR(s)A−1
R (s) (3.194)

where BR(s) = M(s), AR(s) = d(s)Im. It is also possible to write

G(s) = A−1
L (s)BL(s) (3.195)

where BL(s) = M(s), AL(s) = d(s)Ir.
The description of G(s) given by (3.194) is called right matrix fraction

description (RMFD). The degree of determinant of AR(s) is

deg det AR(s) = ddm (3.196)

where dd is a degree of d(s) and m is a dimension of vector u.
Analogously, the description of (3.194) is called left matrix fraction de-

scription (LMFD). The degree of determinant of AL(s) is

deg det AL(s) = ddr (3.197)

where r is the dimension of vector y.
Given G(s) there are infinitely many LMFD’s and RMFD’s.
Minimum degree of determinant of any LMFD (RMFD) of G(s) is equal

to the minimum order of some realisation of G(s).
If some RMFD of G(s) is of the form

G(s) = BR1(s)A−1
R1(s) (3.198)

and some other RMFD of the form

G(s) = BR(s)A−1
R (s) (3.199)

then BR1(s) = BR(s)W (s), AR1(s) = AR(s)W (s), and W (s) is some poly-
nomial matrix and it is common right divisor of BR1(s),AR1(s). Analogously,
the common left divisor can be defined.

Definition of relatively right (left) prime (RRP-RLP) polynomial matrices:
Polynomial matrices B(s), A(s) with the same number of columns (rows) are
RRP (RLP) if their right (left) common divisors are unimodular matrices.

Matrix fraction description of G(s) given by A(s),B(s) is right (left) ir-
reducible if A(s),B(s) are RRP (RLP).

The process of obtaining irreducible MFD is related to greatest common
divisors.

Greatest right (left) common divisor (GRCD-GLCD) of polynomial ma-
trices A(s),B(s) with the same number of columns (rows) is a polynomial
matrix R(s) that satisfies the following conditions:

• R(s) is common right (left) divisor of A(s),B(s),
• if R1(s) is any common right (left) divisor of A(s),B(s) then R1(s) is

right (left) divisor of R(s).
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Lemma: relatively prime polynomial matrices: Polynomial matrices BR(s),
AR(s) are RRP if and only if there exist polynomial matrices XL(s), Y L(s)
such that the following Bezout identity is satisfied

Y L(s)BR(s) + XL(s)AR(s) = Im (3.200)

Polynomial matrices BL(s),AL(s) are RLP if and only if there exist poly-
nomial matrices XR(s), Y R(s) such that the following Bezout identity is
satisfied

BL(s)Y R(s) + AL(s)XR(s) = Ir (3.201)

For any polynomial matrices BR(s)[r×m] and AR(s)[m×m] an unimod-
ular matrix V (s) exists such that

V (s) =
(

V 11(s) V 12(s)
V 21(s) V 22(s)

)
,

V 11(s) ∈ [m× r] V 12(s) ∈ [m×m]
V 21(s) ∈ [r × r] V 22(s) ∈ [r ×m]

(3.202)

and

V (s)
(

BR(s)
AR(s)

)
=
(

R(s)
0

)
(3.203)

R(s)[m ×m] is GRCD(BR(s),AR(s)). The couples V 11,V 12 and V 21,V 22

are RLP. An analogous property holds for LMFD: For any polynomial matrices
BL(s)[r ×m] and AL(s)[r × r] an unimodular matrix U(s) exists such that

U(s) =
(

U11(s) U12(s)
U21(s) U22(s)

)
,

U11(s) ∈ [r × r] U12(s) ∈ [r ×m]
U21(s) ∈ [m× r] U22(s) ∈ [m×m]

(3.204)

and

(AL(s) BL(s)) U(s) = (L(s) 0) (3.205)

L(s)[r × r] is GLCD(BL(s),AL(s)). The couples U11,U21 and U12,U22

are RRP.
Equations (3.203), (3.205) can be used to obtain irreducible MFD of G(s).

When assuming RMFD the G(s) is given as

G(s) = BR(s)A−1
R (s) (3.206)

where BR(s) = −V 12(s) and AR(s) = V 22(s).
Lemma: division algorithm: Let A(s)[m×m] be a nonsingular polynomial

matrix. Then for any B(s)[r × m] there exist unique polynomial matrices
Q(s), R(s) such that
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B(s) = Q(s)A(s) + R(s) (3.207)

and R(s)A−1(s) is strictly proper.
The previous lemma deals with right division algorithm. Analogously, the

left division can be defined.
This lemma can be used in the process of finding of a strictly proper part

of the given R(L)MFD.
Lemma: minimal realisation of MFD : A MFD realisation with a degree

equal to the denominator determinant degree is minimal if and only if the
MFD is irreducible.

Lemma: BIBO stability : If the matrix transfer function G(s) is given by
Eq. (3.194) then it is BIBO stable if and only if all roots of detAR(s) lie in
the open left half plane of the complex plane. (analogously for LMFD).

Spectral factorisation: Consider a real polynomial matrix B(s)[m×m] such
that

BT (−s) = B(s) (3.208)
B(jω) > 0 ∀ω ∈ R (3.209)

Right spectral factor of B(s) is some stable polynomial matrix A(s)[m ×m]
that satisfies the following relation

B(s) = AT (−s)A(s) (3.210)
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3.5 Exercises

Exercise 3.1:
Consider the two tanks shown in Fig. 3.10. A linearised mathematical model
of this process is of the form

dx1

dt
= a11x1 + b11u

dx2

dt
= a21x1 + a22x2

y = x2

where

a11 = − k11

2F1

√
hs

1

, a21 =
k11

2F2

√
hs

1

a22 = − k22

2F2

√
hs

2

, b11 =
1
F1

Find:
1. state transition matrix of this system,
2. if x1(0) = x2(0) = 0 give expressions for functions

x1(t) = f1(u(t))
x2(t) = f2(u(t))
y(t) = f3(u(t))

Exercise 3.2:
Consider CSTR shown in Fig. 2.11 and examine its stability. The rate of
reaction is given as (see example 2.6)
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r(cA, ϑ) = kcA = k0e−
E

Rϑ cA

Suppose that concentration cAv and temperatures ϑv, ϑc are constant. Perform
the following tasks:
1. define steady-state of the reactor and find the model in this steady-state

so that dcA/dt = dϑ/dt = 0,
2. define deviation variables for reactor concentration and temperature and

find a nonlinear model of the reactor with deviation variables,
3. perform linearisation and determine state-space description,
4. determine stability conditions according to the Lyapunov equation (3.82).

We assume that if the reactor is asymptotically stable in large in origin
then it is asymptotically stable in origin.

Exercise 3.3:
Consider the mixing process shown in Fig. 2.15. The task is to linearise the
process for the input variables q0, q1 and output variables h, c2 and to deter-
mine its transfer function matrix.

Exercise 3.4:
Consider a SISO system described by the following differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t)

Find an observable canonical form of this system and its block scheme.

Exercise 3.5:
Assume 2I/2O system with transfer function matrix given as LMFD (3.195)
where

AL(s) =
(

1 + a1s a2s
a3s 1 + a4s

)

BL(s) =
(
b1 b2
b3 b4

)

By using the method of comparing coefficients, find the corresponding
RMFD (3.194) where

AR(s) =
(
a1R + a2Rs a3R + a4Rs
a5R + a6Rs a7R + a8Rs

)

BR(s) =
(
b1R b2R

b3R b4R

)

Elements of matrix

AR0 =
(
a1R a3R

a5R a7R

)

can be chosen freely, but AR0 must be nonsingular.
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Dynamical Behaviour of Processes

Process responses to various simple types of input variables are valuable for
process control design. In this chapter three basic process responses are stud-
ied: impulse, step, and frequency responses. These characteristics are usu-
ally investigated by means of computer simulations. In this connection we
show and explain computer codes that numerically solve systems of differen-
tial equations in the programming languages BASIC, C, and MATLAB.

The end of this chapter deals with process responses for the case of stochas-
tic input variables.

4.1 Time Responses of Linear Systems to Unit Impulse
and Unit Step

4.1.1 Unit Impulse Response

Consider a system described by a transfer function G(s) and for which holds

Y (s) = G(s)U(s) (4.1)

If the system input variable u(t) is the unit impulse δ(t) then

U(s) = L{δ(t)} = 1 (4.2)

and the system response is given as

y(t) = g(t) (4.3)

where g(t) = L−1 {G(s)} is system response to the unit impulse if the system
initial conditions are zero, g(t) is called impulse response or weighting function.

If we start from the solution of state-space equations (3.47)
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x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bu(τ)dτ (4.4)

y(t) = Cx(t) +Du(t) (4.5)

and replace u(t) with δ(t) we get

x(t) = eAtx(0) + eAtB (4.6)
y(t) = CeAtx(0) + CeAtB +Dδ(t) (4.7)

For x(0) = 0 then follows

y(t) = CeAtB +Dδ(t) = g(t) (4.8)

Consider the transfer function G(s) of the form

G(s) =
bns

n + bn−1s
n−1 + · · · + b0

ansn + an−1sn−1 + · · · + a0
(4.9)

The initial value theorem gives

g(0) = lim
s→∞ sG(s) =

⎧⎨
⎩

∞, if bn = 0
bn−1
an

, if bn = 0
0, if bn = bn−1 = 0

(4.10)

and g(t) = 0 for t < 0.
If for the impulse response holds g(t) = 0 for t < 0 then we speak about

causal system.
From the Duhamel integral

y(t) =
∫ t

0

g(t− τ)u(τ)dτ (4.11)

follows that if the condition∫ t

0

|g(t)|dt <∞ (4.12)

holds then any bounded input to the system results in bounded system output.

Example 4.1: Impulse response of the first order systemwww
Assume a system with transfer function

G(s) =
1

T1s+ 1

then the corresponding weighting function is the inverse Laplace transform
of G(s)

g(t) =
1
T1

e−
t

T1

The graphical representation of this function is shown in Fig. 4.1.
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Fig. 4.1. Impulse response of the first order system

4.1.2 Unit Step Response

Step response is a response of a system with zero initial conditions to the unit
step function 1(t). Consider a system with transfer function G(s) for which
holds

Y (s) = G(s)U(s) (4.13)

If the system input variable u(t) is the unit step function

u(t) = 1(t) (4.14)

then the system response (for zero initial conditions) is

y(t) = L−1
{
G(s) 1

s

}
(4.15)

From this equation it is clear that step response is a time counterpart of the
term G(s)/s or equivalently G(s)/s is the Laplace transform of step response.
The impulse response is the time derivative of the step response.

Consider again the state-space approach. For u(t) = 1(t) we get from (3.47)

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bu(t)dτ (4.16)

x(t) = eAtx(0) + eAt(−A−1)(e−At − I)B (4.17)
x(t) = eAtx(0) + (eAt − I)A−1B (4.18)
y(t) = CeAtx(0) + C(eAt − I)A−1B +D (4.19)

For x(0) = 0 holds

y(t) = C(eAt − I)A−1B +D (4.20)
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If all eigenvalues of A have negative real parts, the steady-state value of
step response is equal to G(0). This follows from the Final value theorem (see
page 58)

lim
t→∞ y(t) = lim

s=0
G(s) = −CA−1B +D =

b0
a0

(4.21)

The term b0/a0 is called (steady-state) gain of the system.

Example 4.2: Step response of first order systemwww
Assume a process that can be described as

T1
dy
dt

+ y = Z1u

This is an example of the first order system with the transfer function

G(s) =
Z1

T1s+ 1

The corresponding step response is given as

y(t) = Z1(1 − e−
t

T1 )

Z1 the gain and T1 time constant of this system. Step response of this
system is shown in Fig 4.2.
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Fig. 4.2. Step response of a first order system

Step responses of the first order system with various time constants are
shown in Fig 4.3. The relation between time constants is T1 < T2 < T3.
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Fig. 4.3. Step responses of a first order system with time constants T1, T2, T3

Example 4.3: Step responses of higher order systemswww
Consider two systems with transfer functions of the form

G1(s) =
Z1

T1s+ 1
, G2(s) =

Z2

T2s+ 1

connected in series. The overall transfer function is given as their product

Y (s)
U(s)

=
Z1Z2

(T1s+ 1)(T2s+ 1)

The corresponding step response function can be calculated as

y(t) = Z1Z2

[
1 − T1

T1 − T2
e−

t
T1 +

T2

T1 − T2
e−

t
T2

]

or

y(t) = Z1Z2

[
1 − T1T2

T1 − T2

(
1
T2

e−
t

T1 − 1
T1

e−
t

T2

)]

Consider now a second order system with the transfer function given by

G(s) =
Y (s)
U(s)

=
Zs

T 2
k s

2 + 2ζTks+ 1

As it was shown in the Example 3.12, such transfer function can result
from the mathematical model of a U-tube.
The characteristic form of the step response depends on the roots of the
characteristic equation

T 2
k s

2 + 2ζTks+ 1 = 0
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If Tk represents the time constant then the dumping factor ζ plays a crucial
role in the properties of the step response. In the following analysis the
case ζ < 0 will be automatically excluded as that corresponding to an
unstable system. We will focus on the following cases of roots:
Case a: ζ > 1 - two different real roots,
Case b: ζ = 1 - double real root,
Case c: 0 < ζ < 1 - two complex conjugate roots.
Case a: If ζ > 1 then the characteristic equation can be factorised as
follows

T 2
k s

2 + 2ζTks+ 1 = (T1s+ 1)(T2s+ 1)

where

T 2
k = T1T2

2ζTk = T1 + T2
or

Tk =
√
T1T2

ζ =
T1 + T2

2
√
T1T2

Another possibility how to factorise the characteristic equation is

T 2
k s

2 + 2ζTks+ 1 =

(
Tk

ζ −
√
ζ2 − 1

s+ 1

)(
Tk

ζ +
√
ζ2 − 1

s+ 1

)

Now the constants T1, T2 are of the form

T1 =
Tk

ζ −
√
ζ2 − 1

, T2 =
Tk

ζ +
√
ζ2 − 1

Case b: If ζ = 1 then T1 = Tk, T2 = Tk.
Case c: If 0 < ζ < 1 then the transfer function can be rewritten as

G(s) =
Zs

T 2
k

(
s2 +

2ζ
Tk
s+

1
T 2

k

)

and the solution of the characteristic equation is given by

s1,2 =

− 2ζ
Tk

±
√

4
ζ2

T 2
k

− 4
1
T 2

k

2

s1,2 =
−ζ ±

√
ζ2 − 1

Tk
The corresponding transfer functions are found from the inverse Laplace
transform and are of the form
Case a:

y(t) = Zs

(
1 − T1e−t/T1 − T2e−t/T2

T1 − T2

)
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Case b:

y(t) = Zs

[
1 −

(
1 − t

Tk

)
e−t/Tk

]

Case c:

y(t) = Zs

[
1 − 1√

1 − ζ2
e−

ζ
Tk

t sin

(√
1 − ζ2

Tk
t+ arctan

√
1 − ζ2

ζ

)]

For the sake of completeness, if ζ = 0 the step response contains only a
sinus function. Step responses for various values of ζ are shown in Fig. 4.4.
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Fig. 4.4. Step responses of the second order system for the various values of ζ

Consider now the system consisting of two first order systems connected in
a series. The worst case concerning system inertia occurs if T1 = T2. In this
case the tangent in the inflex point has the largest value. If T2 � T1 then
the overall characteristic of the system approaches a first order system
with a time constant T1.
A generalisation of this phenomenon shows that if the system consists of
n-in-series connected systems, then the system inertia is the largest if all
time constants are equal.
If i-th subsystem is of the form

Gi(s) =
Zi

Tis+ 1

then for the overall transfer function yields

G(s) =
Y (s)
U(s)

=
∏n

i=1 Zi∏n
i=1(Tis+ 1)
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If Ts = T1 = T2 = · · · = Tn then the system residence time will be the
largest. Consider unit step function on input and Zs = Z1Z2 · · ·Zn. The
step responses for various n are given in Fig. 4.5.
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Fig. 4.5. Step responses of the system with n equal time constants

Example 4.4: Step response of the n-th order system connected in a serieswww
with time delay

Fig. 4.6 shows the block scheme of a system composed of n-th order system
and pure time delay connected in a series. The corresponding step response
is shown in Fig. 4.7 where it is considered that n = 1.

Zs

(Tss+ 1)n e−Tds� � �U(s) Y (s)

Fig. 4.6. Block scheme of the n-th order system connected in a series with time
delay

Example 4.5: Step response of 2nd order system with the numerator B(s) =www
b0 + b1s

As it was shown in Example 3.14, some transfer function numerators of
the CSTR can contain first order polynomials. Investigation of such step
responses is therefore of practical importance. An especially interesting
case is when the numerator polynomial has a positive root.
Consider for example the following system

G(s) =
b1s+ 1

s2 + 2.6s+ 1
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Fig. 4.7. Step response of the first order system with time delay

The corresponding step response is illustrated in Fig. 4.8.
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Fig. 4.8. Step response of the second order system with the numerator B(s) = b1s+1

4.2 Computer Simulations

As it was shown in the previous pages, the investigation of process behaviour
requires a solution of differential equations. Analytical solutions can only be
found for processes described by linear differential equations with constant
coefficients. If the differential equations that describe dynamical behaviour of
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a process are nonlinear, then it is either very difficult or impossible to find the
analytical solution. In such cases it is necessary to utilise numerical methods.
These procedures transform the original differential equations into difference
equations that can be solved iteratively on a computer. The drawback of
this type of solution is a loss of generality as numerical values of the initial
conditions, coefficients of the model, and its input functions must be specified.
However, in the majority of cases there does not exist any other approach as
a numerical solution of differential equations. The use of numerical methods
for the determination of process responses is called simulation. There is a
large number of simulation methods. We will explain Euler and Runge-Kutta
methods. The Euler method will be used for the explanation of principles of
numerical methods. The Runge-Kutta method is the most versatile approach
that is extensively used.

4.2.1 The Euler Method

Consider a process model in the form

dx(t)
dt

= f(t, x(t)), x(t0) = x0 (4.22)

At first we transform this equation into its difference equation counterpart.
We start from the definition of a derivative of a function

dx
dt

= lim
Δt→0

x(t+ Δt) − x(t)
Δt

(4.23)

if Δt is sufficiently small, the derivative can be approximated as

dx
dt

.=
x(t+ Δt) − x(t)

Δt
(4.24)

Now, suppose that the right hand side of (4.22) is constant over some interval
(t, t + Δt) and substitute the left hand side derivative from (4.24). Then we
can write

x(t+ Δt) − x(t)
Δt

= f(t, x(t)) (4.25)

or

x(t+ Δt) = x(t) + Δtf(t, x(t)) (4.26)

The assumptions that led to Eq. (4.26) are only justified if Δt is sufficiently
small. At time t = t0 we can write

x(t0 + Δt) = x(t0) + Δtf(t0, x(t0)) (4.27)

and at time t1 = t0 + Δt
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x(t1 + Δt) = x(t1) + Δtf(t1, x(t1)) (4.28)

In general, for t = tk, tk+1 = tk + Δt Eq. (4.26) yields

x(tk+1) = x(tk) + Δtf(tk, x(tk)) (4.29)

Consider now the following differential equation

dx(t)
dt

= f(t, x(t), u(t)), x(t0) = x0 (4.30)

We assume again that the right hand side is constant over the interval
(tk, tk+1) and is equal to f(tk, x(tk), u(tk)). Applying the approximation (4.24)
yields

x(tk+1) = x(tk) + Δtf(tk, x(tk), u(tk)) (4.31)

In this equation we can notice that the continuous-time variables x(t), u(t)
have been replaced by discrete variables x(tk), u(tk). Let us denote

x(tk) ≡ xk (4.32)
u(tk) ≡ uk (4.33)

and we obtain a recursive relation called difference equation

xk+1 = xk + Δtf(tk, xk, uk) (4.34)

that can be solved recursively for k = 0, 1, 2, . . . for the given initial value x0.
Equation (4.34) constitutes the Euler method of solving the differential

equation (4.30) and it is easily programmable on a computer. The difference
h = tk+1 − tk is usually called integration step.

As the basic Euler method is only very crude and inaccurate, the following
modification of modified Euler method was introduced

xk+1 = xk +
h

2
(fk + fk+1) (4.35)

where

tk = t0 + kh, k = 0, 1, 2, . . .
fk = f(tk, x(tk), u(tk))
fk+1 = f [tk+1, x(tk) + hf(tk, x(tk), u(tk)), u(tk+1)]

4.2.2 The Runge-Kutta method

This method is based on the Taylor expansion of a function. The Taylor
expansion helps to express the solution x(t+ Δt) of a differential equation in
relation to x(t) and its time derivatives as follows
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x(t+ Δt) = x(t) + Δtẋ(t) +
1
2
(Δt)2ẍ(t) + · · · (4.36)

If the solved differential equation is of the form

dx(t)
dt

= f(t, x(t)) (4.37)

then the time derivatives can be expressed as

ẋ(t) = f(t, x(t))

ẍ(t) =
df
dt

=
∂f

∂t
+
∂f

∂x

dx
dt

=
∂f

∂t
+
∂f

∂x
f (4.38)

...

Substituting (4.38) into (4.36) yields

x(t+ Δt) = x(t) + Δtf +
1
2
(Δt)2(ft + fxf) + · · · (4.39)

where f = f(t, x(t)), ft = ∂f/∂t, fx = ∂f/∂x.
The solution x(t+Δt) in Eq. (4.39) depends on the knowledge of derivatives

of the function f . However, the higher order derivatives of f are difficult to
obtain. Therefore only some first terms of (4.39) are assumed to be significant
and others are neglected. The Taylor expansion is truncated and forms the
basis for Runge-Kutta methods. The number of terms determines order of the
Runge-Kutta method.

Assume that the integration step is given as

tk+1 = tk + h (4.40)

The second order Runge-Kutta method is based on the difference equation

x(tk+1) = x(tk) + hẋ(tk) +
1
2
h2ẍ(tk) (4.41)

or

xk+1 = xk + hfk +
1
2
h2(ft + fxf)k (4.42)

The recursive relation suitable for numerical solution is then given by

xk+1 = xk + γ1k1 + γ2k2 (4.43)

where γ1, γ2 are weighting constants and

k1 = hf(tk, xk) (4.44)
k2 = hf(tk + α1h, xk + β1k1) (4.45)
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and α1, α2 are some constants. The proof that (4.43) is a recursive solution
following from the second order Runge-Kutta method can be shown as follows.
Allow at first perform the Taylor expansion for k2

k2 = h[fk + (ft)kα1h+ (fx)kβ1hfk + · · · ] (4.46)

and neglect all terms not explicitly given. Substituting k1 from (4.44) and k2

from (4.46) into (4.43) gives

xk+1 = xk + h(γ1fk + γ2fk) + h2[γ2α1(ft)k + γ2β1(fx)kfk] (4.47)

Comparison of (4.41) and (4.47) gives

γ1 + γ2 = 1 (4.48)

γ2α1 =
1
2

(4.49)

γ2β1 =
1
2

(4.50)

This showed that (4.43) is a recursive solution that follows from the second
order Runge-Kutta method.

The best known recursive equations suitable for a numerical solution of
differential equations is the fourth order Runge-Kutta method that is of the
form

xk+1 = xk +
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4 (4.51)

where

k1 = hf(tk, xk)
k2 = hf(tk + 1

2h, xk + 1
2k1)

k3 = hf(tk + 1
2h, xk + 1

2k2)
k4 = hf(tk + h, xk + k3)

(4.52)

4.2.3 Runge-Kutta Method for a System of Differential Equations

The Runge-Kutta method can be used for the solution of a system of differ-
ential equations

dx(t)
dt

= f(t,x(t)), x(t0) = x0 (4.53)

where x = (x1, . . . , xn)T .
Vectorised equivalents of equations (4.41), (4.43), (4.44), (4.45) are as

follows

x(tk+1) = x(tk) + hẋ(tk) +
1
2
h2ẍ(tk) (4.54)

xk+1 = xk + γ1k1 + γ2k2 (4.55)
k1 = hf(tk,xk) (4.56)
k2 = hf(tk + α1h,xk + β1k1) (4.57)
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The programs for implementation of the fourth order Runge-Kutta method
in various computer languages are given in the next example.

Example 4.6: Programs for the solution of state-space equationswww
We will explain the use of the fourth order Runge-Kutta method applied
to the following second order differential equation

T1T2
d2y2
dt2

+ (T1 + T2)
dy2
dt

+ y2 = Z1u

with zero initial conditions and for u(t) = 1(t). T1, T2 are time constants
and Z1 gain of this system. At first we transform this differential equation
into state-space so that two differential equations of the first order result

dx1

dt
=
Z1u− x2 − (T1 + T2)x1

T1T2

dx2

dt
= x1

The program written in GW-BASIC is given in Program 4.1. The state-
space differential equations are defined on lines 550, 560. The solution y1(t) =
x1(t), y2(t) = x2(t) calculated with this program is given in Table 4.1. The
values of variable y2(t) represent the step response of the system with transfer
function

G(s) =
Y (s)
U(s)

=
Z1

(T1s+ 1)(T2s+ 1)

Program 4.2 is written in C. The example of the solution in the simula-
tion environment MATLAB/Simulink is given in Program 4.3. This represents
m-file that can be introduced as S-function into Simulink block scheme shown
in Fig. 4.9. The graphical solution is then shown in Fig. 4.10 and it is the same
as in Tab. 4.1.

Program 4.1 (Simulation program in GW-BASIC)
5 REM ruku4.bas
10 REM solution of the ODE system
20 REM n number of equations
30 REM h integration step
50 REM y(1),y(2),...,y(n) initial conditions
55 DATA 2: READ n
58 DIM y(n), x(n), f(n), k(4, n)
60 DATA .5, 0, 0
70 READ h
80 FOR i = 1 TO n: READ y(i): NEXT i
140 PRINT "t", "y1", "y2"
160 PRINT t, y(1), y(2)
200 FOR k = 0 TO 19
205 FOR i = 1 TO n: x(i) = y(i): NEXT i: GOSUB 470
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240 FOR i = 1 TO n
242 k(1, i) = h * f(i) : x(i) = y(i) + k(1, i) / 2
244 NEXT i: GOSUB 470
290 FOR i = 1 TO n
292 k(2, i) = h * f(i): x(i) = y(i) + k(2, i) / 2
294 NEXT i: GOSUB 470
340 FOR i = 1 TO n
342 k(3, i) = h * f(i): x(i) = y(i) + k(3, i)
344 NEXT i: GOSUB 470
390 FOR i = 1 TO n
392 k(4, i) = h * f(i)
410 y(i) = y(i)+(k(1,i)+2*k(2,i)+2*k(3,i)+k(4,i)) /6
420 NEXT i
430 t = t + h
440 PRINT t, y(1), y(2)
450 NEXT k
460 END
470 REM assignments
480 z1 = 1: te1 = 1: te2 = 2
510 u = 1
520 x1 = x(1): x2 = x(2)
540 REM funkcie
550 f(1) = (z1 * u - x2 - (te1 + te2) * x1) / (te1 * te2)
560 f(2) = x1
570 RETURN

Program 4.2 (Simulation program in C)
#include <stdio.h>

void rk45 (rouble *u,rouble *y, rouble *f, rouble dt);
void fun(rouble y[], rouble f[], rouble u[]);

#define N 2 /* number of ODEs */

int main(void)
{
rouble t=0, tend=10, dt=0.5;
rouble y[N], u[1];
rouble f[N];

u[0]=1;y[0]=0;y[1]=0;
printf("%f %f %f\n",t, y[0],y[1]);
do{
rk45 (u, y, f, dt);
t+=dt;
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printf("%f %f %f\n",t, y[0],y[1]);
}while (t<tend);
return 0;

}

void fun(rouble y[], rouble f[], rouble u[])
{
static rouble te1=1, te2=2, z=1;
f[0]=(z*u[0]-y[1]-(te1+te2)*y[0])/(te1*te2);
f[1]=y[0];

}

void rk45 (rouble *u, rouble *y, rouble *f, rouble dt)
{
int i,j;
rouble yold[N], fh[4*N];

for (i=0 ; i<N ; i++)
yold[i]=y[i];

for(i=0; i<4; i++){
fun(y, f, u);
for(j=0;j<N; j++){
fh[i*N+j]=dt*f[j];
if(i<2) y[j]=yold[j]+0.5*fh[i*N+j];
if(i==2) y[j]=yold[j]+fh[i*N+j];

}
}
for(i=0; i<N; i++)
y[i]=yold[i]+(fh[i]+2.0*(fh[N+i]+fh[2*N+i])+fh[3*N+i])/6.0;

}

Program 4.3 (Source code in MATLAB)
function [sys,x0,str,ts] = simss(t,x,u,flag)
z1 = 1;
te1 = 1;
te2 = 2;
den = 1/(te1 * te2);
A = [-(te1+te2)/den -1/den

1 0];

B = [z1/den; 0];

C = [1 0; 0 1];
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switch flag,
case 0
[sys,x0,str,ts] = mdlInitializeSizes;
case 1,
sys = mdlDerivatives(t,x,u,A,B);
case 3,
sys = mdlOutputs(t,x,u,C);
case 9
sys = [];

end

function [sys,x0,str,ts] = mdlInitializeSizes()
sizes = simsizes;

sizes.NumContStates = 2;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 2;
sizes.NumInputs = 1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
x0 = [0; 0];
str = [];
ts = [0 0];

function sys = mdlDerivatives(t,x,u,A,B)
sys = A*x + B*u;

function sys = mdlOutputs(t,x,u,C)
sys = C*x;

Step Scope

simss

S−Function

Fig. 4.9. Simulink block scheme
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Fig. 4.10. Results from simulation

Table 4.1. Solution of the second order differential equation

t y1 y2

0 0 0

.5 .1720378 .0491536

1 .238372 .1550852

1.5 .2489854 .2786338

2 .2323444 .3997614

2.5 .2042715 .5092093

3 .1732381 .6036183

3.5 .1435049 .6827089

4 .1169724 .7476815

4.5 .0926008 .8003312

5 .07532854 .8425783

5.5 .05983029 .8762348

6 .04730249 .9029045

6.5 .03726806 .9239527

7 .02928466 .9405137

7.5 .02296489 .9535139

8 .01798097 .9637005

8.5 .01406181 .9716715

9 .01098670 .9779023

9.5 .00857792 .9827687

10 .00669353 .9865671
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4.2.4 Time Responses of Liquid Storage Systems

Consider the liquid storage system shown in Fig. 2.1. Assume its mathematical
model in the form

F1
dh1

dt
+ c1h1 + c2

√
h1 = q0 (4.58)

where c1 and c2 are constants obtained from measurements on a real process.
The steady-state is given by the following equation

c1h
s
1 + g(hs

1) = qs
0, where g(hs

1) = c2
√
hs

1 (4.59)

Let us introduce the deviation variables

x1 = h1 − hs
1

u1 = q0 − qs
0

(4.60)

The mathematical model can then be rewritten as

F1
dx1

dt
+ c1x1 + c1h

s
1 + c2

√
x1 + hs

1 = u1 + qs
0 (4.61)

Substracting (4.58) from (4.61) yields

F1
dx1

dt
+ c1x1 + c2

√
x1 + hs

1 − c2
√
hs

1 = u1 (4.62)

Let us introduce the function

G(x1) = g(x1 + hs
1) − g(hs

1) (4.63)

then the mathematical model is finally given with deviation variables as

F1
dx1

dt
+ c1x1 +G(x1) = u1 (4.64)

www
The Simulink block scheme that uses the MATLAB file hs11m.m (Pro-

gram 4.4) as the S-function for solution of Eq. (4.64) is shown in Fig.4.11.

Program 4.4 (MATLAB file hs11m.m)
function [sys,x0,str,ts] = hs11m(t,x,u,flag)
% Deviation model of the level tank;

% F1*(dx1/dt)+c1*x1+c2*(x1+h1s)^(1/2)-c2*(h1s)^(1/2)=u1 ;
% h1s =1.5 dm, q0s= 0.006359 dm^3/s ;
% c1= 0.00153322 dm^2/s , c2 = 0.00331442 (dm^5/2)/s ;

% F1 = 1.44dm^2, Step change q00s = new value for t>=0;
% u1 is constrained as <-0.006359, 0.004161 dm^3/s>;
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switch flag,
case 0
[sys,x0,str,ts] = mdlInitializeSizes;
case 1,
sys = mdlDerivatives(t,x,u);
case 3,
sys = mdlOutputs(t,x,u);
case 9
sys = [];

end

function [sys,x0,str,ts] = mdlInitializeSizes()
sizes = simsizes;

sizes.NumContStates = 1;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1;
sizes.NumInputs = 1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
x0 = [0];
str = [];
ts = [0 0];

function sys = mdlDerivatives(t,x,u)
c1 = 0.00153322;
f1 = 1.44;
a1 = -(c1/f1);
c2 = 0.00331442;
a2 = -(c2/f1);
b1 = 1/f1;
h1s = 1.5;

% Right hand sides;
x1 = x(1)+h1s;
if x1 < 0
x1 = 0;

end
sys(1) = a1*x(1) + a2*sqrt(x1) - a2*sqrt(h1s) + b1*u(1);

function sys = mdlOutputs(t,x,u)
sys = x;
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hs11m

tankStep Fcn
Scope

Fig. 4.11. Simulink block scheme for the liquid storage system

Linearised mathematical model in the neighbourhood of the steady-state
x1 = 0 is

dx1

dt
= − c1

F1
x1 −

1
F1

∂G(0)
∂x1

x1 +
1
F1
u1 (4.65)

where
∂G

∂x1
=
c2
2

1√
x1 + hs

1

,
∂G(0)
∂x1

=
c2
2

1√
hs

1

and finally

dx1

dt
=

(
− c1
F1

− c2

2F1

√
hs

1

)
x1 +

1
F1
u1 (4.66)

Fig. 4.12 shows the response of the tank to step change of the flow q0 equal to
−0.0043 dm3 s−1. The steady-state before the change was characterised by the
flow qs

0 = 0.006359 dm3 s−1 and the tank level hs
1 = 1.5 dm. The coefficients

c1, c2 and the crossover area F1 corresponding to the real liquid storage tank
are

c1 = 1.53322.10−3dm2 s−1

c2 = 3.31142.10−3dm2.5 s−1

F1 = 1.44dm2

Fig. 4.12 also shows the step response of the linearised model (4.66). Both
curves can serve for analysis of the error resulting from linearisation of the
mathematical model of the tank.

4.2.5 Time Responses of CSTR

Consider a CSTR with a cooling jacket. In the reactor, an irreversible exother-
mic reaction takes place. We assume that its mathematical model is in the
form

dcA
dt′

=
q

V
cAv − cA(

q

V
+ k) (4.67)

dϑ
dt′

=
q

V
ϑv − q

V
ϑ− αF

V ρcp
(ϑ− ϑc) +

kHr

ρcp
cA (4.68)

dϑc

dt′
=
qc
Vc
ϑcv − qc

Vc
ϑc +

αF

Vcρccpc
(ϑ− ϑc) (4.69)

k = k0 exp
(
− g
ϑ

)
(4.70)
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Fig. 4.12. Response of the tank to step change of q0

where

t′ - time variable,
cA - molar concentration of A (mole/volume) in the outlet stream,
cAv - molar concentration of A (mole/volume) in the inlet stream,
V - reactor volume,
q - volumetric flow rate,
ϑ - temperature of reaction mixture,
ϑv - temperature in the inlet stream,
F - heat transfer area,
α - overall heat transfer coefficient,
ρ - liquid density,
cp - liquid specific heat capacity,
Hr - heat of reaction,
ϑc - cooling temperature,
ϑcv - cooling temperature in the inlet cooling stream,
qc - volumetric flow rate of coolant,
Vc - coolant volume in the jacket,
ρc - coolant density,
cpc - coolant specific heat capacity,
k0 - frequency factor,
g - activation energy divided by the gas constant.

Compared to the CSTR model from page 31 we included the equa-
tion (4.69) describing the behaviour of cooling temperature ϑc. The state-
space variables are cA, ϑ, ϑc, the input variable is qc, and the output variable
is ϑ. We assume that the variables cAv, ϑv, ϑcv are held constant and the other
parameters of the reactor are also constant.

The reactor model can be rewritten as
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dx′1
dt

= 1 − x′1 − f ′1(x
′
1, x

′
2) (4.71)

dx′2
dt

= b′1 − x′2 − f ′2(x
′
2) + f ′3(x

′
3) + f ′1(x

′
1, x

′
2) (4.72)

dx′3
dt

= f ′4(x
′
2) − f ′5(x

′
3) − f ′6(u

′, x′3) + f ′7(u
′) (4.73)

k = k0 exp
(
− gρcp
csAvHrx′2

)
(4.74)

where

x′1 =
cA
csAv

, x′2 =
ρcpϑ

csAvHr

x′3 =
ρccpcϑc

csAvHr
, t =

q

V
t′

u′ =
qc
qs
c

, b′1 =
ρcpϑ

s
v

csAvHr

f ′1(x
′
1, x

′
2) =

V

q
x′1k0 exp(− gρcp

csAvHrx′2
) , f ′2(x

′
2) =

αF

V ρcp
x′2

f ′3(x
′
3) =

αF

V ρccpc
x′3 , f ′4(x

′
2) =

αFV

qVcρcp
x′2

f ′5(x
′
3) =

αFV

qVcρccp
x′3 , f ′6(u

′, x′3) =
V qs

c

qVc
u′x′3

f ′7(u
′) =

ρccpcV q
s
cϑ

s
cv

csAvHrqVc

and variables with superscript s denote steady-state values.
In the steady-state for state variables x′1, x

′
2, x

′
3 holds

0 = 1 − x′s1 − f ′1(x
′s
1 , x

′s
2 ) (4.75)

0 = b′1 − x′s2 − f ′2(x
′s
2 ) + f ′3(x

′s
3 ) + f ′1(x

′s
1 , x

′s
2 ) (4.76)

0 = f ′4(x
′s
2 ) − f ′5(x

′s
3 ) − f ′6(u

′s, x′s3 ) + f ′7(u
′s) (4.77)

We define deviation variables and functions

x1 = x′1 − x′s1 (4.78)
x2 = x′2 − x′s2 (4.79)
x3 = x′3 − x′s3 (4.80)
u = u′ − u′s (4.81)

f1(x1, x2) = f ′1(x1 + x′s1 , x2 + x′s2 ) − f ′1(x
′s
1 , x

′s
2 ) (4.82)

f2(x2) = f ′2(x2 + x′s2 ) − f ′2(x
′s
2 ) (4.83)

f3(x3) = f ′3(x3 + x′s3 ) − f ′3(x
′s
3 ) (4.84)

f4(x2) = f ′4(x2 + x′s2 ) − f ′4(x
′s
2 ) (4.85)

f5(x3) = f ′5(x3 + x′s3 ) − f ′5(x
′s
3 ) (4.86)

f6(u, x3) = f ′6(u+ u′s1 , x3 + x′s3 ) − f ′6(u
′s, x′s3 ) (4.87)

f7(u) = f ′7(u+ u′s) − f ′7(u
′s) (4.88)
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The original mathematical model of the reactor given by (4.67) - (4.69)
can finally be rewritten as

dx1

dt
= −x1 − f1(x1, x2) (4.89)

dx2

dt
= −x2 − f2(x2) + f3(x3) + f1(x1, x2) (4.90)

dx3

dt
= f4(x2) − f5(x3) − f6(u, x3) + f7(u) (4.91)

Figure 4.13 shows the Simulink block-scheme that uses the program rea7m1.mwww
(Program 4.5) as its S-function for the solution of the differential equa-
tions (4.89) - (4.91).

Program 4.5 (MATLAB file rea7m1.m)
function [sys,x0,str,ts] = rea7m1(t,x,u,flag)
% Non-linear deviation model of the CSTR;
% 3 equations, Reaction of the type A ----> B;

% k0 = a1 [1/min];
% g = a2 [K];
% ro = a3 [kg/m3];
% cp = a4 [kJ/kg.K];
% V = a5 [m3];
% Hr = a6 [kJ/kmol];
% F = a7 [m2];
% al = a8 [kJ/m2.min.K];
% roc = a9 [kg/m3];
% cpc = a10 [kJ/kg.K];
% Vc = a11 [m3];
% qs = a12 [m3/min];
% Thvs = a13 [K];
% cavs = a14 [kmol/m3];
% Thcvs = a15 [K];
% qcs = a16 [m3/min];
% cas = a17 [kmol/m3];
% Ths = a18 [K];
% Thcs = a19 [K];

% x(1) - concentration of A, dimensionless, deviation;
% x(2) - temperature of the mixture, dimensionless, deviation;
% x(3) - jacket temperature, dimensionless, deviation;
% u(1) - cooling flowrate, dimensionless, deviation;
% u=qc/qcs ;
% u(1)=<-0.2, 0.2> = cca<-0.001m3/min,0.001m3/min>;



4.2 Computer Simulations 141

switch flag,
case 0
[sys,x0,str,ts] = mdlInitializeSizes;
case 1,
sys = mdlDerivatives(t,x,u);
case 3,
sys = mdlOutputs(t,x,u);
case 9
sys = [];

end

function [sys,x0,str,ts] = mdlInitializeSizes()
sizes = simsizes;

sizes.NumContStates = 3;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 6;
sizes.NumInputs = 1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
x0 = [0; 0; 0];
str = [];
ts = [0 0];

function sys = mdlDerivatives(t,x,u)
% Calculation of f1c, f2c,...,f7c in the steady-state;
a1=10000000000000;
a2=11078;
a3=970;
a4=4.05;
a5=1.8;
a6=149280;
a7=5.04;
a8=130;
a9=998;
a10=4.18;
a11=0.7;
a12=0.25;
a13=370;
a14=0.88;
a15=285;
a16=0.05;
a17=0.0345;
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a18=385.877;
a19=361.51753;

x1cs = a17/a14;
x2cs = (a3*a4*a18)/(a14*a6);
x3cs = (a9*a10*a19)/(a14*a6);
u1cs = a16/a16;
f1cs = ((a5/a12)*x1cs*a1)*(exp((-a2*a3*a4)/(a14*a6*x2cs)));
f2cs = ((a7*a8)/(a12*a3*a4))*x2cs;
f3cs = ((a7*a8)/(a12*a9*a10))*x3cs;
f4cs = ((a7*a8*a5)/(a12*a11*a3*a4))*x2cs;
f5cs = ((a5*a7*a8)/(a12*a11*a9*a10))*x3cs;
f6cs = ((a5*a16)/(a12*a11))*u1cs*x3cs;
f7cs = ((a9*a10*a5*a16*a15)/(a14*a6*a12*a11))*u1cs;

x1c = x(1) + x1cs;
x2c = x(2) + x2cs;
x3c = x(3) + x3cs;
u1c = u(1) + u1cs;
f1c = ((a5/a12)*x1c*a1)*(exp((-a2*a3*a4)/(a14*a6*x2c)));
f2c = ((a7*a8)/(a12*a3*a4))*x2c;
f3c = ((a7*a8)/(a12*a9*a10))*x3c;
f4c = ((a7*a8*a5)/(a12*a11*a3*a4))*x2c;
f5c = ((a5*a7*a8)/(a12*a11*a9*a10))*x3c;
f6c = ((a5*a16)/(a12*a11))*u1c*x3c;
f7c = ((a9*a10*a5*a16*a15)/(a14*a6*a12*a11))*u1c;
f1 = f1c - f1cs;
f2 = f2c - f2cs;
f3 = f3c - f3cs;
f4 = f4c - f4cs;
f5 = f5c - f5cs;
f6 = f6c - f6cs;
f7 = f7c - f7cs;

% Right hand sides of ODEs;
sys(1)=-x(1) - f1;
sys(2)=-x(2) - f2 + f3 + f1;
sys(3)=f4 - f5 - f6 + f7;

function sys = mdlOutputs(t,x,u)
a3=970;
a4=4.05;
a6=149280;
a9=998;
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a10=4.18;
a14=0.88;

sys(1)=x(1);
sys(4)=a14*x(1);
sys(2)=x(2);
sys(5)=(a14*a6*x(2))/(a3*a4);
sys(3)=x(3);
sys(6)=(a14*a6*x(3))/(a9*a10);

Step Input

Scope2

Scope1

Scope
S−Function

rea7m1

Fig. 4.13. Simulink block scheme for the nonlinear CSTR model

Linearised mathematical model of the CSTR with steady-state x1 = x2 =
x3 = 0 is of the form

dx1

dt
= −x1 −

∂f1(0, 0)
∂x1

x1 −
∂f1(0, 0)
∂x2

x2 (4.92)

dx2

dt
= −x2 −

∂f2(0)
∂x2

x2 +
∂f3(0)
∂x3

x3 +
∂f1(0, 0)
∂x1

x1 +
∂f1(0, 0)
∂x2

x2 (4.93)

dx3

dt
=
∂f4(0)
∂x2

x2 −
∂f5(0)
∂x3

x3

−∂f6(0, 0)
∂x3

x3 −
∂f6(0, 0)
∂u

u+
∂f7(0)
∂u

u (4.94)

or

dx

dt
= Ax + Bu (4.95)

where

x = (x1, x2, x3)T

A =

⎛
⎝as11 as12 as13

as21 as22 as23

as31 as32 as33

⎞
⎠ , B =

⎛
⎝ 0

0
bs31

⎞
⎠
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as11 = −1 − ∂f1(0, 0)
∂x1

, as12 = −∂f1(0, 0)
∂x2

as13 = 0, as21 =
∂f1(0, 0)
∂x1

as22 = −1 − ∂f2(0)
∂x2

+
∂f1(0, 0)
∂x2

, as23 =
∂f3(0)
∂x3

as31 = 0, as32 =
∂f4(0)
∂x2

as33 = −∂f5(0)
∂x3

+
∂f6(0, 0)
∂x3

, bs31 =
∂f7(0)
∂u

− ∂f6(0, 0)
∂u

Figures 4.14, 4.15, 4.16 show responses of the CSTR to step change of qc
(Δu = 10). Numerical values of all variables are given in Program 4.6.

File kolire8.m (Program 4.6) calculates for the given steady-state of the
CSTR parameters of the corresponding linearised mathematical model.

Program 4.6 (MATLAB file kolire8.m)
% Linearised model of the CSTR, 3 equations;
% state-space equations, Reaction A ----> B;

% k0 = a1 [1/min];
% g = a2 [K];
% ro = a3 [kg/m3];
% cp = a4 [kJ/kg.K];
% V = a5 [m3];
% Hr = a6 [kJ/kmol];
% F = a7 [m2];
% al = a8 [kJ/m2.min.K];
% roc = a9 [kg/m3];
% cpc = a10 [kJ/kg.K];
% Vc = a11 [m3];
% qs = a12 [m3/min];
% Thvs = a13 [K];
% cavs = a14 [kmol/m3];
% Thcvs = a15 [K];
% qcs = a16 [m3/min];
% cas = a17 [kmol/m3];
% Ths = a18 [K];
% Thcs = a19 [K];

% x(1) - concentration of A, dimensionless, deviation;
% x(2) - temperature of the mixture, dimensionless, deviation;
% x(3) - jacket temperature, dimensionless, deviation;
% u(1) - cooling flowrate, dimensionless, deviation;
% u=qc/qcs ;
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% u(1)=<-0.2, 0.2> = cca<-0.001m3/min,0.001m3/min>;

a1=10000000000000; a2=11078;
a3=970; a4=4.05;
a5=1.8; a6=149280;
a7=5.04; a8=130;
a9=998; a10=4.18;
a11=0.7; a12=0.25;
a13=370; a14=0.88;
a15=285; a16=0.05;
a17=0.0345; a18=385.877;
a19=361.51753;

% Calculation of the state-space coefficients;
as11=-1-((a5*a1)/a12)*(exp(-a2/a18));
as12=-((a5*a1*a6*a2*a17)/(a12*a3*a4*((a18)^2)))*(exp(-a2/a18));
as13=0;
as21=((a5*a1)/a12)*(exp(-a2/a18));
as22=-1-((a7*a8)/(a12*a3*a4));
as221=((a5*a1*a6*a2*a17)/(a12*a3*a4*((a18)^2)))*(exp(-a2/a18));
as22=as22 + as221;
as23=(a7*a8)/(a12*a9*a10);
as31=0;
as32=(a7*a8*a5)/(a12*a11*a3*a4);
as33=-(a7*a8*a5)/(a12*a11*a9*a10)-(a5*a16)/(a12*a11);
bs11=0;
bs21=0;
bs31=-(a5*a16*a9*a10*a19)/(a12*a11*a14*a6);
bs31=bs31+(a9*a10*a5*a16*a15)/(a14*a6*a12*a11);

4.3 Frequency Analysis

4.3.1 Response of the Heat Exchanger to Sinusoidal Input Signal

Consider a jacketed heat exchanger described by the differential equation (see
Example 3.13)

T1
dy
dt

+ y = Z1u (4.96)

where y = ϑ − ϑs is the deviation of the liquid temperature from its steady
state value, u = ϑp − ϑs

p is the deviation of the jacket temperature from its
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Fig. 4.14. Responses of dimensionless deviation output concentration x1 to step
change of qc
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Fig. 4.15. Responses of dimensionless deviation output temperature x2 to step
change of qc

steady state value, T1 is the process time constant, and Z1 is the process
steady-state gain.

The process transfer function of (4.96) is given as

G(s) =
Y (s)
U(s)

=
Z1

T1s+ 1
(4.97)

Let the following sinusoidal signal with amplitude A1 and frequency ω
influence the heat exchanger:

u(t) = A1 sinωt 1(t) (4.98)
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Fig. 4.16. Responses of dimensionless deviation cooling temperature x3 to step
change of qc

Then the Laplace transform of the process output can be written as

Y (s) =
Z1

T1s+ 1
A1ω

s2 + ω2
(4.99)

Y (s) =
Z1A1ω

T1s3 + s2 + T1ω2s+ ω2
(4.100)

Y (s) =
Z1A1ω

T1

s3 + 1
T1
s2 + ω2s+ ω2

T1

(4.101)

The denominator roots are:

s1 = −jω, s2 = jω, s3 = −1/T1

After taking the inverse Laplace transform the output of the process is
described by

y(t) =
Z1A1

T1
ω(−jω)

−jω[3(−jω)2 + 2
T1

(−jω) + ω2]
e−jωt +

+
Z1A1

T1
ω(jω)

jω[3(jω)2 + 2
T1

(jω) + ω2]
ejωt +

+
Z1A1

T1
ω(− 1

T1
)

− 1
T1

[2(− 1
T1

)2 + 2
T1

(− 1
T1

) + ω2]
e−

t
T1 (4.102)

y(t) =
Z1A1

−2ωT1 − 2j
e−jωt +

Z1A1

−2ωT1 + 2j
ejωt +Ke−

t
T1 (4.103)

where K = (2ωT1A1)/(2T1 − 2 + ω2T 2
1 ).
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If the sine wave is continued for a long time, the exponential term disap-
pears and the remaining terms can be further manipulated to yield

y(t) =
Z1A1

−2ωT1 − 2j
−2ωT1 + 2j
−2ωT1 + 2j

e−jωt +
Z1A1

−2ωT1 + 2j
−2ωT1 − 2j
−2ωT1 − 2j

ejωt

(4.104)

y(t) = Z1A1

[
−ωT1 + j

2(ω2T 2
1 + 1)

e−jωt +
−ωT1 − j

2(ω2T 2
1 + 1)

ejωt

]
(4.105)

y(t) = Z1A1

[
−ωT1

(ω2T 2
1 + 1)

e−jωt + ejωt

2
+

1
(ω2T 2

1 + 1)
ejωt − e−jωt

2

]
(4.106)

Applying the Euler identities (3.15) yields

y(t) = Z1A1

[
− ωT1

ω2T 2
1 + 1

cosωt+
1

ω2T 2
1 + 1

sinωt
]

(4.107)

Finally, using the trigonometric identity

sin(ωt+ ϕ) = sinϕ cosωt+ cosϕ sinωt

gives

y(t) = Z1A1

[√
ω2T 2

1 + 1
ω2T 2

1 + 1
sin(ωt+ ϕ)

]
(4.108)

where ϕ = − arctanωT1.
If we set in (4.97) s = jω, then

G(jω) =
Z1

T1jω + 1
(4.109)

|G(jω)| =
Z1√

ω2T 2
1 + 1

(4.110)

which is the same as the amplitude in (4.108) divided by A1. Thus y(t) can
also be written as

y(t) = A1|G(jω)| sin(ωt+ ϕ) (4.111)

It follows from (4.108) that the output amplitude is a function of the input
amplitude A1, input frequency ω, and the system properties. Thus,

A1|G(jω)| = A1f(ω,Z1, T1). (4.112)

For the given system with the constants Z1 and T1, it is clear that increasing
input frequency results in decreasing output amplitude. The phase lag is given
as

ϕ = − arctanT1ω (4.113)

and the influence of the input frequency ω to ϕ is opposite to amplitude.
The simulation of u(t) and y(t) from the equations (4.98) and (4.108) forwww

Z1 = 0.4, T1 = 5.2 min, A1 = 5◦C, and ω = 0.2 rad/min is shown in Fig. 4.17.
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Fig. 4.17. Ultimate response of the heat exchanger to sinusoidal input

4.3.2 Definition of Frequency Responses

A time periodic function f(t) with the period Tf satisfying the Dirichlet con-
ditions can be expanded into the Fourier expansion

f(t) =
2
Tf

[
a0

2
+

∞∑
n=1

(an cosnωf t+ bn sinnωf t)

]
(4.114)

where ωf = 2π/Tf is the basic circular frequency. The coefficients a0, an, bn,
(n = 1, 2, . . .) are given as

a0 =
∫ Tf /2

−Tf /2

f(τ)dτ

an =
∫ Tf /2

−Tf /2

f(τ) cos
2πnτ
Tf

dτ

bn =
∫ Tf /2

−Tf /2

f(τ) sin
2πnτ
Tf

dτ

Using the Euler identity, the Fourier expansion can be rewritten as

f(t) =
∞∑

n=−∞
cnejnωf t (4.115)
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where

cn =
1
Tf

∫ Tf /2

−Tf /2

f(τ)e−jnωf τdτ

Any nonperiodic time function can be assumed as periodic with the period
approaching infinity. If we define ω = nωf then

f(t) =
1
2π

∞∑
n=−∞

{∫ Tf /2

−Tf /2

f(τ)e−jωτdτ

}
ejωt[(n+ 1)ωf − nωf ] (4.116)

If Tf → ∞ and [(n+ 1)ωf − nωf ] = Δωf → 0 then

f(t) =
1
2π

∫ ∞

−∞
F (jω)ejωtdω (4.117)

or

F (jω) =
∫ ∞

−∞
f(t)e−jωtdt (4.118)

The equations (4.117), (4.118) are the Fourier integral equations that de-
scribe the influence between the original time function and its frequency trans-
form F (jω). Compared to the Fourier expansion they describe an expansion
to the continuous spectrum with the infinitesimally small difference dω of two
neighbouring harmonic signals.

The integral (4.118) expresses a transformation (or operator) that assigns
to the function f(t) the function F (jω). This transformation is called the
Fourier transform of f(t). If we know the transformed F (jω), the original
function f(t) can be found from (4.117) by the inverse Fourier transform.
The important condition of the Fourier transform is the existence of the inte-
grals (4.117), (4.118).

Complex transfer function, or frequency transfer function G(jω) is the
Fourier transform corresponding to the transfer functionG(s). ForG(jω) holds

G(jω) =
Y (jω)
U(jω)

(4.119)

If the frequency transfer function exists, it can be easily obtained from the
system transfer function by formal exchange of the argument s,

G(jω) = G(s)s=jω (4.120)

or

G(jω) =
bm(jω)m + bm−1(jω)m−1 + · · · + b0
an(jω)n + bn−1(jω)n−1 + · · · + a0

(4.121)
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The frequency transfer function of a singlevariable system can be obtained
from

G(jω) ≡
∫ ∞

0

g(t)e−jωtdt. (4.122)

Analogously, for multivariable systems follows

G(jω) ≡
∫ ∞

0

g(t)e−jωtdt. (4.123)

If the transfer function matrix G(s) is stable, then frequency transfer
function matrix exists as the Fourier transform of the impulse response matrix
and can be calculated from (see equations (3.46), (4.8))

G(jω) = C(jωI − A)−1B + D (4.124)

Frequency transfer function is a complex variable corresponding to a real
variable ω that characterises the forced oscillations of the output y(t) for the
harmonic input u(t) with frequency ω. Harmonic functions can be mathemat-
ically described as

ū = A1ej(ωt+ϕ1) (4.125)
ȳ = A2ej(ωt+ϕ2). (4.126)

The ratio of these functions is a complex variable G(jω) defined by (4.122).
Thus it can be written as

ȳ

ū
=
A2

A1
ej(ϕ2−ϕ1) = G(jω). (4.127)

The magnitude of G(jω)

|G(jω)| = A(ω) (4.128)

is given as the ratio A2/A1 of output and input variable magnitudes. The
phase angle

ϕ(ω) = ϕ2 − ϕ1 (4.129)

is determined as the phase shift between the output and input variable and is
given in units of radians as a function of ω. G(jω) can be written in the polar
form

G(jω) = A(ω)ejϕ(ω) (4.130)

The graph of G(jω)

G(jω) = |G(jω)|ej arg G(jω) = �[G(jω)] + j�[G(jω)] (4.131)
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in the complex plane is called the Nyquist diagram. The magnitude and phase
angle can be expressed as follows:

|G(jω)| =
√

{�[G(jω)]}2 + {�[G(jω)]}2 (4.132)

|G(jω)| =
√
G(jω)G(−jω) (4.133)

tanϕ =
�[G(jω)]
�[G(jω)]

(4.134)

ϕ = arctan
�[G(jω)]
�[G(jω)]

(4.135)

Essentially, the Nyquist diagram is a polar plot of G(jω) in which frequency
ω appears as an implicit parameter.

The function A = A(ω) is called magnitude frequency response and the
function ϕ = ϕ(ω) phase angle frequency response. Their plots are usually
given with logarithmic axes for frequency and magnitude and are referred to
as Bode plots.

Let us investigate the logarithm of A(ω) exp[jϕ(ω)]

lnG(jω) = lnA(ω) + jϕ(ω) (4.136)

The function

lnA(ω) = f1(logω) (4.137)

defines the magnitude logarithmic amplitude frequency response and is shown
in the graphs as

L(ω) = 20 logA(ω) = 20 0.434 lnA(ω). (4.138)

L is given in decibels (dB) which is the unit that comes from the acoustic
theory and merely rescales the amplitude ratio portion of a Bode diagram.

Logarithmic phase angle frequency response is defined as

ϕ(ω) = f2(logω) (4.139)

Example 4.7: Nyquist and Bode diagrams for the heat exchanger as the firstwww
order system

The process transfer function of the heat exchanger was given in (4.97).
G(jω) is given as

G(jω) =
Z1

T1jω + 1
=
Z1(T1jω − 1)
(T1jω)2 + 1

=
Z1

(T1ω)2 + 1
− j

Z1T1ω

(T1ω)2 + 1

=
Z1√

(T1ω)2 + 1
e−j arctan T1ω

The magnitude and phase angle are of the form
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A(ω) =
Z1√

(T1ω)2 + 1

ϕ(ω) = − arctanT1ω

Nyquist and Bode diagrams of the heat exchanger for Z1 = 0.4, T1 = 5.2 s
are shown in Figs. 4.18, 4.19, respectively.
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Fig. 4.18. The Nyquist diagram for the heat exchanger

4.3.3 Frequency Characteristics of a First Order System

In general, the dependency �[G(jω)] on �[G(jω)] for a first order system
described by (4.97) can easily be found from the equations

u = �[G(jω)] =
Z1

(T1ω)2 + 1
(4.140)

v = �[G(jω)] = − Z1T1ω

(T1ω)2 + 1
(4.141)

Equating the terms T1ω in both equations yields

(v − 0)2 −
(
u− Z1

2

)
=
(
Z1

2

)2

(4.142)
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Fig. 4.19. The Bode diagram for the heat exchanger

which is the equation of a circle.
Let us denote ω1 = 1/T1. The transfer function (4.97) can be written as

G(s) =
ω1Z1

s+ ω1
. (4.143)

The magnitude is given as

A(ω) =
Z1ω1√
ω2

1 + ω2
(4.144)

and its logarithm as

L = 20 logZ1 + 20 logω1 − 20 log
√
ω2

1 + ω2. (4.145)

This curve can easily be sketched by finding its asymptotes. If ω approaches
zero, then

L→ 20 logZ1 (4.146)

and if it approaches infinity, then√
ω2

1 + ω2 →
√
ω2 (4.147)

L → 20 logZ1 + 20 logω1 − 20 logω. (4.148)
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Fig. 4.20. Asymptotes of the magnitude plot for a first order system

This is the equation of an asymptote that for ω = ω1 is equal to 20 logZ1.
The slope of this asymptote is -20 dB/decade (Fig 4.20).

The asymptotes (4.146) and (4.148) introduce an error δ for ω < ω1:

δ = 20 logω1 − 20 log
√
ω2

1 + ω2 (4.149)

and for ω > ω1:

δ = 20 logω1 − 20 log
√
ω2

1 + ω2 − [20 logω1 − 20 logω] (4.150)

The tabulation of errors for various ω is given in Table 4.2.

Table 4.2. The errors of the magnitude plot resulting from the use of asymptotes

ω 1
5
ω1

1
4
ω1

1
2
ω1 ω1 2ω1 4ω1 5ω1

δ(dB) 0.17 -0.3 -1 -3 -1 -0.3 -0.17

A phase angle plot can also be sketched using asymptotes and tangent in
its inflex point (Fig 4.21).

We can easily verify the following characteristics of the phase angle plot:

If ω = 0, then ϕ = 0,
If ω = ∞, then ϕ = −π/2,
If ω = 1/T1, then ϕ = −π/4,

and it can be shown that the curve has an inflex point at ω = ω1 = 1/T1.
This frequency is called the corner frequency. The slope of the tangent can be
calculated if we substitute for ω = 10z (logω = z) into ϕ = arctan(−T1ω):

ϕ̇ =
1

1 + x2
, x = −T1ω
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Fig. 4.21. Asymptotes of phase angle plot for a first order system

dϕ

dz
=

−2.3
1 + (−T110z)2

T110z

dϕ

d logω
=

−2.3
1 + (−T1ω)2

T1ω

for ω = 1/T1

dϕ

d logω
= −1.15 rad/decade

-1.15 rad corresponds to −66◦. The tangent crosses the asymptotes ϕ = 0 and
ϕ = −π/2 with error of 11◦40′.

4.3.4 Frequency Characteristics of a Second Order System

Consider an underdamped system of the second order with the transfer
function

G(s) =
1

T 2
k s

2 + 2ζTks+ 1
, ζ < 1. (4.151)

Its frequency transfer function is given as

G(jω) =
1

T 2
k√(

1
T 2

k
− ω2

)2

+
(

2ζ
Tk

)2

ω2

exp

(
j arctan

− 2ζ
Tk
ω

1
T 2

k
− ω2

)
(4.152)

A(ω) =
1

T 2
k√(

1
T 2

k
− ω2

)2

+
(

2ζ
Tk

)2

ω2

(4.153)

ϕ(ω) = arctan
− 2ζ

Tk
ω

1
T 2

k
− ω2

. (4.154)

The magnitude plot has a maximum for ω = ωk where Tk = 1/ωk (resonant
frequency). If ω = ∞, A = 0. The expression
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M =
A(ωk)
A(0)

=
Amax

A(0)
(4.155)

is called the resonance coefficient.
If the system gain is Z1, then

L(ω) = 20 log |G(jω)| = 20 log

∣∣∣∣∣∣
Z1

(jω)2

ω2
k

+ 2 ζ
ωk

jω + 1

∣∣∣∣∣∣ (4.156)

L(ω) = 20 log
∣∣∣∣ Z1

T 2
k (jω)2 + 2ζTkjω + 1

∣∣∣∣ (4.157)

L(ω) = 20 logZ1 − 20 log
√

(1 − T 2
kω

2)2 + (2ζTkω)2 (4.158)

It follows from (4.158) that the curve L(ω) for Z1 = 1 is given by summation
of 20 logZ1 to normalised L for Z1 = 1. Let us therefore investigate only the
case Z1 = 1. From (4.158) follows

L(ω) = −20 log
√

(1 − T 2
kω

2)2 + (2ζTkω)2. (4.159)

In the range of low frequencies (ω � 1/Tk) holds approximately

L(ω) ≈ −20 log
√

1 = 0. (4.160)

For high frequencies (ω � 1/Tk) and T 2
kω

2 � 1 and (2ζTkω)2 � (T 2
kω

2)2

holds

L(ω) ≈ −20 log(Tkω)2 = −2 20 log Tkω = −40 log Tkω. (4.161)

Thus, the magnitude frequency response can be approximated by the curve
shown in Fig 4.22. Exact curves deviate with an error δ from this approxima-
tion. For 0.38 ≤ ζ ≤ 0.7 the values of δ are maximally ±3 dB.

0

-40

1 10 100

L [dB]

ω
ω = 1/Τ

k k
[rad/s]

Fig. 4.22. Asymptotes of magnitude plot for a second order system

The phase angle plot is described by the equation
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ϕ(ω) = − arctan
2ζTk

1 − T 2
kω

2
. (4.162)

At the corner frequency ωk = 1/Tk this gives ϕ(ω) = −90◦.
Bode diagrams of the second order systems with Z1 = 1 and Tk = 1 min

are shown in Fig. 4.23.www
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Fig. 4.23. Bode diagrams of an underdamped second order system (Z1 = 1, Tk = 1)

4.3.5 Frequency Characteristics of an Integrator

The transfer function of an integrator is

G(s) =
Z1

s
(4.163)

where Z1 = 1/TI and TI is the time constant of the integrator.
We note, that integrator is an astatic system. Substitution for s = jω yields

G(jω) =
Z1

jω
= −j

Z1

ω
=
Z1

ω
e−j π

2 . (4.164)

From this follows

A(ω) =
Z1

ω
, (4.165)

ϕ(ω) = −π
2
. (4.166)
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The corresponding Nyquist diagram is shown in Fig. 4.24. The curve co-
incides with the negative imaginary axis. The magnitude is for increasing ω
decreasing. The phase angle is independent of frequency. Thus, output variable
is always delayed to input variable for 90◦.

Re

Im
-π/2

ω=

ω→0

0

Fig. 4.24. The Nyquist diagram of an integrator

Magnitude curve is given by the expression

L(ω) = 20 logA(ω) = 20 log
Z1

ω
(4.167)

L(ω) = 20 logZ1 − 20 logω. (4.168)

The phase angle is constant and given by (4.166).
If ω2 = 10ω1, then

20 logω2 = 20 log 10ω1 = 20 + 20 logω1, (4.169)

thus the slope of magnitude plot is -20dB/decade.
Fig. 4.25 shows Bode diagram of the integrator with TI = 5 s. The values www

of L(ω) are given by the summation of two terms as given by (4.168).

4.3.6 Frequency Characteristics of Systems in a Series

Consider a system with the transfer function

G(s) = G1(s)G2(s) . . . Gn(s). (4.170)

Its frequency response is given as

G(jω) =
n∏

i=1

Ai(ω)ejϕi(ω) (4.171)

G(jω) = exp

(
j

n∑
i=1

ϕi(ω)

)
n∏

i=1

Ai(ω), (4.172)

and

20 logA(ω) =
n∑

i=1

20 logAi(ω), (4.173)

ϕ(ω) =
n∑

i=1

ϕi(ω). (4.174)
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Fig. 4.25. Bode diagram of an integrator

It is clear from the last equations that magnitude and phase angle plots are
obtained as the sum of individual functions of systems in series.

Example 4.8: Nyquist and Bode diagrams for a third order systemwww
Consider a system with the transfer function

G(s) =
Z3

s(T1s+ 1)(T2s+ 1)
.

The function G(jω) is then given as

G(jω) =
Z3

jω(T1jω + 1)(T2jω + 1)
.

Consequently, for magnitude follows

L(ω) = 20 log
Z3

ω
√

(T1ω)2 + 1
√

(T2ω)2 + 1

= 20 logZ3 − 20 logω − 20 log
√

(T1ω)2 + 1 − 20 log
√

(T2ω)2 + 1

and for phase angle:

ϕ(ω) = −π
2
− arctan(T1ω) − arctan(T2ω)

Nyquist and Bode diagrams for the system with Z3 = 0.5, T1 = 2 s, and
T2 = 3 s are given in Figs. 4.26 and 4.27.
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4.4 Statistical Characteristics of Dynamic Systems

Dynamic systems are quite often subject to input variables that are not func-
tions exactly specified by time as opposed to step, impulse, harmonic or other
standard functions. A concrete (deterministic) time function has at any time
a completely determined value.

Input variables may take different random values through time. In these
cases, the only characteristics that can be determined is probability of its
influence at certain time. This does not imply from the fact that the input
influence cannot be foreseen, but from the fact that a large number of variables
and their changes influence the process simultaneously.

The variables that at any time are assigned to a real number by some
statement from a space of possible values are called random.

Before investigating the behaviour of dynamic systems with random inputs
let us now recall some facts about random variables, stochastic processes, and
their probability characteristics.

4.4.1 Fundamentals of Probability Theory

Let us investigate an event that is characterised by some conditions of ex-
istence and it is known that this event may or may not be realised within
these conditions. This random event is characterised by its probability. Let
us assume that we make N experiments and that in m cases, the event A
has been realised. The fraction m/N is called the relative occurrence. It is
the experimental characteristics of the event. Performing different number of
experiments, it may be observed, that different values are obtained. However,
with the increasing number of experiments, the ratio approaches some con-
stant value. This value is called probability of the random event A and is
denoted by P (A).

There may exist events with probability equal to one (sure events) and to
zero (impossible events). For all other, the following inequality holds

0 < P (A) < 1 (4.175)

Events A and B are called disjoint if they are mutually exclusive within
the same conditions. Their probability is given as

P (A ∪B) = P (A) + P (B) (4.176)

An event A is independent from an event B if P (A) is not influenced when
B has or has not occurred. When this does not hold and A is dependent on B
then P (A) changes ifB occurred or not. Such a probability is called conditional
probability and is denoted by P (A|B).

When two events A, B are independent, then for the probability holds

P (A|B) = P (A) (4.177)
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Let us consider two events A and B where P (B) > 0. Then for the condi-
tional probability P (A|B) of the event A when B has occurred holds

P (A|B) =
P (A ∩B)
P (B)

(4.178)

For independent events we may also write

P (A ∩B) = P (A)P (B) (4.179)

4.4.2 Random Variables

0 1 2 3 4 5 6
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a)

F (x)

P
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� �

x

x

Fig. 4.28. Graphical representation of the law of distribution of a random variable
and of the associated distribution function

Let us consider discrete random variables. Any random variable can be as-
signed to any real value from a given set of possible outcomes. A discrete ran-
dom variable ξ is assigned a real value from a finite set of values x1, x2, . . . , xn.
A discrete random variable is determined by the set of finite values and their
corresponding probabilities Pi (i = 1, 2, . . . , n) of their occurrences. The table

ξ =
{
x1, x2, . . . , xn

P1, P2, . . . , Pn
(4.180)
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represents the law of distribution of a random variable. An example of the
graphical representation for some random variable is shown in Fig. 4.28a. Here,
the values of probabilities are assigned to outcomes of some random variable
with values xi. The random variable can attain any value of xi (i = 1, 2, . . . , n).
It is easily confirmed that

n∑
i=1

Pi = 1 (4.181)

Aside from the law of distribution, we may use another variable that char-
acterises the probability of a random variable. It is denoted by F (x) and
defined as

F (x) =
∑
xi≤x

Pi (4.182)

and called cumulative distribution function, or simply distribution function of
a variable ξ. This function completely determines the distribution of all real
values of x. The symbol xi ≤ x takes into account all values of xi less or equal
to x. F (x) is a probability of event ξ ≤ x written as

F (x) = P (ξ ≤ x) (4.183)

Further, F (x) satisfies the inequality

0 ≤ F (x) ≤ 1 (4.184)

When the set of all possible outcomes of a random variable ξ is reordered
such that x1 ≤ x2 ≤ · · · ≤ xn, the from the probability definition follows that
F (x) = 0 for any x < x1. Similarly, F (x) = 1 for any x > xn. Graphical
representation of the distribution function for a random variable in Fig. 4.28a
is shown in Fig. 4.28b.

Although the distribution function characterises a completely random vari-
able, for practical reasons there are also defined other characteristics given by
some non-random values. Among the possible, its expected value, variance,
and standard deviation play an important role.

The expected value of a discrete random variable is given as

μ = E {ξ} =
n∑

i=1

xiPi (4.185)

In the case of uniform distribution law the expected value (4.185) can be
written as

μ =
1
n

n∑
i=1

xi (4.186)
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For a play-cube tossing yields

μ =
6∑

i=1

xiPi = (1
1
6

+ 2
1
6

+ 3
1
6

+ 4
1
6

+ 5
1
6

+ 6
1
6
) = 3.5

The properties of the expected value are the following:

Constant Z

E {Z} = Z (4.187)

Multiplication by a constant Z

E {Zξ} = ZE {ξ} (4.188)

Summation

E {ξ + η} = E {ξ} + E {η} (4.189)

Multiplication of independent random variables

E {ξη} = E {ξ}E {η} (4.190)

If ξ is a random variable and μ is its expected value then the variable
(ξ − μ) that denotes the deviation of a random variable from its expected
value is also a random variable.

Variance of a random variable ξ is the expected value of the squared
deviation (ξ − μ)

σ2 = D[ξ] = E
{
(ξ − μ)2

}
=

n∑
i=1

(xi − μ)2Pi (4.191)

Whereas the expected value is a parameter in the neighbourhood of which all
values of a random variable are located, variance characterises the distance
of the values from μ. If the variance is small, then the values far from the
expected value are less probable.

Variance can easily be computed from the properties of expected value:

σ2 = E
{
ξ2 − 2ξE {ξ} + (E {ξ})2

}
= E

{
ξ2
}
− (E {ξ})2, (4.192)

i.e. variance is given as the difference between the expected value of the
squared random variable and squared expected value of random variable. Be-
cause the following holds always

E
{
ξ2
}
≥ (E {ξ})2, (4.193)

variance is always positive, i.e.
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Fig. 4.29. Distribution function and corresponding probability density function of
a continuous random variable

σ2 ≥ 0 (4.194)

The square root of the variance is called standard deviation of a random
variable

σ =
√
D[ξ] =

√
E {ξ2} − (E {ξ})2 (4.195)

A continuous random variable can be assigned to any real value within
some interval if its distribution function F (x) is continuous on this interval.
The distribution function of a continuous random variable ξ

F (x) = P (ξ < x) (4.196)

is the probability the random variable is less than x. A typical plot of such a
distribution function is shown in Fig. 4.29a. The following hold for F (x):

lim
x→∞F (x) = 1 (4.197)

lim
x→−∞F (x) = 0 (4.198)

The probability that a random variable attains some specified value is in-
finitesimally small. On the contrary, the probability of random variable lying
in a some interval (a, b) is finite and can be calculated as

P (a ≤ ξ < b) = F (b) − F (a) (4.199)

The probability that a continuous random variable is between x and x+dx
is given as
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P (x ≤ ξ < x+ dx) =
dF (x)

dx
dx (4.200)

where the variable

f(x) =
dF (x)

dx
(4.201)

is called probability density. Figure 4.29b shows an example of f(x). Thus, the
distribution function F (x) may be written as

F (x) =
∫ x

−∞
f(x)dx (4.202)

Because F (x) is non-decreasing, the probability density function must be
positive

f(x) ≥ 0 (4.203)

The probability that a random variable is within an interval (a, b) calculated
from its density function is given as the surface under curve f(x) within the
given interval. Thus, we can write

P (a ≤ ξ < b) =
∫ b

a

f(x)dx (4.204)

Correspondingly, when the interval comprises of all real values, yields
∫ ∞

−∞
f(x)dx = 1 (4.205)

Expected value of a continuous random variable is determined as

μ = E {ξ} =
∫ ∞

−∞
xf(x)dx (4.206)

A random variable can be characterised by the equation

E {ξm} =
∫ ∞

−∞
xmf(x)dx (4.207)

which determines m-th moment of a random variable ξ. The first moment is
the expected value. The second moment is given as

E
{
ξ2
}

=
∫ ∞

−∞
x2f(x)dx (4.208)

Central m-th moment is of the form

E {(ξ − μ)m} =
∫ ∞

−∞
(x− μ)mf(x)dx (4.209)
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Variance of a continuous random variable ξ can be expressed as follows

σ2 = E
{
(ξ − μ)2

}
=
∫ ∞

−∞
(x− μ)2f(x)dx (4.210)

σ2 = E
{
ξ2
}
− (E {ξ})2 (4.211)

The standard deviation is its square root

σ =
√
E {ξ2} − (E {ξ})2 (4.212)

Normal distribution for a continuous random variable is given by the fol-
lowing density function

f(x) =
1

σ
√

2π
e
− (x− μ)2

2σ2 (4.213)

Let us now consider two independent continuous random variables ξ1, ξ2
defined in the same probability space. Their joint density function is given by
the product

f(x1, x2) = f1(x1)f2(x2) (4.214)

where f1(x1), f2(x2) are density functions of the variables ξ1, ξ2.
Similarly as for one random variable, we can introduce the moments (if

they exist) also for two random variables, for example by

E {ξr
1 , ξ

s
2} =

∫ ∞

−∞

∫ ∞

−∞
xr

1x
s
2f(x1, x2)dx1dx2 (4.215)

Correspondingly, the central moments are defined as

E {(ξ1 − μ1)r(ξ2 − μ2)s} =
∫ ∞

−∞

∫ ∞

−∞
(x1 −μ1)r(x2 −μ2)sf(x1, x2)dx1dx2

(4.216)

where μ1 = E {ξ1} , μ2 = E {ξ2}.
Another important property characterising two random variables is their

covariance defined as

Cov (ξ1, ξ2) = E {(ξ1 − μ1)(ξ2 − μ2)}

=
∫ ∞

−∞

∫ ∞

−∞
(x1 − μ1)(x2 − μ2)f(x1, x2)dx1dx2 (4.217)

If ξ1, ξ2 have finite variances, then the number

r(ξ1, ξ2) =
Cov (ξ1, ξ2)

σ1σ2
(4.218)

is called the correlation coefficient (σ1 =
√
D[ξ1], σ2 =

√
D[ξ2]).
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Random variables ξ1, ξ2 are uncorrelated if

Cov (ξ1, ξ2) = 0 (4.219)

Integrable random variables ξ1, ξ2 with integrable term ξ1ξ2 are uncorrelated
if and only if

E {ξ1, ξ2} = E {ξ1}E {ξ2} (4.220)

This follows from the fact that Cov (ξ1, ξ2) = E {ξ1, ξ2}−E {ξ1}E {ξ2}. Thus
the multiplicative property of probabilities extends to expectations.

If ξ1, ξ2 are independent integrable random variables then they are uncor-
related.

A vector of random variables ξ = (ξ1, . . . , ξn)T is usually computationally
characterised only by its expected value E {ξ} and the covariance matrix
Cov (ξ).

The expected value E {ξ} of a vector ξ is given as the vector of expected
values of the elements ξi.

The covariance matrix Cov (ξ) of a vector ξ with the expected value E {ξ}
is the expected value of the matrix (ξ − E {ξ})(ξ − E {ξ})T , hence

Cov (ξ) = E
{
(ξ − E[ξ])(ξ − E {ξ})T

}
(4.221)

A covariance matrix is a symmetric positive (semi-)definite matrix that con-
tains in i-th row and j-th column covariances of the random variables ξi, ξj :

Cov (ξi, ξj) = E {(ξi − E {ξi})(ξj − E {ξj})} (4.222)

Elements of a covariance matrix determine a degree of correlation between
random variables where

Cov (ξi, ξj) = Cov (ξj , ξi) (4.223)

The main diagonal of a covariance matrix contains variances of random vari-
ables ξi :

Cov (ξi, ξi) = E {(ξi − E {ξi})(ξi − E {ξi})} = σ2
i (4.224)

4.4.3 Stochastic Processes

When dealing with dynamic systems, some phenomenon can be observed as
a function of time. When some physical variable (temperature in a CSTR) is
measured under the same conditions in the same time tm several times, the
results may resemble trajectories shown in Fig. 4.30. The trajectories 1,2,3 are
all different. It is impossible to determine the trajectory 2 from the trajectory 1
and from 2 we are unable to predict the trajectory 3. This is the reason that it
is not interesting to investigate time functions independently but rather their
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Fig. 4.30. Realisations of a stochastic process

large sets. If their number approaches infinity, we speak about a stochastic
(random) process.

A stochastic process is given as a set of time-dependent random variables
ξ(t). Thus, the concept of a random variable ξ is broadened to a random
function ξ(t). It might be said that a stochastic process is such a function
of time whose values are at any time instant random variables. A random
variable in a stochastic process yields random values not only as an outcome of
an experiment but also as a function of time. A random variable corresponding
to some experimental conditions and changing in time that belongs to the set
of random variables ξ(t) is called the realisation of a stochastic process.

A stochastic process in some fixed time instants t1, t2, . . . , tn depends only
on the outcome of the experiment and changes to a corresponding random
variable with a given density function. From this follows that a stochastic
process can be determined by a set of density functions that corresponds to
random variables ξ(t1), ξ(t2), . . . , ξ(tn) in the time instants t1, t2, . . . , tn. The
density function is a function of time and is denoted by f(x, t). For any time
ti (i = 1, 2, . . . , n) exists the corresponding density function f(xi, ti).

Consider a time t1 and the corresponding random variable ξ(t1). The prob-
ability that ξ(t1) will be between x1 and x1 + dx1 is given as

P (x1 ≤ ξ(t1) < x1 + dx1) = f1(x1, t1)dx1 (4.225)

where f1(x1, t1) is the density function in time t1 (one-dimensional density
function).

Now consider two time instants t1 and t2. The probability that a random
variable ξ(t1) will be in time t1 between x1 and x1+dx1 and in time t2 between
x2 and x2 + dx2 can be calculated as

P (x1 ≤ ξ(t1) < x1 +dx1;x2 ≤ ξ(t2) < x2 +dx2) = f2(x1, t1;x2, t2)dx1dx2

(4.226)
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where f2(x1, t1;x2, t2) is two-dimensional density function and determines the
relationship between the values of a stochastic process ξ(t) in the time instants
t1 and t2.

Sometimes, also n-dimensional density function f2(x1, t1;x2, t2; . . . ;xn, tn)
is introduced and is analogously defined as a probability that a process ξ(t)
passes through n points with deviation not greater than dx1,dx2, . . . ,dxn.

A stochastic process is statistically completely determined by the density
functions f1, . . . , fn and the relationships among them.

The simplest stochastic process is a totally independent stochastic process
(white noise). For this process, any random variables at any time instants are
mutually independent. For this process holds

f2(x1, t1;x2, t2) = f(x1, t1)f(x2, t2) (4.227)

as well as

fn(x1, t1;x2, t2; . . . ;xn, tn) = f(x1, t1)f(x2, t2) . . . f(xn, tn) (4.228)

Based on the one-dimensional density function, the expected value of a
stochastic process is given by

μ(t) = E {ξ(t)} =
∫ ∞

−∞
xf1(x, t)dx (4.229)

In (4.229) the index of variables of f1 is not given as it can be arbitrary.
Variance of a stochastic process can be written as

D[ξ(t)] =
∫ ∞

−∞
[x− μ(t)]2f1(x, t)dx (4.230)

D[ξ(t)] = E
{
ξ2(t)

}
− (E {ξ(t)})2 (4.231)

Expected value of a stochastic process μ(t) is a function of time and it is
the mean value of all realisations of a stochastic process. The variance D[ξ(t)]
gives information about dispersion of realisations with respect to the mean
value μ(t).

Based on the information given by the two-dimensional density function,
it is possible to find an influence between the values of a stochastic process at
times t1 and t2. This is given by the auto-correlation function of the form

Rξ(t1, t2) = E {ξ(t1)ξ(t2)} =
∫ ∞

−∞

∫ ∞

−∞
x1x2f2(x1, t1;x2, t2)dx1dx2

(4.232)

The auto-covariance function is given as

Covξ (t1, t2) = E {(ξ(t1) − μ(t1))(ξ(t2) − μ(t2))}

=
∫ ∞

−∞

∫ ∞

−∞
[x1 − μ(t1)][x2 − μ(t2)]f2(x1, t1;x2, t2)dx1dx2

(4.233)
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For the auto-correlation function follows

Rξ(t1, t2) = Covξ (t1, t2) − μ(t1)μ(t2) (4.234)

Similarly, for two stochastic processes ξ(t) and η(t), we can define the
correlation function

Rξη(t1, t2) = E {ξ(t1)η(t2)} (4.235)

and the covariance function

Covξη (t1, t2) = E {(ξ(t1) − μ(t1))(η(t2) − μη(t2))} (4.236)

If a stochastic process with normal distribution is to be characterised, it
usually suffices to specify its mean value and the correlation function. However,
this does not hold in the majority of cases.

When replacing the arguments t1, t2 in Equations (4.232), (4.234) by t
and τ then

Rξ(t, τ) = E {ξ(t)ξ(τ)} (4.237)

and

Covξ (t, τ) = E {(ξ(t) − μ(t))(ξ(τ) − μ(τ))} (4.238)

If t = τ then

Covξ (t, t) = E
{
(ξ(t) − μ(t))2

}
(4.239)

where Covξ (t, t) is equal to the variance of the random variable ξ. The ab-
breviated form Covξ (t) = Covξ (t, t) is also often used.

Consider now mutually dependent stochastic processes ξ1(t), ξ2(t), . . . ξn(t)
that are elements of stochastic process vector ξ(t). In this case, the mean values
and auto-covariance function are often sufficient characteristics of the process.

The vector mean value of the vector ξ(t) is given as

μ(t) = E {ξ(t)} (4.240)

The expression

Covξ (t1, t2) = E
{
(ξ(t1) − μ(t1))(ξ(t2) − μ(t2))T

}
(4.241)

or

Covξ (t, τ) = E
{
(ξ(t) − μ(t))(ξ(τ) − μ(τ))T

}
(4.242)

is the corresponding auto-covariance matrix of the stochastic process vector
ξ(t).

The auto-covariance matrix is symmetric, thus
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Covξ (τ, t) = CovT
ξ (t, τ) (4.243)

If a stochastic process is normally distributed then the knowledge about
its mean value and covariance is sufficient for obtaining any other process
characteristics.

For the investigation of stochastic processes, the following expression is
often used

μ̄ = lim
T→∞

1
2T

∫ T

−T

ξ(t)dt (4.244)

μ̄ is not time dependent and follows from observations of the stochastic process
in a sufficiently large time interval and ξ(t) is any realisation of the stochastic
process. In general, the following expression is used

μ̄m = lim
T→∞

1
2T

∫ T

−T

[ξ(t)]mdt (4.245)

For m = 2 this expression gives μ̄2.
Stochastic processes are divided into stationary and non-stationary. In the

case of a stationary stochastic process, all probability densities f1, f2, . . . fn

do not depend on the start of observations and onedimensional probability
density is not a function of time t. Hence, the mean value (4.229) and the
variance (4.230) are not time dependent as well.

Many stationary processes are ergodic, i.e. the following holds with prob-
ability equal to one

μ =
∫ ∞

−∞
xf1(x)dx = μ̄ = lim

T→∞
1

2T

∫ T

−T

ξ(t)dt (4.246)

μ2 = μ̄2, μm = μ̄m (4.247)

The usual assumption in practice is that stochastic processes are stationary
and ergodic.

The properties (4.246) and (4.247) show that for the investigation of sta-
tistical properties of a stationary and ergodic process, it is only necessary to
observe its one realisation in a sufficiently large time interval.

Stationary stochastic processes have a two-dimensional density function
f2 independent of the time instants t1, t2, but dependent on τ = t2 − t1
that separates the two random variables ξ(t1), ξ(t2). As a result, the auto-
correlation function (4.232) can be written as

Rξ(τ) = E {ξ(t1)ξ(t2)} =
∫ ∞

−∞

∫ ∞

−∞
x1x2f2(x1, x2, τ)dx1dx2 (4.248)

For a stationary and ergodic process hold the equations (4.246), (4.247) and
the expression E {ξ(t)ξ(t+ τ)} can be written as
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E {ξ(t)ξ(t+ τ)} = ξ(t)ξ(t+ τ)

= lim
T→∞

1
2T

∫ T

−T

ξ(t)ξ(t+ τ)dt (4.249)

Hence, the auto-correlation function of a stationary ergodic process is in the
form

Rξ(τ) = lim
T→∞

1
2T

∫ T

−T

ξ(t)ξ(t+ τ)dt (4.250)

Auto-correlation function of a process determines the influence of a random
variable between the times t+τ and t. If a stationary ergodic stochastic process
is concerned, its auto-correlation function can be determined from any of its
realisations.

The auto-correlation function Rξ(τ) is symmetric

Rξ(−τ) = Rξ(τ) (4.251)

For τ = 0 the auto-correlation function is determined by the expected
value of the square of the random variable

Rξ(0) = E
{
ξ2(t)

}
= ξ(t)ξ(t) (4.252)

For τ → ∞ the auto-correlation function is given as the square of the
expected value. This can easily be proved.

Rξ(τ) = ξ(t)ξ(t+ τ) =
∫ ∞

−∞

∫ ∞

−∞
x1x2f2(x1, x2, τ)dx1dx2 (4.253)

For τ → ∞, ξ(t) and ξ(t + τ) are mutually independent. Using (4.227) that
can be applied to a stochastic process yields

Rξ(∞) =
∫ ∞

−∞
x1f(x1)dx1

∫ ∞

−∞
x2f(x2)dx2 = μ2 = (μ̄)2 (4.254)

The value of the auto-correlation function for τ = 0 is in its maximum and
holds

Rξ(0) ≥ Rξ(τ) (4.255)

The cross-correlation function of two mutually ergodic stochastic processes
ξ(t), η(t) can be given as

E {ξ(t)η(t+ τ)} = ξ(t)η(t+ τ) (4.256)

or

Rξη(τ) =
∫ ∞

−∞

∫ ∞

−∞
x1y2f2(x1, y2, τ)dx1dy2

= lim
T→∞

1
2T

∫ T

−T

ξ(t)η(t+ τ)dt (4.257)



4.4 Statistical Characteristics of Dynamic Systems 175

Consider now a stationary ergodic stochastic process with corresponding
auto-correlation function Rξ(τ). This auto-correlation function provides infor-
mation about the stochastic process in the time domain. The same information
can be obtained in the frequency domain by taking the Fourier transform of
the auto-correlation function. The Fourier transform Sξ(ω) of Rξ(τ) is given
as

Sξ(ω) =
∫ ∞

−∞
Rξ(τ)e−jωτdτ (4.258)

Correspondingly, the auto-correlation function Rξ(τ) can be obtained if Sξ(ω)
is known using the inverse Fourier transform

Rξ(τ) =
1
2π

∫ ∞

−∞
Sξ(ω)ejωτdω (4.259)

Rξ(τ) and Sξ(ω) are non-random characteristics of stochastic processes. Sξ(ω)
is called power spectral density of a stochastic process. This function has large
importance for investigation of transformations of stochastic signals entering
linear dynamical systems.

The power spectral density is an even function of ω:

Sξ(−ω) = Sξ(ω) (4.260)

For its determination, the following relations can be used.

Sξ(ω) = 2
∫ ∞

0

Rξ(τ) cosωτdτ (4.261)

Rξ(τ) =
1
π

∫ ∞

0

Sξ(ω) cosωτdω (4.262)

The cross-power spectral density Sξη(ω) of two mutually ergodic stochastic
processes ξ(t), η(t) with zero means is the Fourier transform of the associated
cross-correlation function Rξη(τ):

Sξη(ω) =
∫ ∞

−∞
Rξη(τ)e−jωτdτ (4.263)

The inverse relation for the cross-correlation function Rξη(τ) if Sξη(ω) is
known, is given as

Rξη(τ) =
1
2π

∫ ∞

−∞
Sξη(ω)ejωτdω (4.264)

If we substitute in (4.249), (4.259) for τ = 0 then the following relations
can be obtained

E
{
ξ(t)2

}
= Rξ(0) = lim

T→∞
1

2T

∫ T

−T

ξ2(t)dt (4.265)

E
{
ξ(t)2

}
= Rξ(0) =

1
2π

∫ ∞

−∞
Sξ(ω)dω =

1
π

∫ ∞

0

Sξ(ω)dω (4.266)
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The equation (4.265) describes energetical characteristics of a process. The
right hand side of the equation can be interpreted as the average power of the
process. The equation (4.266) determines the power as well but expressed in
terms of power spectral density. The average power is given by the area under
the spectral density curve and Sξ(ω) characterises power distribution of the
signal according to the frequency. For Sξ(ω) holds

Sξ(ω) ≥ 0 (4.267)

4.4.4 White Noise

Consider a stationary stochastic process with a constant power spectral den-
sity for all frequencies

Sξ(ω) = V (4.268)

This process has a “white” spectrum and it is called white noise. Its power
spectral density is shown in Fig. 4.31a. From (4.266) follows that the average
power of white noise is indefinitely large, as

E
{
ξ(t)2

}
=

1
π
V

∫ ∞

0

dω (4.269)

Therefore such a process does not exit in real conditions.
The auto-correlation function of the white noise can be determined from

equation (4.262)

Rξ(τ) =
1
π

∫ ∞

0

V cosωτdω = V δ(τ) (4.270)

where

δ(τ) =
1
π

∫ ∞

0

cosωτdω (4.271)

because the Fourier transform of the delta function Fδ(jω) is equal to one and
the inverse Fourier transform is of the form

δ(τ) =
1
2π

∫ ∞

−∞
Fδ(jω)ejωτdω

=
1
2π

∫ ∞

−∞
ejωτdω

=
1
2π

∫ ∞

−∞
cosωτdω + j

1
2π

∫ ∞

−∞
sinωτdω

=
1
π

∫ ∞

0

cosωτdω (4.272)
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b)V δ(τ)

τ0

Fig. 4.31. Power spectral density and auto-correlation function of white noise

The auto-correlation function of white noise (Fig. 4.31b) is determined by the
delta function and is equal to zero for any non-zero values of τ . White noise
is an example of a stochastic process where ξ(t) and ξ(t+ τ) are independent.

A physically realisable white noise can be introduced if its power spectral
density is constrained

Sξ(ω) = V for |ω| < ω1

Sξ(ω) = 0 for |ω| > ω1
(4.273)

The associated auto-correlation function can be given as

Rξ(τ) =
V

π

∫ ω1

0

cosωτdω =
V

πτ
sinω1τ (4.274)

The following relation also holds

μ̄2 = D =
V

2π

∫ ω1

−ω1

dω =
V ω1

π
(4.275)

Sometimes, the relation (4.268) is approximated by a continuous function.
Often, the following relation can be used

Sξ(ω) =
2aD

ω2 + a2
(4.276)

The associated auto-correlation function is of the form
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Rξ(τ) =
1
2π

∫ ∞

−∞

2aD
ω2 + a2

ejωτdω = De−a|τ | (4.277)

The figure 4.32 depicts power spectral density and auto-correlation function of
this process. The equations (4.276), (4.277) describe many stochastic processes
well. For example, if a� 1, the approximation is usually “very” good.

Sξ

Rξ

0 ω

a)

b)

τ0

�

�

�

�

2D/a

D

Fig. 4.32. Power spectral density and auto-correlation function of the process given
by (4.276) and (4.277)

4.4.5 Response of a Linear System to Stochastic Input

Consider a continuous linear system with constant coefficients

dx(t)
dt

= Ax(t) + Bξ(t) (4.278)

x(0) = ξ0 (4.279)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the vector of state variables, ξ(t) =
[ξ1(t), ξ2(t), . . . , ξm(t)]T is a stochastic process vector entering the system.
A,B are n × n, n ×m constant matrices, respectively. The initial condition
ξ0 is a vector of random variables.

Suppose that the expectation E {ξ0} and the covariance matrix Cov (ξ0)
are known and given as
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E {ξ0} = x0 (4.280)

E
{
(ξ0 − x0)(ξ0 − x0)T

}
= Cov (ξ0) = Cov0 (4.281)

Further, suppose that ξ(t) is independent on the initial condition vector
ξ0 and that its mean value μ(t) and its auto-covariance function Covξ (t, τ)
are known and holds

E {ξ(t)} = μ(t), for t ≥ 0 (4.282)

E
{
(ξ(t) − μ(t))(ξ(τ) − μ(τ))T

}
= Covξ (t, τ) , for t ≥ 0, τ ≥ 0 (4.283)

E
{
(ξ(t) − μ(t))(ξ0 − μ0)T

}
≡ 0, for t ≥ 0 (4.284)

As ξ0 is a vector of random variables and ξ(t) is a vector of stochastic
processes then x(t) is a vector of stochastic processes as well. We would like to
determine its mean value E {x(t)}, covariance matrix Covx (t) = Covx (t, t),
and auto-covariance matrix Covx (t, τ) for given ξ0 and ξ(t).

Any stochastic state trajectory can be determined for given initial condi-
tions and stochastic inputs as

x(t) = Φ(t)ξ0 +
∫ t

0

Φ(t− α)Bξ(α)dα (4.285)

where Φ(t) = eAt is the system transition matrix.

Denoting

E {x(t)} = x̄(t) (4.286)

then the following holds

x̄(t) = Φ(t)x0 +
∫ t

0

Φ(t− α)Bμ(α)dα (4.287)

This corresponds with the solution of the differential equation

dx̄(t)
dt

= Ax̄(t) + Bμ(t) (4.288)

with initial condition

x̄(0) = x0 (4.289)

To find the covariance matrix and auto-correlation function, consider at
first the deviation x(t) − x̄(t):

x(t) − x̄(t) = Φ(t)[ξ0 − x̄0] +
∫ t

0

Φ(t− α)B[ξ(α) − μ(α)]dα (4.290)

It is obvious that x(t)−x̄(t) is the solution of the following differential equation
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dx(t)
dt

− dx̄(t)
dt

= A[x(t) − x̄(t)] + B[ξ(t) − μ(t)] (4.291)

with initial condition

x(0) − x̄(0) = ξ0 − x0 (4.292)

From the equation (4.290) for Covx (t) follows

Covx (t) = E
{
(x(t) − x̄(t))(x(t) − x̄(t))T

}

= E

{{
Φ(t)[ξ0 − x0] +

∫ t

0

Φ(t− α)B[ξ(α) − μ(α)]dα
}
×

×
{

Φ(t)[ξ0 − x0] +
∫ t

0

Φ(t− β)B[ξ(β) − μ(β)]dβ
}T}

(4.293)

and after some manipulations,

Covx (t) = Φ(t)E
{
(ξ0 − x0)(ξ0 − x0)T

}
ΦT (t)

+
∫ t

0

Φ(t)E
{
(ξ0 − x0)(ξ(β) − μ(β))T

}
BT ΦT (t− β)dβ

+
∫ t

0

Φ(t− α)BE
{
(ξ(α) − μ(α))(ξ0 − x0)T

}
ΦT (t)dα

+
∫ t

0

∫ t

0

Φ(t−α)BE
{
(ξ(α) − μ(α))(ξ(β) − μ(β))T

}
BT ΦT (t−β)dβdα

(4.294)

Finally, using equations (4.281), (4.283), (4.284) yields

Covx (t) = Φ(t)Cov0ΦT (t)

+
∫ t

0

∫ t

0

Φ(t− α)BCovξ (α, β) BT ΦT (t− β)dβdα (4.295)

Analogously, for Covx (t, τ) holds

Covx (t, τ) = Φ(t)Cov0ΦT (t)

+
∫ t

0

∫ τ

0

Φ(t− α)BCovξ (α, β) BT ΦT (τ − β)dβdα (4.296)

Consider now a particular case when the system input is a white noise
vector, characterised by

E
{
(ξ(t) − μ(t))(ξ(τ) − μ(τ))T

}
= V (t)δ(t− τ)

for t ≥ 0, τ ≥ 0,V (t) = V T (t) ≥ 0
(4.297)

The state covariance matrix Covx (t) can be determined if the auto-covariance
matrix Covx (t, τ) of the vector white noise ξ(t)

Covξ (α, β) = V (α)δ(α− β) (4.298)
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is used in the equation (4.295) that yields

Covx (t) = Φ(t)Cov0ΦT (t)

+
∫ t

0

∫ t

0

Φ(t− α)BV (α)δ(α− β)BT ΦT (t− β)dβdα (4.299)

= Φ(t)Cov0ΦT (t)

+
∫ t

0

Φ(t− α)BV (α)BT ΦT (t− α)dα (4.300)

The covariance matrix Covx (t) of the state vector x(t) is the solution of the
matrix differential equation

dCovx (t)
dt

= ACovx (t) + Covx (t)AT + BV (t)BT (4.301)

with initial condition

Covx (0) = Cov0 (4.302)

The auto-covariance matrix Covx (t, τ) of the state vector x(t) is given by
applying (4.298) to (4.296). After some manipulations follows

Covx (t, τ) = Φ(t− τ)Covx (t) for t > τ
Covx (t, τ) = Covx (t) Φ(τ − t) for τ > t

(4.303)

If a linear continuous system with constant coefficients is asymptotically
stable and it is observed from time −∞ and if the system input is a stationary
white noise vector, then x(t) is a stationary stochastic process.

The mean value

E {x(t)} = x̄ (4.304)

is the solution of the equation

0 = Ax̄ + Bμ (4.305)

where μ is a vector of constant mean values of stationary white noises at the
system input.

The covariance matrix

E
{
(x(t) − x̄)(x(t) − x̄)T

}
= Covx (4.306)

is a constant matrix and is given as the solution of

0 = ACovx + CovxAT + BV BT (4.307)

where V is a symmetric positive-definite constant matrix defined as

E
{
(ξ(t) − μ)(ξ(t) − μ)T

}
= V δ(t− τ) (4.308)



182 4 Dynamical Behaviour of Processes

The auto-covariance matrix

E
{
(x(t1) − x̄)(x(t2) − x̄)T

}
= Covx (t1, t2) ≡ Covx (t1 − t2, 0) (4.309)

is in the case of stationary processes dependent only on τ = t1 − t2 and can
be determined as

Covx (τ, 0) = eAτCovx for τ > 0
Covx (τ, 0) = Covxe−AT τ for τ < 0

(4.310)

Example 4.9: Analysis of a first order system
Consider the mixing process example from page 67 given by the state
equation

dx(t)
dt

= ax(t) + bξ(t)

where x(t) is the output concentration, ξ(t) is a stochastic input concen-
tration, a = −1/T1, b = 1/T1, and T1 = V/q is the time constant defined
as the ratio of the constant tank volume V and constant volumetric flow
q.
Suppose that

x(0) = ξ0

where ξ0 is a random variable.

Further assume that the following probability characteristics are known

E {ξ0} = x0

E
{
(ξ0 − x0)2

}
= Cov0

E {ξ(t)} = μ for t ≥ 0
E {(ξ(t) − μ)(ξ(τ) − μ)} = V δ(t− τ) for t, τ ≥ 0
E {(ξ(t) − μ)(ξ0 − x0)} ≡ 0 for t ≥ 0

The task is to determine the mean value E {x(t)}, variance Covx (t), and
auto-covariance function in the stationary case Covx (τ, 0).
The mean value E {x(t)} is given as

x̄ = eatx0 −
b

a

(
1 − eat

)
μ

As a < 0, the output concentration for t → ∞ is an asymptotically sta-
tionary stochastic process with the mean value

x̄∞ = − b

a
μ

The output concentration variance is determined from (4.300) as
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Covx (t) = e2atCov0 −
b2

2a
(
1 − e2at

)
V

Again, for t→ ∞ the variance is given as

lim
t→∞Covx (t) = −b

2V

2a

The auto-covariance function in the stationary case can be written as

Covx (τ, 0) = −ea|τ | b
2V

2a

4.4.6 Frequency Domain Analysis of a Linear System
with Stochastic Input

G(s) ��u(t) y(t)

Fig. 4.33. Block-scheme of a system with transfer function G(s)

Consider a continuous linear system with constant coefficients (Fig. 4.33).
The system response to a stochastic input signal is a stochastic process de-
termined by its auto-correlation function and power spectral density. The
probability characteristics of the stochastic output signal can be found if the
process input and system characteristics are known.

Let u(t) be any realisation of a stationary stochastic process in the system
input and y(t) be the associated system response

y(t) =
∫ ∞

−∞
g(τ1)u(t− τ1)dτ1 (4.311)

where g(t) is the impulse response. The mean value of y(t) can be determined
in the same way as

E {y(t)} =
∫ ∞

−∞
g(τ1)E {u(t− τ1)}dτ1 (4.312)

Analogously to (4.311) which determines the system output in time t, in an-
other time t+ τ holds

y(t+ τ) =
∫ ∞

−∞
g(τ2)E {u(t+ τ − τ2)}dτ2 (4.313)

The auto-correlation function of the output signal is thus given as
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Ryy(τ) = E {y(t)y(y + τ)}

= E

{{∫ ∞

−∞
g(τ1)u(t− τ1)dτ1

}{∫ ∞

−∞
g(τ2)u(t+ τ − τ2)dτ2

}}

(4.314)

or

Ryy(τ) =
∫ ∞

−∞

∫ ∞

−∞
g(τ1)g(τ2)E {u(t− τ1)u(t+ τ − τ2)}dτ1dτ2 (4.315)

As the following holds

E {u(t− τ1)u(t+ τ − τ2)} = E {u(t− τ1)u{(t− τ1) + (τ + τ1 − τ2)}}
(4.316)

then it follows, that

Ryy(τ) =
∫ ∞

−∞

∫ ∞

−∞
g(τ1)g(τ2)Ruu(τ + τ1 − τ2)dτ1dτ2 (4.317)

where Ruu(τ+τ1−τ2) is the input auto-correlation function with the argument
(τ + τ1 − τ2).

The mean value of the squared output signal is given as

y2(t) = Ryy(0) =
∫ ∞

−∞

∫ ∞

−∞
g(τ1)g(τ2)Ruu(τ1 − τ2)dτ1dτ2 (4.318)

The output power spectral density is given as the Fourier transform of the
associated auto-correlation function as

Syy(ω) =
∫ ∞

−∞
Ryy(τ)e−jωτdτ

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(τ1)g(τ2)Ruu[τ + (τ1 − τ2)]e−jωτdτ1dτ2dτ

(4.319)

Multiplying the subintegral term by (ejωτ1e−jωτ2)(e−jωτ1ejωτ2) = 1 yields

Syy(ω) =
∫ ∞

−∞
g(τ1)ejωτ1dτ1

∫ ∞

−∞
g(τ2)e−jωτ2dτ2

×
∫ ∞

−∞
Ruu[τ + (τ1 − τ2)]e−jω(τ+τ1−τ2)dτ (4.320)

Now we introduce a new variable τ ′ = τ + τ1 − τ2, yielding

Syy(ω) =
[∫ ∞

−∞
g(τ1)ejωτ1dτ1

] [∫ ∞

−∞
g(τ2)e−jωτ2dτ2

]

×
[∫ ∞

−∞
Ruu(τ ′)e−jωτ ′

dτ ′
]

(4.321)
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The last integral is the input power spectral density

Suu(ω) =
∫ ∞

−∞
Ruu(τ ′)e−jωτ ′

dτ ′ (4.322)

The second integral is the Fourier transform of the impulse function g(t), i.e.
it is the frequency transfer function of the system.

G(jω) =
∫ ∞

−∞
g(τ2)e−jωτ2dτ2 (4.323)

Finally, the following holds for the first integral

G(−jω) =
∫ ∞

−∞
g(τ1)ejωτ1dτ1 (4.324)

Hence, from (4.320)–(4.324) follows

Syy(ω) = |G(jω)|2Suu(ω) (4.325)

with

|G(jω)|2 = G(−jω)G(jω).

If the power spectral density Syy(ω) is known then the mean value of the
squared output variable is in the form

y2(t) =
1
π

∫ ∞

0

Syy(ω)dω =
1
π

∫ ∞

0

|G(jω)|2Suu(ω)dω (4.326)
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4.6 Exercises

Exercise 4.1:
Consider a system with the transfer function given as

G(s) =
0.6671s+ 3.0610

s2 + 4.0406s+ 5.4345

Find:
1. response of the system to the unit impulse,
2. response of the system to the unit step.

Exercise 4.2:
Consider the system from the previous exercise. Plot:
1. the Nyquist diagram,
2. the Bode diagram.

Exercise 4.3:
Consider a system with the transfer function given as

R(s) =
−0.0887s+ 1.774

1.25s

Find:
1. response of the system to the unit step,
2. the Nyquist diagram,
3. the Bode diagram.

Exercise 4.4:
Consider a system with the transfer function given as

L(s) = G(s)R(s)

where G(s) is the first exercise and R(s) is in the third exercise. Find:
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1. the Nyquist diagram,
2. the Bode diagram.

Exercise 4.5:
Consider a system with the transfer function given as

T (s) =
G(s)R(s)

1 +G(s)R(s)

where G(s) is in the first exercise and R(s) is in the third exercise. Find:
1. response of the system to the unit step,
2. the Bode diagram.

Exercise 4.6:
Consider a system with the transfer function given as

S(s) =
1

1 +G(s)R(s)

where G(s) is in the first exercise and R(s) is in the third exercise. Find its
Bode diagram.
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Discrete-Time Process Models

The aim of this chapter is to explain the reason why discrete-time process
models are used. It has a close relation to computer control of processes.
The chapter demonstrates how discrete-time processes and discrete transfer
functions are obtained. Basic properties of discrete-time systems are examined.

5.1 Computer Controlled and Sampled Data Systems

( )skTw
Computer

Discretised process

D/A converter
with S/H

( )tu
Process

( )ty AD
converter
with S/H

( )skTe ( )skTu ( )skTy

_

Fig. 5.1. A digital control system controlling a continuous-time process

Computer controlled process control indicates that the control law is cal-
culated by computer. A feedback scheme of such a control is shown in Fig. 5.1.
This is a simplified scheme of direct digital control. The scheme in Fig. 5.1
contains four basic blocks: computer, digital-to-analog (D/A) converter, con-
trolled process, and analog-to-digital (A/D) converter. Both converters con-
tain sample-and-hold (S/H) device (or simply sampler) that holds each sample
constant until a new information arrives. The control error e(kTs) is given as
the difference between the setpoint signal w(kTs) and controlled process out-
put y(kTs) in digital form in sampling times specified by the sampling period
Ts. The computer interprets the signal e(kTs) as a sequence of numbers and
given the control law, it generates a new sequence of control signals u(kTs).
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The discretised process represents a system with input being the sequence
[u(kTs)] and output being the sequence [y(kTs)]. This system is characterised
by a discrete-time model that defines relations between sequences [u(kTs)]
and [y(kTs)]. A/D converter implements transformation of a continuous-time
signal to a sequence of numbers (Fig. 5.2). D/A converter with a sampler
implements transformation of a digital signal to a continuous-time signal that
is constant within one sampling period (Fig. 5.3). A/D and D/A converters
operate synchronously.

y

0 t

AD
converter

( )ty ( )skTy

Sampler

continuous-time
signal

discrete-time
signal

t 0 sT
sT2 sT3 sT4 sT5

∗y

Fig. 5.2. Transformation of a continuous-time to a discrete-time signal

A possible realisation of a sampler is zero-order hold with the transfer
function of the form

G(s) =
1 − e−Tss

s
(5.1)

When processes are controlled digitally, it is important to choose a suitable
sampling period Ts that will capture the process dynamics correctly. There
are two contradictory requirements on its choice. When computational load
is considered, the sampling period as large as possible should be chosen. On
the other hand, large sampling times imply loss of information.

In any case, the sampling period cannot be larger than some critical value
at which important information about the continuous-time signal can be lost.
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D/A converter
with S/H

( )tu( )skTu

Zero-order hold

continuous-time
signal

discrete-time
signal

t  0

u u

tsT
sT2 sT3 sT4 sT5sT

sT2 sT3 sT4 sT50

Fig. 5.3. Continuous-time signal step reconstruction from its discrete-time coun-
terpart

If a continuous-time sine signal is considered, loss of information occurs
when the following inequality does not hold

Ts <
Tsin

2
(5.2)

where Tsin is the oscillation period of the sine signal. This can be seen in
Fig. 5.4.

If (5.2) is not valid, the phenomenon occurring with the sine signal can
also occur with other sampled continuous-time signals.

If this phenomenon is studied using magnitude frequency spectra then it
will be shown by aliasing of individual spectral densities.

Let us now investigate properties of an ideal sampler shown in Fig. 5.5. Its
output variable y∗ can be represented as a sequence of modulated δ functions.
A periodical sequence of δ functions can be represented as

δ∗(t) =
∞∑

k=−∞
δ(t− kTs) (5.3)

Let us define the sampling frequency

ωs =
2π
Ts

(5.4)
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Ts1 Ts2

t

t

t

t

Ts3 Ts4

t

t

t

t

Tsin

Fig. 5.4. A possible loss of information caused by sampling

( )ty ( )ty∗

sT

Fig. 5.5. An ideal sampler

Then this sequence can be expressed using the exponential form of the Fourier
series

δ∗(t) =
ωs

2π

∞∑
n=−∞

e−jnωst (5.5)

The output variable of the ideal sampler can then be written as

y∗(t) = y(t)δ∗(t) y(t) ≡ 0, t < 0 (5.6)

Substituting δ∗(t) from (5.5) into equation (5.6) yields

y∗(t) =
ωs

2π
y(t)

∞∑
n=−∞

e−jnωst (5.7)
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or

y∗(t) =
1
Ts
y(t)

∞∑
n=−∞

e−jnωst (5.8)

The Fourier transform of this function if y(0) = 0 is given as

∫ ∞

0

y∗(t)e−jωtdt =
1
Ts

∫ ∞

0

y(t)e−jωt

( ∞∑
n=−∞

e−jnωst

)
dt (5.9)

Next, the following holds

Y ∗(jω) =
1
Ts

∞∑
n=−∞

∫ ∞

0

e−j(ω+nωs)ty (t) dt (5.10)

Y ∗(jω) =
1
Ts

∞∑
n=−∞

Y [j(ω + nωs)] (5.11)

as for the Fourier integral holds
∫ ∞

0

y(t)e−j(ω+nωs)tdt = Y [j(ω + nωs)] (5.12)

Substituting s for jω in equation (5.11) gives

Y ∗(s) =
1
Ts

∞∑
n=−∞

Y (s+ jnωs) (5.13)

It is clear from (5.11) that the transform Y (jω) is only nωs shifted form of
the function y(t). If the spectral density function of the variable y(t) is |Y (jω)|
(see Fig. 5.7) then the spectral density of the sampled signal y∗(t) is given as

|Y ∗(jω)| =

∣∣∣∣∣
1
Ts

∞∑
n=−∞

Y [j(ω + nωs)]

∣∣∣∣∣ (5.14)

-ωC ωC ω

|Y(jω)|

Fig. 5.6. Spectral density of a signal y(t)
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-ωS ωS 2ωS -ωC ωC 0 

|Y*(jω)| 

ω 

ωS/2 

Fig. 5.7. Spectral density of a sampled signal y∗(t)

Two cases can occur. In the first one the frequency ωc is smaller than or
equal to half of the sampling period, hence

ωc ≤ ωs

2
(5.15)

In this case the spectral density of |Y ∗(jω)| is composed of spectra of
|Y (jω)| shifted to the right of nωs and that are non-overlapping.

The second case occurs if the frequency ωc is larger than half of the sam-
pling period

ωc >
ωs

2

Here the spectral density of |Y ∗(jω)| consists of spectra |Y (jω)| shifted to the
right of nωs and overlapping. Hence, the spectral density of the signal |Y ∗(jω)|
is distorted.

The previous analysis has shown that it is imperative for non-overlapping
spectral densities that the sampling period obeys the relation

ωs ≥ 2ωc (5.16)

Overlapping of the spectra can be removed when a suitable anti-aliasing filter
is used for the original continuous-time signal before sampling.

The sampling period choice is rather a problem of experience than some
exact procedure. In general is has a strong influence on dynamic properties of
controlled system, as well as on whole closed-loop system.

Consider a dynamical system of the first order of the form

T
dy(t)
dt

+ y(t) = u(t) (5.17)

where y(t) is the output variable, u(t) is the input variable, and T is the process
time constant. The sampling period can be chosen based on the relation

T

5
< Ts <

T

2
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Consider a dynamical system of the second order of the form

T 2
k

d2y(t)
dt2

+ 2ζTk
dy(t)
dt

+ y(t) = u(t) (5.18)

where Tk is its time constant andζ the damping coefficient. The sampling
period is usually chosen within the interval

0.25 ≤ Ts

Tk
< 1.5 0.7 ≤ ζ ≤ 1 (5.19)

If ζ > 1 then an approximate model of the form (5.17) can be used. If
a closed-loop system is considered, the overall damping coefficient should be
larger than 0.7.

5.2 Z – Transform

f

0 t

( )tf ( )tf ∗

( )sF ( )sF ∗

t 0 sT
sT2 sT3 sT4 sT5

∗f

Fig. 5.8. An ideal sampler and an impulse modulated signal

Let us again consider an ideal sampler shown in Fig 5.8. This sampler
implements transformation of a continuous-time signal f(t) to an impulse
modulated signal. Individual impulses appear on the sampler output in the
sampling times kTs, k = 0, 1, 2, . . . and are equal to functions f(kTs), k =
0, 1, 2, . . .. This impulse modulated signal containing a sequence of impulses
is denoted by f∗(t). The signal f∗(t) can be expressed as

f∗(t) =
∞∑

k=0

f(kTs)δ(t− kTs) (5.20)
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The Laplace transform of this function is

L{f∗(t)} = F ∗(s) =
∞∑

k=0

f(kTs)e−kTss (5.21)

Let us introduce a new variable in equation (5.21)

z = eTss (5.22)

Then we can write

L{f∗(t)} =
∞∑

k=0

f(kTs)z−k (5.23)

Z-transform of the signal f(t) or f∗(t) is defined by the expression

F (z) = Z {f(t)} =
∞∑

k=0

f(kTs)z−k (5.24)

or

Z {f(t)} = F ∗(s)|z=eTss (5.25)

Z-transform is mathematically equivalent to the Laplace transform and differs
only in the argument. Z-transform exists only if some z exists such that the
series in (5.24) converges.

Consider the unit step function 1(t) defined as

1(t) =

{
1, t ≥ 0
0, t < 0

(5.26)

Sampled unit step function is given as

f(kTs) = 1, k ≥ 0 (5.27)

and thus

Z {1(t)} =
∞∑

k=0

z−k (5.28)

If |z| > 1 then the series in (5.28) is convergent and Z {1(t)} is

Z {1(t)} =
1

1 − z−1
(5.29)

or

Z {1(t)} =
z

z − 1
(5.30)
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Consider now an exponential function

f(t) = e−at1(t) (5.31)

where a = 1/T and T is a time constant. Then

L{f∗(t)} =
∞∑

k=0

e−akTse−kTss (5.32)

Its Z-transform is given as

Z
{
e−at1(t)

}
=

∞∑
k=0

(
e−aTsz−1

)k
(5.33)

If
∣∣z−1e−aTs

∣∣ < 1 then

Z
{
e−at1(t)

}
=

1
1 − z−1e−aTs

=
z

z − e−aTs
(5.34)

Z-transforms of other functions can be calculated in a similar way. Ta-
ble 5.1 lists some functions and their Laplace and Z transformations.

Z-transform is a linear operation.
Z-transform of a delayed function is given as

Z {f(t− kTs)} = z−kF (z) (5.35)

where k is a positive integer and f(t) = 0 for t < 0.
For an initial function value holds

lim
k→0

f(kTs) = lim
z→∞

z − 1
z

F (z) (5.36)

For a final function value holds

lim
k→∞

f(kTs) = lim
z→1

(1 − z−1)F (z) (5.37)

Reciprocally, given the Z-transform of a function, we can find the function
values in sampling times. The inverse Z-transform is symbolically written as

Z−1 {F (z)} = [f(0), f(Ts), f(2Ts), . . .] (5.38)

or

Z−1 {F (z)} = [f(kTs)] = f∗(t) (5.39)

However, using the inverse Z-transform, only values of f in sampling times
are found. It is not possible to find the sampling time. Also, a unique function
F (z) can be found for several continuous-time functions f(t).

Discrete functions can practically be found from Z-transforms using the
polynomial division or the expansion as a sum of partial fractions.
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f(t) F (s) F (z)

δ(t) 1 1

1(t)
1

s

z

z − 1

1(t) − 1(t − Ts)
1 − e−Tss

s
1

t1(t)
1

s2

Tsz

(z − 1)2

e−at1(t)
1

s + a

z

z − e−aTs

te−at1(t)
1

(s + a)2
Tsze−aTs

(z − e−aTs)2

e−at sin(ωt)1(t)
ω

(s + a)2 + ω2

ze−aTs sin(ωTs)

z2 − 2ze−aTs cos(ωTs) + e−2aTs

e−at cos(ωt)1(t)
s + a

(s + a)2 + ω2

z2 − ze−aTs cos(ωTs)

z2 − 2ze−aTs cos(ωTs) + e−2aTs[ 1

ab
+

1

a(a − b)
e−at 1

s(s + a)(s + b)

z

ab(z − 1)
+

z

a(a − b)(z − e−aTs)

+
1

b(b − a)
e−bt

]
1(t) +

z

b(b − a)(z − e−bTs)[ c

ab
+

c − a

a(a − b)
e−at s + c

s(s + a)(s + b)

cz

ab(z − 1)
+

z(c − a)

a(a − b)(z − e−aTs)

+
c − b

b(b − a)
e−bt

]
1(t) +

z(c − b)

b(b − a)(z − e−bTs)

Table 5.1. Laplace and Z-transforms of some common functions

Polynomial Division

The Z-transform definition gives

F (z) =
∞∑

k=0

f(k)z−k (5.40)

From this follows that

F (z) = f(0) + f(1)z−1 + f(2)z−2 + · · · (5.41)

To simplify expressions, we have replaced f(kTs) by f(k). If we can somehow
obtain the function F (z) as

F (z) = co + c1z
−1 + c2z

−2 + · · · (5.42)

then by equating (5.41) and (5.42) follows
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c0 = f(0), c1 = f(1), c2 = f(2), · · · (5.43)

If rational functions are considered, equation (5.42) can be found simply by
polynomial division.

Partial Fraction Expansion

The inverse Z-transform using partial fraction expansion is similar to the
inverse Laplace transform.

A function F (z) can be expressed as a ratio of two polynomials of the form

F (z) =
M(z−1)
N(z−1)

(5.44)

where

M(z−1) = m0 +m1z
−1 + · · · +mmz

−m (5.45)
N(z−1) = 1 + n1z

−1 + · · · + nnz
−n (5.46)

Let us assume that m < n and that the polynomial N(z) has n unequal real
roots

N(z−1) = (1 − z1z
−1)(1 − z2z

−1) · · · (1 − znz
−1) (5.47)

Partial fraction expansion gives

F (z) =
K1

1 − z1z−1
+

K2

1 − z2z−1
+ · · · + Kn

1 − znz−1
(5.48)

The corresponding time domain function f(kTs) is

f(k) = Z−1

{
K1

1 − z1z−1

}
+Z−1

{
K2

1 − z2z−1

}
+ · · ·+Z−1

{
Kn

1 − znz−1

}

(5.49)

or

f(kTs) = K1z
k
1 +K2z

k
2 + · · · +Knz

k
n (5.50)

If the denominator of F (z) has complex conjugate roots, partial fraction
expansion gives fractions with complex denominators. This can be handled
similarly as in case of the inverse Laplace transform.

Example 5.1: Inverse Z-transform using partial fraction expansion
Consider a function F (z) of the form

F (z) =
z

z2 − 1.4z + 0.4
or
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F (z) =
z−1

1 − 1.4z−1 + 0.4z−2

The denominator polynomial has roots z−1
1 = 1 and z−1

2 = 2.5. F (z) can
be written using partial fractions as

F (z) =
z−1

(1 − z−1)(1 − 0.4z−1)
=

K1

1 − z−1
+

K2

1 − 0.4z−1

Multiplying F (z) by 1 − z−1 and substituting for z−1 = 1 yields

K1 =
5
3

Multiplying F (z) by 1 − 0.4z−1 and substituting for z−1 = 2.5 yields

K2 = −5
3

Table 5.1 gives a corresponding time domain function (step function) for
expression (5/3)(1 − z−1)

(5/3) 1(kTs)

The term (−5/3)(1 − 0.4z−1) is in time domain

−5
3
e−akTs

where e−aTs = 0.4 = 2/5 and thus

aTs = − ln 0.4 = 0.916

Therefore, the time domain function corresponding to F (z) is given as

f(kTs) =
5
3
(
1 − e−0.916k

)
=

5
3

(
1 −

(
2
5

)k
)
, k = 0, 1, 2, . . .

Analytical form of the corresponding continuous-time exponential func-
tion can be found only if the sampling period Ts is known.

5.3 Discrete-Time Transfer Functions

Let us calculate a transient response of a combined discrete-time and continuous-
time system shown in Fig. 5.9. The signal

u∗(τ) =
∞∑

k=0

u(kTs)δ(τ − kTs) (5.51)
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( )tu

( )sU

( )sG
( )tu∗

( )sU *
sT

( )ty∗

( )sY ∗
sT

( )ty

( )sY

Fig. 5.9. Sample-and-hold device in series with a continuous-time system

is on the input of the continuous-time system with transfer function G(s).
The system response y(t) is given by the convolution integral

y(t) =
∫ t

0

g(t− τ)
∞∑

k=0

u(kTs)δ(τ − kTs)dτ (5.52)

where τ is time and g(t) = L−1 {G(s)}. Equation (5.52) for 0 ≤ τ ≤ t can be
written as

y(t) =
∞∑

k=0

g(t− kTs)u(kTs) (5.53)

Let us further assume only information about y(t) in sampling instants. There-
fore, the output of the process enters a fictitious sampler that is ideally syn-
chronised with the input sampler u∗(t). The output sampler gives the signal
y∗(t) and its values are the same as the values of y(t) in the sampling instants.
For t = jTs holds

y(jTs) =
∞∑

k=0

g(jTs − kTs)u(kTs) (5.54)

Applying the Z-transform yields

Y (z) =
∞∑

j=0

∞∑
k=0

g(jTs − kTs)u(kTs)z−j (5.55)

If j − k = i, then

Y (z) =
∞∑

i=−k

∞∑
k=0

g(iTs)u(kTs)z−(i+k) (5.56)

g(t) is the response of the continuous-time system to the unit impulse with
zero initial conditions, hence g(iTs) = 0, i < 0. The first summation term on
the right-hand side of (5.56) is thus simplified (k falls out) and summations
can be written separately:
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Y (z) =
∞∑

i=0

g(iTs)z−i
∞∑

k=0

u(kTs)z−k (5.57)

The Z-transform definition given by (5.24) gives

Y (z) = G(z)U(z) (5.58)

G(z) = Z {g(t)} =
∞∑

i=0

g(iTs)z−i (5.59)

The function G(z) is referred to as discrete-time transfer function of the sys-
tem with continuous-time transfer function G(s).

The term

U(z) = Z {u(t)} =
∞∑

k=0

u(kTs)z−k (5.60)

is Z-transform of the input signal u(t).
In the rest of the book will G(z) be simply referred to as transfer function.
Equation (5.58) seems to be the same as its continuous-time counterpart

using the Laplace transform. However, Y (z) only indicates information about
y(t) in sampling times. G(z) does not relate input and output signals at times
between sampling times. A possible way to have information between sampling
times is to employ a generalised Z-transform.

( )tu

( )sU

( )sG
( )tu∗

( )sU *
sT

( )ty∗

( )sY ∗
sT

( )ty

( )sYs

e sTs−−1

Fig. 5.10. Sampler and zero-order hold in series with a continuous-time system
G(s)

When the sample-and-hold device in Fig 5.9 is assumed to be zero-order
hold (Fig. 5.10) then the relation between G(s) and G(z) is

G(z) = (1 − z−1)Z
{
L−1

{[
G(s)
s

]}}
(5.61)

Example 5.2: Z-transform of a continuous-time first order system with zero-
order hold

Let us find discrete-time transfer function of a continuous-time system
given by
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G(s) = G1(s)G2(s)

where

G1(s) =
1 − e−sTs

s
, G2(s) =

Z1

T1s+ 1

Applying equation (5.61) gives

G(z) = (1 − z−1)Z
{
L−1

{
Z1

s(T1s+ 1)

}}

In this case Z-transform of the term Z1/ (s(T1s+ 1)) is needed. Partial
fraction expansion gives

Z1

s(T1s+ 1)
= Z1

⎛
⎜⎝1
s
− 1

s+
1
T1

⎞
⎟⎠

The right-hand side term corresponds to continuous-time function Z1(1−
e−t/T1). Table 5.1 gives

Z
{
Z1

(
1 − e−

t
T1

)}
= Z1

(
z

z − 1
− z

z − e−(Ts/T1)

)

Finally

G(z−1) =
b1z

−1

1 + a1z−1

where b1 = Z1(1 − e−(Ts/T1)), a1 = e−(Ts/T1).

Example 5.3: Z-transform of a continuous-time time-delayed first order sys-
tem with zero-order hold

Let us find discrete-time transfer function of a continuous-time system
given by

G(s) =
Z1e−Tds

T1s+ 1

where Td is a time delay. Let us suppose that

Td = dTs

is an integer multiple of the sampling period. The discrete-time transfer
function is of the form

G(z−1) =
z−d(b1z−1)
1 + a1z−1

where b1, a1 are the same as in the previous example.
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Example 5.4: Z-transform of a continuous-time second order system with
zero-order hold

Let us find discrete-time transfer function of a continuous-time system
given by

G(s) =
Z2

(T1s+ 1)(T2s+ 1)
, T1 = T2

The discrete-time transfer function is of the form

G(z) = (1 − z−1)Z
{
L−1

{
Z2

s(T1s+ 1)(T2s+ 1)

}}

Partial fraction expansion and Table 5.1 give

G(z) =
Z2

T1T2

(z − 1)
z

[
T1T2z

z − 1
+

zT 2
1 T2

(T2 − T1)(z − e−(Ts/T1))

+
zT1T

2
2

(T1 − T2)(z − e−(Ts/T2))

]

After some simplifications we find the final form

G(z−1) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

where

b1 = Z2

[
−
(
e−

Ts
T1 + e−

Ts
T2

)
− T1(1 + e−

Ts
T2 )

T2 − T1
+
T2(1 + e−

Ts
T1 )

T2 − T1

]

b2 = Z2

[
e−

Ts
T1 e−

Ts
T2 +

T1e
−Ts

T2

T2 − T1
− T2e

−Ts
T1

T2 − T1

]

a1 = −
(
e−

Ts
T1 + e−

Ts
T2

)

a2 = e−
Ts
T1 e−

Ts
T2

5.4 Input-Output Discrete-Time Models – Difference
Equations

A general discrete-time linear model can be written in time domain as

y(k) = −
n∑

i=1

aiy(k − i) +
m∑

i=1

biu(k − d− i) (5.62)

Let us now define a shift operator q−1 as
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q−1y(k) = y(k − 1) (5.63)

Equation (5.62) can then be rewritten as

y(k) = −
n∑

i=1

aiq
−iy(k) +

m∑
i=1

biq
−(d+i)u(k) (5.64)

or

A(q−1)y(k) = q−dB(q−1)u(k) (5.65)

where

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · · + anq
−n (5.66)

B(q−1) = b1q
−1 + b2q

−2 + · · · + bmq
−m (5.67)

Equation (5.65) can also be written as

y(k)
u(k)

=
q−dB(q−1)
A(q−1)

(5.68)

Hence, we can define a function

G(q−1) =
q−dB(q−1)
A(q−1)

(5.69)

that formally coincides with the discrete-time transfer function G(z) if we
replace q−1 for z−1

G(z−1) =
z−dB(z−1)
A(z−1)

(5.70)

5.4.1 Direct Digital Control

Direct digital control can be represented by the block scheme shown in
Fig. 5.11.

( )1−zR ( )1−zG
( )kw ( )ke ( )ku ( )ky

_

Fig. 5.11. Direct digital control

Difference equation used for determination of the manipulated variable
(discrete-time control law) is given as
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u(k) = −
r∑

i=1

piu(k − i) +
r∑

i=0

qie(k − i) (5.71)

where pi and qi are constants. Computer that implements the control law
remembers the past values of control errors and of manipulated variables. It
then calculates the control law from (5.71) in sampling times. Constants pi(i =
1, 2, . . . , r) and qi(i = 0, 1, . . . , r) are calculated in control design procedure.

If the shift operator q−1 is used then (5.71) can be given as

u(k) = −
r∑

i=1

piq
−iu(k) +

r∑
i=0

qiq
−ie(k) (5.72)

or

P (q−1)u(k) = Q(q−1)e(k) (5.73)

where

P (q−1) = 1 + p1q
−1 + p2q

−2 + · · · + prq
−r (5.74)

Q(q−1) = q0 + q1q
−1 + q2q

−2 + · · · + qrq
−r (5.75)

If we write equation (5.73) as

u(k)
e(k)

=
Q(q−1)
P (q−1)

(5.76)

we can see that we get a function

R(q−1) =
Q(q−1)
P (q−1)

(5.77)

This is formally equivalent to the discrete-time transfer function if q−1 is
replaced by z−1

R(z−1) =
Q(z−1)
P (z−1)

(5.78)

Equations (5.70), (5.78) define transfer functions.
Discrete-time transfer function without time delay with input u and output

y can in general be written as

G(z) =
b0z

m + b1z
m−1 + · · · + bm

zn + a1zn−1 + · · · + an
(5.79)

The corresponding difference equation is

y(k + n) + a1y(k + n− 1) + · · · + any(k)
= b0u(k +m) + b1u(k +m− 1) + · · · + bmu(k) (5.80)
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From this follows that a system with a transfer function is only realisable if
the degree of the numerator polynomial is smaller than or equal to the degree
of the denominator polynomial

n ≥ m (5.81)

System poles are roots of the denominator of G(z), i. e. roots of the char-
acteristic polynomial.

System zeros are poles of the inverse system.

5.5 State-Space Discrete-Time Models

Consider a continuous-time system described by state-space equations

dx(t)
dt

= Ax(t) + Bu(t) (5.82)

y(t) = C(t) + Du(t) (5.83)

System order of this system is n, the system has m inputs and r outputs.
A,B,C,D are constant matrices of appropriate dimensions.

Zero-order
hold

Continuous-
time system

( )tu∗

( )sU ∗

( )ty∗

( )sY ∗
sT

( )ty

( )sY

Fig. 5.12. Zero-order hold in series with a continuous-time system

If the continuous-time system given by (5.82), (5.83) is in series with the
zero-order hold (Fig. 5.12) then

x(tk+1) = eA(tk+1−tk)x(tk) +
[∫ tk+1

tk

eA(tk+1−τ)dτ
]
Bu(tk) (5.84)

The zero-order hold ensures that the input signal u(t), tk ≤ t < tk+1, k =
. . . ,−1, 0, 1, . . ., is piece-wise constant. If the sampling time is constant

Ts = tk+1 − tk (5.85)

then the sampled data system equations are given as

x(tk+1) = Φ(tk+1, tk)x(tk) + Γ (tk+1, tk)u(tk) (5.86)
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y(tk) = Cx(tk) + Du(tk) (5.87)

where

Φ(tk+1, tk) = eATs (5.88)

Γ (tk+1, tk) =

(∫ Ts

0

eAτdτ

)
B (5.89)

Let us denote tk = kTs. Then equations (5.86), (5.87) can be simplified as

x(k + 1) = Φx(k) + Γu(k) (5.90)
y(k) = Cx(k) + Du(k) (5.91)

Matrices Φ, Γ are constant. This follows from (5.88), (5.89). Matrix D is in
majority of discrete-time systems equal to zero.

The input-output model of a system can be easily derived from state-space
description using the following procedure:

Using the relation

qx(k) = x(k + 1) (5.92)

we can write

(qI − Φ)x(k) = Γu(k) (5.93)

y(k) = C(qI − Φ)−1Γu(k) + Du(k) (5.94)

If (5.94) is rewritten as

y(k) = G(q)u(k) (5.95)

then

G(q) = C(qI − Φ)−1Γ + D (5.96)

or

G(q−1) = C(I − q−1Φ)−1q−1Γ + D (5.97)

Consider now a singlevariable case where

G(q) =
B(q)
A(q)

(5.98)

If the system order is n and polynomials B(q), A(q) are coprime then the A
polynomial has degree n. It follows from (5.98) that the polynomial A is the
characteristic polynomial of the matrix Φ and the input-output model can be
written as
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y(k) = −
n∑

i=1

aiy(k − i) +
n∑

i=0

biu(k − i) (5.99)

The coefficient b0 is equal to zero in direct digital control, i. e. there is no
direct feed-through. The output signal is measured before the input signal
u(k) is calculated. y(k) cannot be influenced by u(k).

Of course, the same holds as with continuous-time systems: one input-
output system is equivalent to infinitely many state-space models.

Consider now a non-singular matrix T and define a new state vector as

z(k) = Tx(k) (5.100)

Further we can write

z(k + 1) = TΦT−1z(k) + TΓu(k) (5.101)
y(k) = CT−1z(k) + Du(k) (5.102)

The characteristic equation of the original and transformed system is of
the form

det(λI − Φ) = 0 (5.103)

This follows from the fact that

det(λI − TΦT−1) = detT det(λI − Φ) det T−1 (5.104)
= det(λI − Φ) (5.105)

If Φ has distinct eigenvalues λi, i = 1, 2, . . . , n then there exists a matrix T
such that

TΦT−1 =

⎛
⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
0 0 · · · λn

⎞
⎟⎟⎟⎠ (5.106)

Hence, the transformed system is diagonal.
If the form of the characteristic equation of the matrix Φ of a singlevariable

system is

λn + an−1λ
n−1 + · · · + a0 = 0 (5.107)

then the system can be transformed into

z(k + 1) =

⎛
⎜⎜⎜⎝

0 1 · · · 0
...

...
0 0 · · · 1

−a0 −a1 · · · −an−1

⎞
⎟⎟⎟⎠ z(k) +

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠u(k) (5.108)

y(k) =
(
b0 b1 . . . bn−1

)
z(k) (5.109)
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that is called the controllable canonical form.
If the characteristic equation of the matrix Φ of a singlevariable system is

of the form (5.107) then the system can be transformed into

z(k + 1) =

⎛
⎜⎜⎜⎝
−an−1 1 · · · 0

...
...

−a1 0 · · · 1
−a0 0 · · · 0

⎞
⎟⎟⎟⎠ z(k) +

⎛
⎜⎜⎜⎝
bn−1

...
b1
b0

⎞
⎟⎟⎟⎠u(k) (5.110)

y(k) =
(
1 0 · · · 0

)
z(k) (5.111)

This is called the observable canonical form.
To solve the state-space equations

x(k + 1) = Φx(k) + Γu(k) (5.112)
y(k) = Cx(k) (5.113)

we can use Z-transform. Transformed equation (5.112) is of the form

z[X(z) − x(0)] = ΦX(z) + ΓU(z) (5.114)

Further, we can write

X(z) = (zI − Φ)−1zx(0) + (zI − Φ)−1ΓU(z) (5.115)

Y (z) = C(zI − Φ)−1zx(0) + C(zI − Φ)−1ΓU(z) (5.116)

where

G(z) = C(zI − Φ)−1Γ (5.117)

is the discrete-time transfer function matrix.
The solution x(k), y(k) can be found using the inverse Z-transform with

equations (5.115), (5.116). However, there is a much simpler way. Let us write
x(1),x(2) as

x(1) = Φx(0) + Γu(0) (5.118)
x(2) = Φx(1) + Γu(1) (5.119)

= Φ2x(0) + ΦΓu(0) + Bu(1) (5.120)

Further continuation gives

x(k) = Φkx(0) +
k−1∑
i=0

Φk−i−1Γu(i), k ≥ 1 (5.121)
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5.6 Properties of Discrete-Time Systems

5.6.1 Stability

A discrete-time linear system of the form

x(k + 1) = Φx(k) (5.122)

is asymptotically stable in large in origin if and only if for a given symmetric
positive definite matrix Q there exists a symmetric positive definite matrix P
that satisfies solution of the Laypunov equation

ΦT PΦ − P = −Q (5.123)

The proof of sufficiency is very simple. Assume that a function V (x) exists

V (x) = xT Px (5.124)

such that

V (x) > 0; x = 0
V (0) = 0
V (x) → ∞ for ‖x‖ → ∞

(5.125)

ΔV (x) = xT (k + 1)Px(k + 1) − xT (k)Px(k) (5.126)
ΔV (x) = xT (k)(ΦT PΦ − P )x(k) (5.127)
ΔV (x) = −xT (k)Qx(k) (5.128)

Thus,

ΔV (x) < 0 x = 0 (5.129)

as the matrix Q is positive definite. This concludes the proof.
An alternative way to check stability can be the method that determines

eigenvalues of matrix Φ.
If input-output models are studied, it can be stated that a singlevariable

discrete-time system is stable if and only if all roots of the system denominator

1 + a1z
−1 + · · · + anz

−n = 0 (5.130)

are within unit circle with radius in origin. This follows from the equation

zi = esiTs (5.131)

where zi, i = 1, 2, . . . , n are roots of the characteristic equation. The condition
of negative si is identical with the condition

|zi| < 1 (5.132)



212 5 Discrete-Time Process Models

5.6.2 Controllability

A discrete-time linear system with constant coefficients

x(k + 1) = Φx(k) + Γu(k) (5.133)
y(k) = Cx(k) (5.134)

is completely controllable if and only if the controllability matrix

QRd = (Γ ΦΓ Φ2Γ · · · Φn−1Γ ) (5.135)

is of full rank n.

5.6.3 Observability

A discrete-time linear system with constant coefficients (5.133), (5.134) is
completely observable if and only if the observability matrix

QPd =

⎛
⎜⎜⎜⎜⎜⎝

C
CΦ
CΦ2

...
CΦn−1

⎞
⎟⎟⎟⎟⎟⎠

(5.136)

is of full rank n.

5.6.4 Discrete-Time Feedback Systems – Control Performance

The stability issue explained above is important in feedback control of discrete-
time systems. Stability is the principal requirement in feedback control design
and is included within the general problem of control performance. If stability
is guaranteed, the next requirement is to remove the steady-state control error.

Let us explain briefly the problem. Consider the feedback discrete-time
system shown in Fig. 5.13.

_
( )1

0
−zG

( )kw ( )ke ( )ky

Fig. 5.13. A feedback discrete-time system

The feedforward path includes a discrete-time controller R(z−1) and the
controlled process including D/A converter, the process, and A/D converter,
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i. e. the discretised process G(z−1). The open-loop transfer function is given
as

Go(z−1) = G(z−1)R(z−1) (5.137)

and can be written as

Go(z−1) =
Bo(z−1)
Ao(z−1)

(5.138)

where

Bo(z−1) = bo1z
−1 + bo2z

−2 + · · · + bomo
z−mo (5.139)

The closed-loop transfer function with the input w and output y is

Gc(z−1) =
Go(z−1)

1 +Go(z−1)
(5.140)

or

Gc(z−1) =
Bo(z−1)

Ao(z−1) +Bo(z−1)
(5.141)

The output in steady-state for a unit step on input can be derived by substitut-
ing for z = 1 into the closed-loop transfer function. To remove the steady-state
control error, the following has to hold in the steady-state

Gc(1) = 1 (5.142)

From the equation

Gc(1) =
∑m0

i=1 bi
Ao(1) +

∑mo

i=1 bi
(5.143)

follows the condition for the zero steady-state control error

mo∑
i=1

boi = 0, Ao(1) = 0 (5.144)

From the requirement Ao(1) = 0 yields that Ao(z−1) has to be of the form

Ao(z−1) = (1 − z−1)Āo(z−1) (5.145)

where

Āo(z−1) = 1 + a1z
−1 + · · · + ano−1z

−no−1 (5.146)

From this follows that if the open-loop transfer function contains a digital
integrator, the feedback control will guarantee the zero steady-state control
error.
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5.7 Examples of Discrete-Time Process Models

This section explains a general procedure how discrete-time process models
can be obtained on some concrete examples.

5.7.1 Discrete-Time Tank Model

Consider a tank filled with a liquid shown in Fig. 2.1 on page 16. Linearised
state-space model of the tank is given as

dx
dt

= ax+ bu (5.147)

y = x (5.148)

where

x = h− hs

u = q0 − qs
0

a = − k11

2F
√
hs
, b =

1
F

t is time, h – liquid level in the tank, q0 – inlet volumetric flow rate, F –
cross-sectional area of the tank, hs – steady-state level, qs

0 – steady-state flow
rate, and k11 is a constant.

Let us find a model of the tank that makes it possible to find transient
response of the tank in times tk for the input variable given as

u(k) = u(tk); tk < t ≤ tk+1; k = 0, 1, 2, . . . (5.149)

The solution can be found as follows. Comparing equations (5.147) and (5.148)
with the general state-space model gives

A = a, B = b, C = 1, D = 0 (5.150)

The discrete-time state matrix Φ(t) for A = a is

Φ(t) = L−1
{
(s− a)−1

}
= L−1

{
1

s− a

}
= eat (5.151)

Hence,

Φ(Ts) = eaTs (5.152)

From (5.89) follows

Γ =

(∫ Ts

0

eaτdτ

)
b =

b

a

(
eaTs − 1

)
(5.153)

Finally, equation (5.90) gives

x(k + 1) = eaTsx(k) +
b

a
(eaTs − 1)u(k) (5.154)

The process output y = x can be found from this equation in sampling times
for u(k).
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5.7.2 Discrete-Time Model of Two Tanks in Series

Consider two tanks in series shown in Fig 3.10 on page 86. The behaviour of
the second tank is influenced by that of the first tank.

Let us define new variables

x1 = h1 − hs
1, x2 = h2 − hs

2

y = x2, u = q0 − qs
0

T1 =
2F1

√
hs

1

k11
, T2 =

2F2

√
hs

2

k22
, Z =

2
√
hs

2

k22

The symbol definitions are evident from Fig. 3.10 and from Section 5.7.1. The
superscript (.)s denotes the variable in steady-state.

The linearised state-space model of the tanks is characterised by matrices

A =

⎛
⎜⎝− 1

T1
0

Z

T2
− 1
T2

⎞
⎟⎠ , B =

⎛
⎝ 1
T1
0

⎞
⎠ , C =

(
0 1
)

(5.155)

The corresponding input-output model of the process is given by the dif-
ferential equation

T1T2
d2y

dt2
+ (T1 + T2)

dy
dt

+ y = Zu (5.156)

The state transition matrix is given as

Φ(t) = L−1

{[(
s 0
0 s

)
−
(

0 1
−a0 −a1

)]−1
}

(5.157)

= L−1

{(
s −1
a0 s+ a

)−1
}

(5.158)

= L−1

⎧⎪⎨
⎪⎩

s+ a1

s2 + a1s+ a0

1
s2 + a1s+ a0−a0

s2 + a1s+ a0

s

s2 + a1s+ a0

⎫⎪⎬
⎪⎭ (5.159)

=

(
T1

T1−T2
e−

t
T1 + T2

T2−T1
e−

t
T2 T1T2

T1−T2
e−

t
T1 + T1T2

T2−T1
e−

t
T2

1
T2−T1

e−
t

T1 + 1
T1−T2

e−
t

T2 T2
T2−T1

e−
t

T1 + T1
T1−T2

e−
t

T2

)
(5.160)

Φ(Ts) =

⎛
⎝ e−

Ts
T1 0

ZT1
T2−T1

(
e−

Ts
T2 − e−

Ts
T1

)
e−

Ts
T2

⎞
⎠ (5.161)

From (5.89) follows



216 5 Discrete-Time Process Models

Γ =
1
T1

∫ Ts

0

(
e−

τ
T1

ZT1
T2−T1

(
e−

τ
T2 − e−

τ
T1

)
)

dτ (5.162)

=

⎛
⎝ 1 − e−

Ts
T1

ZT2
T2−T1

(
1 − e−

Ts
T2

)
+ ZT1

T1−T2

(
1 − e−

Ts
T1

)
⎞
⎠ (5.163)

Therefore, the discrete-time state-space representation can be given as (see
also (5.90))

(
x1(k + 1)
x2(k + 1)

)
=

⎛
⎝ e−

Ts
T1 0

ZT1
T2−T1

(
e−

Ts
T2 − e−

Ts
T1

)
e−

Ts
T2

⎞
⎠
(
x1(k)
x2(k)

)

+

⎛
⎝ 1 − e−

Ts
T1

ZT2
T2−T1

(
1 − e−

Ts
T2

)
+ ZT1

T1−T2

(
1 − e−

Ts
T1

)
⎞
⎠u(k)(5.164)

This equation specifies y = x2 in the sampling times if the input variable u(k)
is a piece-wise constant.

5.7.3 Steady-State Discrete-Time Model of Heat Exchangers
in Series

1ϑ

0ϑ

ω
1

ω
2

1ϑ

2ϑV2
V1

2ϑ ...

Fig. 5.14. Series of heat exchangers

Consider a series of n heat exchangers where liquid is heated (Fig. 5.14).
We assume that heat flows from heat sources into liquid are independent from
liquid temperature. Further an ideal liquid mixing and zero heat losses are
assumed. We neglect accumulation ability of exchangers walls. Hold-ups of
exchangers, as well as flow rates, liquid specific heat capacity are constant.

Under these assumptions for the first heat exchanger holds

V1ρcp
dϑ1

dt
= qρcpϑ0 − qρcpϑ1 + ω1 (5.165)

where t is time,
ϑ1 – outlet temperature of the heat exchanger,
ϑ0 – inlet temperature,
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ω1 – heat input,
V1 – volume of liquid in the exchanger,
ρ – liquid density,
cp – liquid specific heat capacity.

The condition for steady-state is dϑ1/dt = 0. This yields for the first heat
exchanger

qρcp(ϑ0 − ϑ1) + ω1 = 0 (5.166)

Let us define state variables

xm = ϑm, m = 1, 2, . . . , n (5.167)

and input variables

um = − 1
qρcp

ωm, m = 1, . . . , n (5.168)

The first exchanger is in the steady-state given as

x1 = x0 + u1 (5.169)

The m+ 1th exchanger is in the steady-state given as

xm+1 = xm + um+1 (5.170)

All heat exchangers can thus in steady-state be written as

x1 = x0 + u1 (5.171)
x2 = x0 + u1 + u2 (5.172)

...

xm = x0 +
m∑

i=1

ui (5.173)

...

xn = x0 +
n∑

i=1

ui (5.174)

Variable m in (5.171)–(5.174) denotes one of the heat exchangers. This points
out possibilities to generalise theory of discrete-time systems.
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M. Šalamon. Control Theory. ES SVŠT, Bratislava, 1979. (in Slovak).
V. Strejc and kol. Control Design with Digital Computers. NČSAV, 1965. (in
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5.9 Exercises

Exercise 5.1:
Derive discrete-time state-space model of interacting tanks in series process
shown in Fig. 2.2 on page 17. Consider input variable q0 and output variable
h2. Zero-order hold is assumed.

Exercise 5.2:
Derive discrete-time transfer functions of the process shown in Fig. 2.2. As-
sume zero-order hold.

Exercise 5.3:
Derive state-space model of the system

y(k + 2) + 3.1y(k + 1) + 2.2y(k) = u(k)

Exercise 5.4:
Find a general solution y(k) for an input u(k) and a system

−y1(k + 2) − 9y2(k + 1) + y1(k) = u1(k)
y2(k + 1) + 3y2(k) = u2(k)
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Exercise 5.5:
Find the state transition matrix Φ(Ts) for the system in Exercise 5.3.

Exercise 5.6:
Find the discrete-time transfer function matrix for the system in Exercise 5.4.
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Process Identification

Processes in chemical technology can be modelled in various ways. The most
natural representation is based on the state-space description resulting from
material and energy balances. The models mostly used for control purposes
are in form of linear differential or difference equations. We often assume that
their parameters are known and constant. However, in experimental conditions
it is often necessary to measure or estimate parameters from process input and
output signals with carefully chosen input signal types. In this case we will
speak about parameter estimation or system identification.

The first part of the chapter deals with classification of the identification
methods, the mostly used model structures, and guidelines for identification.
The second part is devoted to identification from step responses that is mainly
used to gain some basic information about the process. The third part will dis-
cuss least-squares estimation and its recursive version to identify parameters
of continuous and discrete time systems.

6.1 Introduction

While mathematical models based in mass and energy balances construct
model by the means of analysis, identification strives to describe the process
according the information gained from relation between process inputs and
outputs. Also, analysis methods result mainly in state-space model descrip-
tions, whereas identification produces usually input-output models.

Identification Procedure

A general procedure for process estimation includes the following steps:

Determination of the model structure This often makes use of empirical ex-
perience about the process, or information from some basic experiments.
It is necessary to choose the model type (linear vs. nonlinear), as well
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as its complexity. There are various criteria that can be selected: quality,
flexibility, or the model price. The choice of the structure still remains
more art than a systematic procedure.

Parameter estimation There are lots of procedures for parameter estimation.
It depends on the type and characteristics of the process input, as well as
the desired model structure.

Model verification There are several important aspects at this stage. A suit-
able model should agree with the experimental data, it should describe the
process accurately, and it should meet the purpose it was obtained for.
Further, it can be verified whether the parameters obtained are within
physical limits. It is also possible to reduce the model and compare it
with the original model to see if a simpler model suffices.

Classification of Identification Methods

There are several possibilities to classify identification methods:

A Passive or active experiment identification. This is usually determined
by the given process technology and demands of the experiment. This
indicates whether it is permitted to generate special signals on inputs or
it is just possible to collect typical process inputs and outputs.

B From the point of view of the mathematics, it is possible to distinguish
the following methods:
• deterministic,
• stochastic.
Deterministic methods assume exact knowledge about the process inputs
and outputs and do not consider random sources and influences.
Stochastic methods include for example the least squares method and its
modifications, maximum likelihood method, the Bayesian approach, etc.
Any of these methods assumes some properties of random disturbances
and some knowledge about them (the least demanding from this point of
view are the least squares methods).
Of course, the choice of the method is not arbitrary. It depends on signal
to noise ration, disturbance properties, etc.

C From the processing point of view we can divide the methods into:
• single-shot (batch) methods,
• recursive methods.
Batch methods can further be divided into the manual and computer pro-
cessed. Batch methods are not suitable for computer processing because
it is difficult to make algorithm from them, as they depend on some arbi-
trary performance evaluation (e. g. inflexion point at the step response).
Computer batch methods process some data not suitable for manual cal-
culation (least-squares, numerical integration, calculation of correlation
functions) and are sometimes called off-line methods.
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Recursive methods process the experimental data gradually and estimated
parameters are improved from each experiment. They can be used in on-
line control of processes and lay foundations for adaptive control.

6.1.1 Models of Linear Dynamic Systems

This section describes basic kinds of linear models employed in identification.
We will distinguish between deterministic, stochastic and continuous, discrete
models.

Deterministic Models

Mostly used are continuous models described by a linear differential equation
with constant coefficients of the form

an
dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ · · · + y(t) = bm
dmu(t)

dtm
+ · · · + b0u(t) (6.1)

or

A(p)y(t) = B(p)u(t) (6.2)
A(p) = 1 + a1p+ · · · + an−1p

n−1 + anp
n (6.3)

B(p) = b0 + b1p+ · · · + bm−1p
m−1 + bmp

m (6.4)

where p = d/dt is the differentiation operator. The identification aim is to
estimate the coefficients of the polynomials A,B for given degrees n,m. Very
often the time delay Td is also estimated, hence

A(p)y(t) = B(p)u(t− Td) (6.5)

Alternatively, the following equation will be considered in the case of linear
discrete-time deterministic models

y(k) = −a1y(k−1)−· · ·−any(k−n)+b1u(k−1)+ · · ·+bmu(k−m) (6.6)

or

A(q−1)y(k) = B(q−1)u(k) (6.7)
A(q−1) = 1 + a1q

−1 + · · · + an−1q
−n+1 + anq

−n (6.8)
B(q−1) = b1q

−1 + · · · + bm−1q
−m+1 + bmq

−m (6.9)

where q is the shift operator (q−1y(k) = y(k − 1)). The identification aim is
again to estimate the coefficients of the polynomials A,B.

Stochastic Models

When stochastic models are considered, we assume a random factor ξ(t) in the
equation (6.1), or (6.6). Mostly, white noise ξ will be assumed, but also more
complex cases can be discussed. Stochastic models given below are described
in discrete-time.
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ARMA Process

Consider a stationary process v(k) that can be represented as white noise
filtered by a linear process

v(k) =
C(q−1)
A(q−1)

ξ(k) (6.10)

where

C(q−1) = 1 + c1q
−1 + · · · + cnc

q−nc

A(q−1) = 1 + a1q
−1 + · · · + ana

q−na

Hence,

v(k) = −a1v(k − 1) − · · · − ana
v(k − na)

+ ξ(k) + c1ξ(k − 1) + · · · + cnc
ξ(k − nc) (6.11)

A(q−1)v(k) = C(q−1)ξ(k) (6.12)

Stochastic process described by this equation is called ARMA. It can be split
into two parts: AR (autoregressive), when nc = 0

v(k) + a1v(k − 1) + · · · + ana
v(k − na) = ξ(k), Av = ξ (6.13)

and MA (moving average), when na = 0

v(k) = ξ(k) + c1ξ(k − 1) + · · · + cnc
ξ(k − nc), v = Cξ (6.14)

ARX Model

It is assumed that the white noise enters directly the process equation

Ay = Bu+ ξ (6.15)
y(k) = −a1y(k − 1) − · · · − ana

y(k − na)
+ b1u(k − 1) + · · · + bnb

u(k − nb) + ξ(k) (6.16)

This model is denoted ARX, because AR describes the part A(q)y and X is
an extra input. The special case when na = 0 is called FIR (finite impulse
response) model.

ARX model is due to its simplicity and linearity with respect to identified
parameters most often used in identification.

ARMAX Model

In this model the random source enters the system as MA model, hence

Ay = Bu+ Cξ (6.17)
y(k) = −a1y(k − 1) − · · · − ana

y(k − na)
+ b1u(k − 1) + · · · + bnb

u(k − nb)
+ ξ(k) + c1ξ(k − 1) + · · · + cnc

ξ(k − nc) (6.18)
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Frequently a modification of ARMAX model is used, the so called ARI-
MAX (ARMAX Integrated) or CARIMA (Controlled ARIMA) model. In this
case a nonstationary disturbance is assumed when the white noise is filtered
by an integrator

Ay = Bu+
C

Δ
e (6.19)

where Δ = 1 − q−1 corresponds to the discrete integrator.

Output Error Model

The white noise is added to the output variable (measurement error)

y =
B

A
u+ ξ (6.20)

w(k) = −a1w(k − 1) − · · · − ana
w(k − na)

+ b1u(k − 1) + · · · + bnb
u(k − nb) (6.21)

y(k) = w(k) + ξ(k) (6.22)

6.2 Identification from Step Responses

The broad variety of methods based on step response identification belong to
deterministic methods as the input signal is deterministic and random sources
are not considered in the process description. The results of the identification
are coefficients of the equation (6.5). Methods in this category aim at first es-
timates of the process and provide information about an approximate process
gain, dominant time constant, and time delay.

The input signal used is a step change of one of the process inputs when
all other inputs are held constant. It is necessary that the controlled process
is in a steady state before the step change. The measured process response is
a real step response that needs to be further normalised for unit step change
and for zero initial conditions.

As the identified process can in general be nonlinear, it might be advan-
tageous to record several step responses with different step changes and signs
of the input signals. To obtain the normalised step response, the following
formula can then be used

ŷi =

N∑
k=1

Δukyik

N∑
k=1

(Δuk)2
(6.23)
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where i is ith point of the step response,
k - kth measurement, k = 1, . . . , N ,
Δuk - step change of the input at the kth measurement,
yik - output value at the kth measurement in ith interval,
ŷi - final value of the step response in time i.

6.2.1 First Order System

Consider a first order approximation of the identified process

G(s) =
Z

Ts+ 1
e−Tds (6.24)

where Z is the process gain, T time constant, and Td time delay that need to
be determined. The step response corresponding to this transfer function can
be obtained via the inverse Laplace transform of the output as

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 t < Td

Z

⎛
⎝1 − e

−
t− Td

T

⎞
⎠ t ≥ Td

(6.25)

�

�

tt2t1

y1

y2

Z
T

Td

Fig. 6.1. Step response of the first order system

We assume the normalised step response. The process static gain is given
as the new steady-state output Z = y(∞) because the normalised input is the
unit step change (Fig. 6.1). If we assume that two points t1, y1 and t2, y2 from
the step response are known then it follows from (6.25)
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y1 = Z

⎛
⎝1 − e

−
t1 − Td

T

⎞
⎠ (6.26)

y2 = Z

⎛
⎝1 − e

−
t2 − Td

T

⎞
⎠ (6.27)

After some simple manipulations we get

T =
t2 − t1

ln Z−y1
Z−y2

(6.28)

Td =
t2x− t1
x− 1

, x =
ln Z−y1

Z

ln Z−y2
Z

(6.29)

The value of the time constant T can also be obtained from the step response
as it is shown in Fig. 6.1, or as the time when the output reaches 63% from
its new steady state.

Example 6.1: Approximation with the first order system www
Consider step response of dimensionless deviation output concentration
x1 in a CSTR to step change of Δqc = 10 shown in Fig. 6.2. To obtain
the normalised step response, the original one was divided by the step
change value and shown in Fig. 6.2 (right) by a solid line. Two points were
chosen: [0.85; 0.0082] and [2.18; 0.0224]. The process gain was obtained as
Z = 0.027 from y(∞). From the points t1, y1 and t2, y2 were calculated
the time constant T = 0.94 and the time delay Td = 0.51. The resulting
transfer function is then of the form

G(s) =
0.027

0.94s+ 1
e−0.51s

The approximated step response is shown in the same figure as the vari-
able xn

1 by a dashed line. Both curves coincide at the measured points.
However, there are significant discrepancies elsewhere. We can see that
this procedure serves only for a crude estimate of process parameters.

6.2.2 Underdamped Second Order System

If the process step response exhibits underdamped behaviour (Fig. 6.3) it is
possible to approximate it by a second order system with a transfer function
of the form

G(s) =
Z

T 2s2 + 2Tζs+ 1
=

Zω2
0

s2 + 2ω0ζs+ ω2
0

(6.30)

The identification task is to determine the process gain Z, natural fre-
quency ω0, time constant T = 1/ω0, and damping ζ. Given are points [t1, y1],
[t2, y2] and the steady state output y(∞).
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Fig. 6.2. Measured step response of a chemical reactor using the input change
Δu = 10 (left), approximation of step response by the first order step response
(right)
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Fig. 6.3. Step response of the second order underdamped system

For the derivation of relations between the known and estimated variables
we will use the fact that the derivative of the step response with respect to
times is in the points tn (local extrema) zero.

The process static gain is as in the previous case given as the new steady-
state value of the process output Z = y(∞).

The step response is of the form (see the Laplace transform table)

y(t) = Z

[
1 − 1

P
e−ζω0t sin(ω0Pt+ ϕ)

]
, ϕ = arccos ζ, P =

√
1 − ζ2

(6.31)

The derivative of y(t) with respect to time is given as
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ẏ(t) = Z
ω0

P
e−ζω0t [ζ sin(ω0Pt+ ϕ) − P cos(ω0Pt+ ϕ)] (6.32)

= Z
ω0

P
e−ζω0t sin(ω0Pt) (6.33)

where the formula for sin(a − ϕ) was used. The following holds at the local
extrema

ẏ(tn) = 0 ⇐⇒ sin(ω0Ptn) = 0 ⇒ tn =
nπ

ω0P
(6.34)

Substituting for tn into the process output equation (6.31) yields

y(tn) = Z

[
1 − 1

P
e−

1
P nπζ sin(nπ + ϕ)

]
(6.35)

= Z
[
1 − (−1)n

(
e−

1
P πζ

)n]
(6.36)

= Z(1 − (−1)nMn) , M = e−
1
P πζ (6.37)

The identification procedure is then as follows:

1. Z = y(∞),

2. y1 = Z(1 +M), y2 = Z(1 −M2) ⇒M =
y1 − y2
y1

,

3. M = e−
1
P πζ ⇒ ζ =

∣∣∣∣∣
lnM√

π2 + ln2M

∣∣∣∣∣,
4. t1 =

π

ω0P
, t2 =

2π
ω0P

⇒ ω0 =
π

(t2 − t1)
√

1 − ζ2
, T = 1/ω0.

Example 6.2: Underdamped system www
Consider a measured step response shown in the left part of Fig. 6.4 that
has been measured from the steady-state characterised by the input vari-
able at the value u0 = 0.2 changed to the value u∞ = −0.3. Such a step
response can be obtained for example from a U-tube manometer by a step
change of the measured pressure.
The measured step response is first shifted to the origin by a value of
y0 = −2.3608 and then normalised – divided by the step change of the
input Δu = 0.5. The obtained normalised step response y is shown by a
solid line on the right side of Fig. 6.4.
The values of the first maximum and minimum are found as [15.00; 0.38]
and [30.50; 0.32], respectively. The above described identification proce-
dure yielded the following values of the estimated parameters: Z = 0.33,
ζ = 0.51, and T = 4.22. The approximated transfer function is then of the
form

G(s) =
0.33

17.8084s2 + 4.3044s+ 1

The step response yn of the approximated transfer function is shown by
a dashed line on the right side of Fig. 6.4.
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Fig. 6.4. Measured step response of an underdamped system (left). Normalised and
approximated step response (right)

6.2.3 System of a Higher Order

Strejc Method

Consider an approximation of a process by the nth order system

G(s) =
Z

(Ts+ 1)n
e−Tds (6.38)

where Z is the process gain, T time constant, Td time delay, and n the system
order that all are to be estimated. Two process characteristics are determined
from the step response: times Tn, Tu (see page 257) from the tangent at the
inflexion point.

Consider now properties of the normalised step response if Td = 0 (Fig. 6.5)

G(s) =
1

(Ts+ 1)n
(6.39)

The following facts will be used for the derivation:

1. The tangent of the step response in the inflexion point [ti, yi] is given by
the equation of a line p : y = a+ bt,

2. The line p passes through points [Tu, 0], [Tu + Tn, 1], [ti, yi]. The following
holds: b = 1/Tn and a = −Tub,

3. The slope of the line p is given as b = ẏ(ti),
4. ÿ(ti) = 0 (inflexion point).

The step response can by obtained by the means of the inverse Laplace
transform and is given as

y(t) = 1 − e−
t
T

n−1∑
k=0

1
k!

(
t

T

)k

(6.40)
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Fig. 6.5. Step response of a higher order system

We calculate the first and the second derivative of the output y with respect
to time

ẏ(t) =
1

Tn(n− 1)!
tn−1e−

t
T (6.41)

ÿ(t) =
1
Tn

[
tn−2

(n− 2)!
− 1
T

tn−1

(n− 1)!

]
e−

t
T (6.42)

In the inflexion point holds ÿ(ti) = 0, hence

ti = T (n− 1) (6.43)

Evaluating ẏ at time ti gives

ẏ(ti) =
(n− 1)n−1

T (n− 1)!
e−(n−1) (6.44)

It can be seen from the figure that ẏ(ti) = 1/Tn, thus

T

Tn
=

(n− 1)n−1

(n− 1)!
e−(n−1) = g(n) (6.45)

We can see that this function depends only on n.
Further, it can be shown that the relation between Tu and Tn is again only

a function of n
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Tu

Tn
= e−(n−1)

[
(n− 1)n

(n− 1)!
+

n−1∑
k=0

1
k!

(n− 1)k

]
− 1 = f(n) (6.46)

The following table can then be constructed:
n 1 2 3 4 5 6
f(n) 0.000 0.104 0.218 0.319 0.410 0.493
g(n) 1.000 0.368 0.271 0.224 0.195 0.161

The identification procedure is then as follows:

1. The values of Z = y(∞), Tus, Tn are read from the step response,
2. The quotient fs = Tus/Tn is calculated,
3. The degree n0 is chosen from the table in such a way that the following

holds

f(n0) ≤ fs < f(n0 + 1),

4. Time delay Td can be determined as the difference between the real and
theoretical time Tu

Td = [fs − f(n0)]Tn

because Tu = Tnf(n),
5. The process time constant T can be read from the row of g(n) for the

corresponding n0. T is obtained from the definition of g

T = Tng(n0).

Broida method

The assumption that all time constants of the process are the same may not
always hold. Broida considered the transfer function of the form

G(s) =
Z∏n

k=1(
T
k s+ 1)

e−Tds (6.47)

In the same way as in the Strejc method, the table for f(n), g(n) can be
derived.

n 1 2 3 4 5 6
f(n) 0.000 0.096 0.192 0.268 0.331 0.385
g(n) 1.000 0.500 0.440 0.420 0.410 0.400

The identification procedure is the same as with the Strejc method.

Example 6.3: Higher order system approximationwww
Consider again identification of the step response of the chemical reactor
from Example 6.1. Inflexion point has been determined, tangent drawn
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that crosses it, and times Tu = 0.2451 a Tn = 1.9979 were read (Fig. 6.6
left).
Both Strejc and Broida methods were applied. Resulting transfer functions
are given as

GStrejc(s) =
0.027

0.54s2 + 1.47s+ 1
e−0.037s

GBroida(s) =
0.027

0.5s2 + 1.5s+ 1
e−0.053s

The step responses together with the original one are shown in Fig. 6.6
(right). We can notice that both methods approximate the process dynam-
ics better than the first order transfer function. However, neither Strejc
nor Broida methods can cover small overshoot as both are suitable only
for aperiodic and monotone step responses.
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Fig. 6.6. Normalised step response of the chemical reactor with lines drawn to
estimate Tu, Tn (left), approximated step response (right)

6.3 Least Squares Methods

The most often used methods nowadays are based on minimisation of squares
of errors between measured and estimated process output – the least squares
method (RL). Main advantages include the possibility of recursivity of calcu-
lations, possibility to track time variant parameters, and various modifications
to make the algorithm robust. Originally the method was derived for estima-
tion of parameters of discrete-time systems. We will also show its modification
for continuous-time systems.

Consider the ARX model (see page 224).

y(k) = −a1y(k−1)−· · ·−ana
y(k−na)+b1u(k−1)+· · ·+bnb

u(k−nb)+ξ(k)
(6.48)
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We will introduce the notation

θT = (a1, . . . , ana
, b1, . . . , bnb

)
zT (k) = (−y(k − 1), . . . ,−y(k − na), u(k − 1), . . . , u(k − nb))

Hence

y(k) = θT z(k) + ξ(k) (6.49)

The identification aim is to determine the parameter vector θ based on infor-
mation of measured process output y(k) and the data vector z(k).

Assume that the equation (6.49) holds at times 1, . . . , k

y(1) = −
∑na

i=1 aiy(1 − i) +
∑nb

i=1 biu(1 − i) + ξ(1) = zT (1)θ + ξ(1)
y(2) = −

∑na

i=1 aiy(2 − i) +
∑nb

i=1 biu(2 − i) + ξ(2) = zT (2)θ + ξ(2)
...

y(k) = −
∑na

i=1 aiy(k − i) +
∑nb

i=1 biu(k − i) + ξ(k) = zT (k)θ + ξ(k)
(6.50)

where k > na + nb and denote

Y =

⎛
⎜⎜⎜⎝
y(1)
y(2)

...
y(k)

⎞
⎟⎟⎟⎠ , ξ =

⎛
⎜⎜⎜⎝
ξ(1)
ξ(2)

...
ξ(k)

⎞
⎟⎟⎟⎠ (6.51)

Z =

⎛
⎜⎜⎜⎝

zT (1)
zT (2)

...
zT (k)

⎞
⎟⎟⎟⎠ (6.52)

We will look for such an estimate θ̂ that minimises sum of squares of errors
between measured and modelled outputs, i. e.

I(θ) =
k∑

i=1

(y(i) − zT (i)θ)2 (6.53)

This equation can be rewritten in vector notation

I(θ) = (Y − Zθ)T (Y − Zθ) (6.54)

Minimum is found if gradient of this function with respect to θ is equal to
zero

(ZT Z)θ̂ = ZT Y (6.55)
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If the matrix ZT Z is invertible, then

θ̂ = (ZT Z)−1ZT Y (6.56)

The matrix P = (ZT Z)−1 is called the covariance matrix if the stochastic
part has unit variance.

In general, the estimate of θ̂ is unbiased (its expectation is equal to θ) if
ξ(k) is white noise.

6.3.1 Recursive Least Squares Method

In recursive least squares (RLS) estimated parameters are improved with each
new data. This means that the estimate θ̂(k) can be obtained by some simple
manipulations from the estimate θ̂(k − 1) based on the data available up to
time k − 1.

Characteristic features of recursive methods are as follows:

• Their requirements for computer memory are very modest as not all mea-
sured data up to current time are needed.

• They form important part of adaptive systems where actual controllers
are based on current process estimates.

• They are easily modifiable for real-time data treatment and for time vari-
ant parameters.

To understand better derivation of a recursive identification method, let
us consider the following example.

Example 6.4: Recursive mean value calculation
Consider a model of the form

y(k) = a+ ξ(k)

where ξ(k) is a disturbance with standard deviation of one. It is easy to
show that the best estimate of a based on information up to time k in the
sense of least squares is given as the mean of all measurements

â(k) =
1
k

k∑
i=1

y(i)

This equation can be rewritten as

â(k) =
1
k

[
k−1∑
i=1

y(i) + y(k)

]
=

1
k

[(k − 1)â(k − 1) + y(k)]

= â(k − 1) +
1
k

[y(k) − â(k − 1)]
The result says that the estimate of the parameter a in time k is equal
to the estimate at time k − 1 plus some correction term. The correction
term depends linearly on the error between â(k− 1) and its prediction at
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time k, i. e. y(k). The proportionality factor is 1/k which means that the
magnitude of changes will be decreasing with increasing time as the value
of â(k − 1) will approach the true value of a.
Similarly, it can be shown that the covariance matrix is given as P (k) =
1/k. This relation can recursively be rewritten as

P (k) =
P (k − 1)

1 + P (k − 1)

The following matrix inversion lemma will be used to derive recursive least
squares method.

Theorem 6.1. Assume that M = A + BC−1D. If the matrices A,C are
nonsingular, then

M−1 = A−1 − A−1B(DA−1B + C)−1DA−1 (6.57)

Proof. Consider inversion of a matrix X

X−1 =
(

A B
−D C

)−1

=
(

P 1 P 2

P 3 P 4

)
= P (6.58)

Because XP = I, multiplication of all submatrices gives

AP 1 + BP 3 = I, AP 2 + BP 4 = 0 (6.59)
−DP 1 + CP 3 = 0, −DP 2 + CP 4 = I (6.60)

We assume that A,C are nonsingular. Hence

P 3 = C−1DP 1, P 2 = −A−1BP 4

P 1 = [A + BC−1D]−1, P 4 = [C + DA−1B]−1 (6.61)

As it also holds that PX = I we can write

P 1A − P 2D = I ⇒ P 1 = A−1 + P 2DA−1 (6.62)

Comparison of the last three equations yields the desired result. 	


If we consider C = 1,B = b,D = bT then the matrix inversion lemma yields

M−1 = (A + bbT )−1 = A−1 − A−1b(bT A−1b + 1)−1bT A−1 (6.63)

where the term that has to be inverted is only a scalar.

To derive the RLS method assume that the parameter estimate at time
k denoted by θ̂(k) given by (6.56) and the covariance matrix P (k) =
(ZT (k)Z(k))−1 are known. The aim is to derive recursive relations for θ̂(k+1)
and P (k + 1). When the measurement at time k + 1 is known then
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Y (k + 1) =
(

Y (k)
y(k + 1)

)

Z(k + 1) =
(

Z(k)
zT (k + 1)

)
, ZT (k + 1) =

(
ZT (k) z(k + 1)

)

The covariance matrix P (k + 1) is given as

P (k + 1) = (ZT (k + 1)Z(k + 1))−1 (6.64)

=
[(

ZT (k) z(k + 1)
)( Z(k)

zT (k + 1)

)]−1

(6.65)

=
[
ZT (k)Z(k) + z(k + 1)zT (k + 1)

]−1
(6.66)

=
[
P (k)−1 + z(k + 1)zT (k + 1)

]−1
(6.67)

Using the matrix inversion lemma yields

P (k+1) = P (k)−P (k)z(k+1)[zT (k+1)P (k)z(k+1)+1]−1zT (k+1)P (k)
(6.68)

Denote γ(k + 1) = [zT (k + 1)P (k)z(k + 1) + 1]−1. This can be manipulated
as

γ(k + 1) = 1 − γ(k + 1)zT (k + 1)P (k)z(k + 1) (6.69)

This relation will later be used.
Therefore, the covariance matrix P update is given as

P (k + 1) = P (k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)P (k) (6.70)

Derivation of a new parameter estimate θ̂(k + 1) is similar and makes use
of (6.69), (6.70):

θ̂k+1 = P (k + 1)ZT (k + 1)Y (k + 1)

= P (k + 1)
(
ZT (k) z(k + 1)

)( Y (k)
y(k + 1)

)

= P (k + 1)[ZT (k)Y (k) + z(k + 1)y(k + 1)]
= [P (k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)P (k)] ×

[ZT (k)Y (k) + z(k + 1)y(k + 1)]
= θ̂(k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)θ̂(k)

+P (k)z(k + 1)y(k + 1)
−γ(k + 1)P (k)z(k + 1)zT (k + 1)P (k)z(k + 1)y(k + 1)

= θ̂(k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)θ̂(k)
+P (k)z(k + 1)[1 − γ(k + 1)zT (k + 1)P (k)z(k + 1)]y(k + 1)

= θ̂(k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)θ̂(k)
+γ(k + 1)P (k)z(k + 1)y(k + 1)

= θ̂(k) + γ(k + 1)P (k)z(k + 1)[y(k + 1) − zT (k + 1)θ̂(k)] (6.71)
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To conclude, equations for recursive least squares are given as

ε(k + 1) = y(k + 1) − zT (k + 1)θ̂(k)
γ(k + 1) = [1 + zT (k + 1)P (k)z(k + 1)]−1

L(k + 1) = γ(k + 1)P (k)z(k + 1)
P (k + 1) = P (k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)P (k)
θ̂(k + 1) = θ̂(k) + L(k + 1)ε(k + 1)

(6.72)

Every recursive algorithm needs some initial conditions. In our case these
are θ̂(0) and P (0). The value of P (0) can be thought as uncertainty of the
estimate θ̂(0). Both initial conditions have some influence on convergence
properties of RLS. As it will be shown below, the cost function minimised by
RLS is not given by (6.53), but as

Ik+1(θ) = [θ − θ̂(0)]T P−1(0)[θ − θ̂(0)] +
k+1∑
i=1

[y(i) − zT (i)θ]2 (6.73)

We can notice that the original cost function includes a term characterising
effects of initial conditions. To minimise these effects we usually choose θ̂(0) =
0 and P (0) = cI where c is some large constant, for example 105 − 1010.

For completeness we will give the proof of above mentioned statements

Theorem 6.2. Minimisation of the cost function (6.73) leads to (6.72).

Proof. The cost function (6.73) can be rewritten to the vector notation

Ik+1(θ) = [θ − θ̂(0)]T P−1(0)[θ − θ̂(0)]
+ [Y (k + 1) − Z(k + 1)θ]T [Y (k + 1) − Z(k + 1)θ] (6.74)

Setting its partial derivative with respect to θ equal to zero gives

[ZT (k+1)Z(k+1)+P−1(0)]θ = P−1(0)θ̂(0)+ZT (k+1)Y (k+1) (6.75)

Data up to time k + 1 gives θ̂(k + 1), thus

θ̂(k+1) = [ZT (k+1)Z(k+1)+P−1(0)]−1[P−1(0)θ̂(0)+ZT (k+1)Y (k+1)]
(6.76)

Recursion of (6.67) gives the relation

P−1(k + 1) = P−1(0) + ZT (k + 1)Z(k + 1) (6.77)

and for the estimate of the parameters θ̂(k + 1) holds

θ̂(k + 1) = P (k + 1)[P−1(0)θ̂(0) + ZT (k + 1)Y (k + 1)] (6.78)
= P (k + 1)[P−1(0)θ̂(0) + ZT (k)Y (k) + z(k + 1)y(k + 1)] (6.79)

Equation (6.76) shifted to time k is given as
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θ̂(k) = P (k)[P−1(0)θ̂(0) + ZT (k)Y (k)] (6.80)

and equation (6.79) can be rewritten as

θ̂(k + 1) = P (k + 1)[P−1(k)θ̂(k) + z(k + 1)y(k + 1)] (6.81)

Substituting for P−1(k) from (6.67) yields

θ̂(k + 1) = θ̂(k) − P (k + 1)[z(k + 1)zT (k + 1)θ̂(k) + z(k + 1)y(k + 1)](6.82)
= θ̂(k) + P (k + 1)z(k + 1)ε(k + 1) (6.83)

We can see that this relation would be equivalent to the last of equations (6.72)
if

P (k + 1)z(k + 1) = γ(k + 1)P (k)z(k + 1) (6.84)

Substituting for P (k + 1) from (6.70) gives

[P (k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)P (k)]z(k + 1)
= γ(k + 1)P (k)z(k + 1)

γ(k + 1)P (k)z(k + 1)[1 + zT (k + 1)P (k)z(k + 1)] = P (k)z(k + 1)

The term in square brackets is nothing else than γ−1(k+1) which finishes the
proof. 	


Convergence of Parameters

Let us assume that the identified system model structure is the same as
the true system. The question then arises whether the data set is informa-
tive enough and in consequence whether the identification procedure yields a
unique value of the identified vector θ̂.

Whether a model described by a difference equation is identifiable correctly
by the RLS method depends on nonsingularity of its covariance matrix and
on the input signal u(k). The covariance matrix can be given as

P−1(k) =
k∑

i=1

z(i)zT (i) (6.85)

The necessary condition for invertibility of this matrix is that k ≥ n where n
is dimension of the data vector z(k). The sufficient condition is connected to
the idea of persistence of excitation (PE) of the process input. To understand
this concept let us consider the FIR class of models (see page 224) of the form

y(k) =
n∑

i=1

biu(k − i) + ξ(k) (6.86)
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The parameter and data vectors are of the form

θT = [b1, . . . , bn] (6.87)
z(k)T = [u(k − 1), . . . , u(k − n)] (6.88)

Comparing with (6.85) gives the condition for persistence of excitation of the
input u(k): the process input u(k) is persistently exciting of order n if

m1I >

k+l∑
i=k

[u(i− 1), . . . , u(i− n)]T [u(i− 1), . . . , u(i− n)] > m2I (6.89)

where m1,m2 > 0 and l is a positive integer (necessary condition implies
l ≥ n).

We can then state

Theorem 6.3. RLS for the FIR system (6.86) converges to θ if

1. the process input u(k) is persistently exciting of order at least n.

If ARX model is considered of the form

y(k) = −
n∑

i=1

aiy(k − i) +
n∑

i=1

biu(k − i) + ξ(k) (6.90)

then the convergence conditions are the following:

Theorem 6.4. RLS for the ARX system (6.90) converges to θ if

1. polynomials A,B are coprime,
2. the system is stable,
3. the process input u(k) is persistently exciting of order at least 2n.

In general, parameter estimation using RLS as described above can be
used only for stable systems. This was stated in the previous theorem. For
unstable systems it is necessary to stabilise the controlled process at first
by some controller. However, in that case parameter convergence cannot be
guaranteed as u(k) is generated as a linear combination of the data vector
z(k)

u(k) = −Kz(k) (6.91)

If the control law is given by the previous relation, convergence of parameters
cannot be assured. However, the problem can be solved by addition of an
external signal to the closed-loop system that will be persistently exciting.

Theorem 6.5. RLS for the system (6.90) converges to θ if

1. polynomials A,B are coprime,
2. the process input u(k) is generated from the feedback control law of the

form

u(k) = −Kz(k) + v(k) (6.92)

3. external signal v(k) is persistently exciting of order at least 4n.
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6.3.2 Modifications of Recursive Least Squares

Equation (6.67) for the covariance matrix update gives

P−1(k + 1) = P−1(k) + z(k + 1)zT (k + 1) (6.93)

This relation can be generalised to the form

P−1(k + 1) = λ1(k)P−1(k) + λ2(k)z(k + 1)zT (k + 1) (6.94)

where 0 < λ1(k) ≤ 1, 0 ≤ λ2(k) < 2. We note that λ1, λ2 have opposite effects.
λ1 increases the covariance matrix and λ2 decreases it. This modification also
leads to change in γ(k + 1), as well as in L(k + 1).

Recursive formula for the covariance matrix is then given as

γ(k + 1) =
1

λ1(k)/λ2(k) + zT (k + 1)P (k)z(k + 1)
(6.95)

P (k + 1) =
1

λ1(k)
[
P (k) − γ(k + 1)P (k)z(k + 1)zT (k + 1)P (k)

]
(6.96)

Various strategies for choices of λi give different modifications of the identifi-
cation algorithm.

Decreasing gain The basic setting is λ1 = λ2 = 1. The identification gain
decreases and the covariance matrix increases. This choice is suitable for
identification of constant parameters.

Constant exponential forgetting if λ1 < 1, λ2 = 1. Typical values of λ1 are
between 0.95 and 0.99. The cost function can then be written as

I(k) =
k∑

i=1

λk−i
1 ε2i (6.97)

We can see that the effect of λ1 is in forgetting the older data as the
most important are the most recent data. This identification algorithm is
suitable in case when the identified parameters change slowly.

Increasing exponential forgetting In this case is λ2 = 1 and exponential for-
getting λ1 is given as

λ1(k) = λ0λ1(k − 1) + 1 − λ0 (6.98)

with typical initial conditions

λ1(0) = λ0 ∈ 〈0.95, 0.99〉 (6.99)

This form of exponential forgetting asymptotically converges to one and
only initial data are forgotten.
This modification is used for systems with constant parameters. Initial
data are considered uncertain and are forgotten.
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Varying exponential forgetting In this case is λ2 = 1 and exponential forget-
ting λ1 is given as

λ1(k) = 1 − kγ(k)ε2(k) (6.100)

where the constant k is a small positive number (for example 0.001).
In this case the algorithm works as follows: if the identified process
changes, the prediction error ε2 will increase and results in a decrease
of λ1. Older data will be forgotten more quickly. If ε2 decreases, the pro-
cess is well identified, λ1 approaches the its upper limit and the rate of
forgetting will be slower.

Constant trace In this case are λi chosen in such a way that the trace of the
covariance matrix will be constant

trP (k + 1) = trP (k) = ng (6.101)

where n is the number of identified parameters and g = 0.1 − 4 is initial
gain.
This modification is suitable for estimation of time-varying parameters.

Constant gain In this case is λ1 = 1, λ2 = 0 and the covariance matrix is
given as

P (k + 1) = P (k) = P (0) (6.102)

This algorithm can be used for identification of a small number of param-
eters (≤ 3) if the signal-to-noise ratio is small. Convergence of parameters
is usually smaller but the algorithm can be easily implemented.

Also used are combinations of the above mentioned methods, e. g. constant
trace with exponential forgetting. These implementations are suitable for es-
timation of time-varying parameters if initial estimates are poor.

There is one drawback of recursive methods with exponential forgetting.
If there are no new data (z(k + 1) = z(k)) it can happen that the covariance
matrix increases and is no longer positive definite. The algorithm will break
down (so called bursting effect). In general it is recommended to check the
trace of the covariance matrix.

A method has been developed to improve stability that forgets only in that
direction from which some new information comes. The formulas describing
this method are as follows:

r(k) = z(k + 1)T P (k)z(k + 1) (6.103)

L(k + 1) =
P (k)z(k + 1)

1 + r(k)
(6.104)

β(k) =

{
λ1(k) − 1−λ1(k)

r(k) if r(k) > 0
1 if r(k) = 0

(6.105)

P (k + 1) = P (k) − P (k)z(k + 1)z(k + 1)T P (k)
β(k)−1 + r(k)

(6.106)
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When the factorisation of the covariance matrix P = LDLT is employed
(where L is a lower triangular and D diagonal matrix), this method is known
under the name LDDIF and is used throughout the book in adaptive control
of processes.

Another approach to estimate better time-varying parameters consists in
a direct modification of the covariance matrix P . It is clear that the main di-
agonal contains information about dispersion of the parameters. If the param-
eters are time varying, it is possible to increase dispersions and thus speed-up
adaptation to new parameter values

P (k + 1) = P (k + 1) + δI (6.107)

where δ < 0.01.
Another possibility is to selectively turn off RLS method if the parameter

estimates are correct. Similarly to the case of the variable exponential forget-
ting, the prediction error is checked. If it is small then the parameters will be
held constant. We define a parameter α

α(k) =
{

1 if γ(k)ε2(k) > ε2 > 0
0 otherwise (6.108)

where ε is a small positive number. Then equations (6.72) are of the form

P (k + 1) = P (k) − α(k + 1)γ(k + 1)P (k)z(k + 1)zT (k + 1)P (k)
θ̂(k + 1) = θ̂(k) + α(k + 1)L(k + 1)ε(k + 1)

(6.109)

This will guarantee that the covariance matrix and parameter estimates will
not change if the process output and the model output agree.

Example 6.5: Second order system identification www
For the second order system with the transfer function of the form

G(z) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

is the data vector given as

zT (k) = [−y(k − 1),−y(k − 2), u(k − 1), u(k − 2)]

in each sampling time. The parameter vector corresponding to the data
vector is then given as

θ = [a1, a2, b1, b2]

Consider for example a1 = 0.5, a2 = 0.1, b1 = 0.4, b2 = 0.2. The Simulink
schema for identification is shown in Fig. 6.7 and trajectories of estimated
parameters are in Fig. 6.8. We can notice that parameters converge to
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nominal values. The block denoted as rls is the S-function for recursive
least squares and its code is shown in Program 6.1.
Alternatively, numerically robust implementation of the scheme in Fig. 6.7
using blocks from Simulink library IDTOOL with recursive least squares
algorithm LDDIF is shown in Fig. 6.9.

z

1

Unit Delay3

z

1

Unit Delay2

z

1

Unit Delay1

z

1

Unit Delay

data

To Workspace

rls

S−Function

.4z  +.2z −1 −2

1+0.5z  +.1z −1 −2

Process

Parameters

−1

Gain

Band−Limited
White Noise

y(k)

u(k−1)

−y(k−1)

−y(k−2)

u(k−2)

Fig. 6.7. Simulink schema for parameter estimation of the second order discrete
system

Program 6.1 (S-function for RLS (rls.m))
function [sys,x0,str,ts] = rls(t,x,u,flag,tsamp,n)
% tsamp - sampling time
% n: length of the input vector
% (n = num. of parameters + 1)
% u = [y; z]

switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes(tsamp,n-1);

case 2,
sys=mdlUpdate(t,x,u,n-1);

case 3,
sys=mdlOutputs(t,x,u,n-1);

case 9,
sys=mdlTerminate(t,x,u);

otherwise
error([’Unhandled flag = ’,num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes(tsamp,n)
sizes = simsizes;
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sizes.NumContStates = 0;
sizes.NumDiscStates = n*(n+1);
sizes.NumOutputs = n;
sizes.NumInputs = n+1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

theta=(1:n)’*0.01;
p=eye(n,n)*1e6;
x0 = [theta;p(:)];
str = [];
ts = [tsamp 0];

function sys=mdlUpdate(t,x,u,n)
p =zeros(n,n);
theta=zeros(n,1);

theta(:)=x(1:n);
p(:)=x(n+1:n+n*n);

y=u(1);
z=u(2:n+1);
% begin
e=y-z’*theta;
gamma=1/(1+z’*p*z);
l=gamma*p*z;
p=p-gamma*p*z*z’*p;
theta=theta+l*e;
% end
sys = [theta(:);p(:)];

function sys=mdlOutputs(t,x,u,n)
sys=x(1:n);

function sys=mdlTerminate(t,x,u)
sys = [];

6.3.3 Identification of a Continuous-time Transfer Function

Consider a differential equation of a linear continuous-time system

A(p)y(t) = B(p)u(t) (6.110)
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Fig. 6.8. Estimated parameter trajectories for the second order discrete system

Terminator1

Terminator

.4z  +.2z −1 −2

1+0.5z  +.1z −1 −2
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Numerator

D. identification
SISO

Discrete identification

Denominator
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White Noise

u(k)

y(k)

Fig. 6.9. Alternate Simulink schema for parameter estimation of the second order
discrete-time system using blocks from library IDTOOL

where p = d/dt is the derivative operator and the polynomials are given as

A(p) = a0 + a1p+ · · · + an−1p
n−1 + pn (6.111)

B(p) = b0 + b1p+ · · · + bmp
m (6.112)

We assume that the process is strictly proper, i. e. the degree of the polynomial
B(p) is lower than the degree of the polynomial A(p).

If derivatives of inputs and outputs were available, we could directly esti-
mate coefficients of the polynomials ai, bi. However, the derivatives are usually
not measurable. Therefore, equation (6.110) will be divided by a stable poly-
nomial C(p)

A(p)
C(p)

y(t) =
B(p)
C(p)

u(t) (6.113)

A(p)yf (t) = B(p)uf (t) (6.114)

where

yf (t) =
1

C(p)
y(t), uf (t) =

1
C(p)

u(t) (6.115)
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We can see that it is also possible to estimate the parameters from (6.114).
All necessary derivatives of filtered variables are available from (6.115) under
the conditions that the degree of the polynomial C is greater or equal to the
degree of the polynomial A.

If the degrees are equal, the filter is of a minimum realisation. If the degree
of C is greater, the filter is strictly proper.

The structure of the C polynomial is usually chosen as

C(p) = (1 + c0p)na (6.116)

where c0 is the time constant of the filter and its value should be smaller than
the smallest time constant of A polynomial.

If signals uf , yf and their derivatives will be measured at sampling times
tk = kTs then the identification problem can be posed as follows

y
(n)
f (k) = θT z(k) + ξ(k) (6.117)

θT = (a0, . . . , an, b0, . . . , bm) (6.118)

zT (k) = (−ẏf (k), . . . , −y(n−1)
f (k), uf (k), u̇f (k), . . . , u(m)

f (k)) (6.119)

The block scheme of this procedure is shown in Fig. 6.10.

1/C

B/A

1/C

� �

�

�

�

�

u y

yfuf

Fig. 6.10. Block scheme of identification of a continuous-time transfer function

Example 6.6: Second order system www
Consider identification of a continuous-time second order system of the
form

ÿ + a1ẏ + a0y = b0u+ b1u̇

We introduce a stable second order filter C(p)

C(p) = (1 + c0p)2

and filtered variables

C(p)yf = y, C(p)uf = u
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If state variables are x1 = yf , x2 = ẏf then the output filter equation is
in the state-space form given as

(
ẋ1

ẋ2

)
=
(

0 1
− 1

c2
0
− 2

c0

)(
x1

x2

)
+
(

0
1
c2
0

)
y

⎛
⎝z1z2
z3

⎞
⎠ =

⎛
⎝− 1

c2
0
− 2

c0

−1 0
0 −1

⎞
⎠
(
x1

x2

)
+

⎛
⎝

1
c2
0

0
0

⎞
⎠ y

where the state-space outputs are z1 = ÿf , z2 = −yf , z3 = −ẏf .
We can define states for the input filter similarly as x3 = uf , x4 = u̇f and
the state-space description is then given as

(
ẋ3

ẋ4

)
=
(

0 1
− 1

c2
0
− 2

c0

)(
x3

x4

)
+
(

0
1
c2
0

)
u,

(
z4
z5

)
=
(

1 0
0 1

)(
x3

x4

)
+
(

0
0

)
u

where the state-space outputs are z4 = uf , z5 = u̇f .
The differential equation of the system is now of the form

ÿf = −a0yf − a1ẏf + b0uf + b1u̇f

z1 = a0z2 + a1z3 + b0z4 + b1z5
Hence

θT = (a0, a1, b0, b1)
zT = (z2, z3, z4, z5)

Consider for example a0 = 2, a1 = 3, b0 = 1, b1 = −1. We choose a second
order filter with the time constant c0 = 0.25 and the sampling period for
identification Ts = 1. State filters for output A,B,Cy,Dy and for input
A,B,Cu,Du are given as

A =
(

0 1
−16 −8

)
, B =

(
0
16

)
, Cy =

⎛
⎝−16 −8

−1 0
0 −1

⎞
⎠ , Dy =

⎛
⎝16

0
0

⎞
⎠

Cu =
(

1 0
0 1

)
, Du =

(
0
0

)

Simulink schema is shown in Fig. 6.11 and trajectories of estimated pa-
rameters are in Fig. 6.12. We can see that convergence has been achieved
within a few sampling steps.
Alternatively, numerically robust implementation of the scheme shown in
Fig. 6.11 using blocks from Simulink library IDTOOL with recursive least
squares algorithm LDDIF is shown in Fig. 6.13.
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Fig. 6.11. Simulink schema for estimation of parameters of the second order
continuous-time system
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Fig. 6.12. Estimated parameter trajectories for the second order continuous-time
system
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Fig. 6.13. Alternate Simulink schema for parameter estimation of the second order
continuous-time system using blocks from library IDTOOL
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vak).
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6.5 Exercises

Exercise 6.1:
Explain why it is possible to approximate time constant T for the first order
system using the tangent line from Fig. 6.1.

Exercise 6.2:
Approximate the periodic system step response in Fig. 6.3 using the Strejc
and Broida methods.

Exercise 6.3:
Derive equations (6.40), (6.46) by the Strejc method.

Exercise 6.4:
Derive the Broida method of the step response approximation.

Exercise 6.5:
Derive relations (6.95) a (6.96) in recursive least squares method.

Exercise 6.6:
Design an identification scheme for processes with transfer functions of the
form:

G1(z−1) =
b1z

−1

1 + a1z−1
z−2 (6.120)

G2(s) =
b0

(Ts+ 1)2
(6.121)

http://www.kirp.chtf.
stuba.sk/~fikar/
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The Control Problem and Design
of Simple Controllers

Generally speaking control system design involves a series of steps that pro-
duce a control system with a satisfactory behaviour of a controlled process. If
a fairly comprehensive list of steps is to be considered, a step by step design
is as follows:

1. Study of the controlled process and definition of control objectives.
2. Process modelling.
3. Determination of process properties and behaviour.
4. Selection (pairing) of manipulated and controlled variables.
5. Determination of structure of the control system.
6. Determination of the regulator type.
7. Design of performance specifications based on control objectives.
8. Controller design.
9. Analysis of the closed-loop system.

10. Simulations of the closed-loop system, repeat from 2 if necessary.
11. Implementation of the controller on chosen hardware and software.
12. Testing and validation on-line.

The aim of this chapter is to explain steps 7 and 8, why control is used,
and what are its specifications and demands. Next, structure and design of
simple controllers are introduced, performance specifications are discussed. It
is supposed that the controlled system is sufficiently precisely described by a
linear model and the controller is linear as well.

7.1 Closed-Loop System

A general scheme of a closed-loop system is shown in Fig. 7.1a and consists of
four parts: controller, actuator, controlled process, and measurement device.
To simplify the scheme, the actuator and the measurement device are usually
included into the controlled process. In that case, the scheme in Fig. 7.1b is
obtained.
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Fig. 7.1. Detailed and simplified closed-loop system scheme

The signals in this scheme are w – setpoint, e – control error, u – ma-
nipulated variable, d – disturbance, and y – controlled output. The controller
is described by the transfer function R(s) and the controlled process by the
transfer function G(s).

The study of dynamical properties of closed-loop systems involves re-
sponses to setpoint and disturbance variables. Applying block diagram algebra
to fig. 7.1b yields for the output variable

Y (s) = D(s) +R(s)G(s)[W (s) − Y (s)] (7.1)

Hence,

Y (s) =
1

1 +R(s)G(s)
D(s) +

R(s)G(s)
1 +R(s)G(s)

W (s) (7.2)

From this expression follows for regulation and tracking:

1. For D(s) = 0 is the transfer function between w and y given as

Gyw(s) =
R(s)G(s)

1 +R(s)G(s)
(7.3)

2. For W (s) = 0 is the transfer function between d and y given as

Gyd(s) =
1

1 +R(s)G(s)
(7.4)

Both transfer functions contain common partial transfer function S(s) of the
form

S(s) =
1

1 +Go
(7.5)
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that is called the closed-loop sensitivity and Go = RG. If we set W (s) =
0,D(s) = 0, disconnect the loop at any place, and define new output and
input signals yo, yi (Fig. 7.2) we get transfer function

Yo

Yi
= −GR = −Go (7.6)

We can see that the transfer function Go represents dynamics of the open-loop
system.

R(s) G(s)�� � ��
�−

�yi yo

Fig. 7.2. Open-loop system

7.1.1 Feedback Control Problem Definition

The control problem design constitutes one of the most important tasks in the
process control. If we put aside the problem of controller structure selection
and technical realisation of the closed-loop system, the problem reduces to
determination of the controller for the given controlled process.

The requirements on closed-loop system are as follows:

1. Stability.
2. Disturbance rejection.
3. Controlled variable should follow the setpoint as fast and exact as possible.
4. Robustness to parameter changes.

The items 2 and 3 can mathematically be described as

Gyd(s) = 0 (7.7)
Gyw(s) = 1 (7.8)

Example 7.1: Non-realisability of an ideal controller
Consider for simplicity a controlled process described by a first order dif-
ferential equation and with the transfer function of the form

G(s) =
Z

Ts+ 1

and a controller as another dynamical system with the transfer function
R(s). An ideal controller according to (7.7), (7.8) is then given from
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Z
Ts+1R(s)

1 + Z
Ts+1R(s)

= 1,
1

1 + Z
Ts+1R(s)

= 0

We can see that both conditions cannot be fulfilled for any controller.
Their validity is only for R(s) → ∞. However, such a controller would be
unsuitable because:
• an arbitrarily small control error would cause a very high value of the

control signal. However, minimum and maximum values of the control
signal always exist in practice. This would mean a bang-bang type of
controller.

• the same gain would be applied to disturbances.
• the controller gain would be too high and instability of the closed-loop

system could occur for higher order systems.

7.2 Steady-State Behaviour

The steady-state behaviour of the closed-loop system describes its properties
after all transient effects have finished. To analyse the control accuracy, we
analyse the value of the steady-state control error. For purposes of the analysis
assume the open-loop transfer function of the form

Go(s) =
Zo

sk

Bo(s)
Ao(s)

e−Tds (7.9)

where

Bo(s) = b0 + b1s+ · · · + bmo
smo (7.10)

Ao(s) = 1 + a1s+ · · · + ano−ks
no−k, no ≥ mo (7.11)

and k is a nonnegative integer defining the system type. Its increased value
adds pure integrators to the system. Based on the stability analysis it can be
shown that it is desirable to have the smallest gain Zo and the smallest k in
the open-loop system.

For the steady-state behaviour examination assume that the Ao(s) is sta-
ble.

If we set

E(s) = W (s) − Y (s) (7.12)

then from (7.2) follows

E(s) =
1

1 +Go(s)
(W (s) −D(s)) (7.13)

This relation shows that impacts of disturbances and setpoints are (up to sign)
the same and that it is not necessary to study them both.
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Let us assume that the variable yi acting as the open-loop system input
(see Fig. 7.2) is given as yi(t) = y0t

i1(t), i = 0, 1, 2 (step, ramp, . . . ) with the
Laplace transform Yi(s) = y0i!/si+1. The control error is then given as

E(s) =
1

1 +Go(s)
Yi(s) (7.14)

Its steady-state value is in the time domain given by the Final value theorem

lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0
i!

sk−i

sk + Zo
y0 (7.15)

It is then clear that steady-state control error is a function of the input sig-
nal and the open-loop system properties: gain Zo and the coefficient k. For
the zero steady-state control error holds k > i, i. e. the higher order of the
input variable, the more integrators the open-loop system should contain. If
k = i, non-zero steady-state control error results and its value is inversely
proportional to the gain Zo. As the gain is given as the product of gains of
the controlled system and the controller, the lowest value of the steady-state
control error is attained with the highest controller gain. Hence, the control
design problem is in opposition to requirements on stability. The least desired
state is k < i when e(∞) = ∞.

7.3 Control Performance Indices

The third requirement on closed-loop system in Chapter 7.1.1 dictates that the
controlled output follows the reference value as precisely as possible. Several
performance indices can describe this issue more quantitatively.

7.3.1 Time Domain

For performance specifications in time domain it is suitable to choose a stan-
dard input variable behaviour and to evaluate the controlled output. Most
often a step response is chosen. A typical closed-loop output trajectory is
shown in Fig. 7.3.

Performance quantities characterising the transient response of the closed-
loop system are then as follows:

• Maximum overshoot emax defines (in percent) the normalised maximum
control error after the process output reaches setpoint for the first time. It
can mathematically be written as

emax =
ymax − y∞

y∞
100 (7.16)

If the transient response is aperiodic and without overshoot then emax = 0.
The recommended value for majority of cases is smaller than 25%.
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emax

TεTu Tn
T100

w e(∞)

Fig. 7.3. A typical response of a controlled process to a step change of a setpoint
variable

• Settling time Tε is given as the time after which the absolute value of
the control error remains in some prescribed region. Usually the region
is characterised in percent of the maximum control error with the mean
value being the process output new steady state. The recommended value
is about 1% − 5%. The lower value of Tε, the better control performance
results.

• Damping ratio – ratio of the first and the second maximum value of the
controlled output. The value of 0.3 or less can be suitable.

• Time Tu determines the point obtained as the intersection of the time axis
and tangent of the response at the inflexion point.

• Time Tn determines the point obtained as the intersection of the settling
value of the controlled output with the tangent of the response at the in-
flexion point. Both times Tu, Tn are used in identification from the process
step response.

• Rise time is the time required for the response to rise from 0% to n% of
its final value. For underdamped responses time T100 is considered (time
when the output reaches its final value for the first time. For overdamped
systems time T90 is commonly used as time between 10% and 90% of
the new steady state output. However, a too small value can cause high
overshoot and settling time.

• Dominant time constant TDOM can be thought of as an alternative to
the settling time and can be defined as the largest time constant of the
process. If for example the first order system contains a term e−γt then the
dominant time constant is TDOM = 1/γ. For higher order systems TDOM

can be approximated from a similar second order system with a damping
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coefficient ζ and the natural undamped frequency ωn. In this case it can
be shown that

TDOM ≥ 1
ζωn

(7.17)

• Steady-state control error e(∞) defines deviation between the setpoint
w and the controlled output in the new steady state. It is non-zero for
controllers without integral action.

Time indices define speed of control, other characterise control quality.
Similar characteristics can be defined for disturbance rejection (Fig. 7.4).

emax Tε

Fig. 7.4. A typical response of the controlled process to a step change of disturbance

7.3.2 Integral Criteria

A large number of control quality specifications can lead to a difficult control
design. Usually, it is easier to define a single performance index. One possibility
is for example to define a weighted mean value of several quantities, e. g.

I = a1Tu + a2emax + a3Tε (7.18)

and then to minimise the index I. An issue then remains how to choose weight-
ing coefficients a1, a2, a3, . . ..

Another possibility is to use integral criteria when an area (or some func-
tion of it) of control error is minimised. The advantage of using integral criteria
is that the entire transient response is evaluated, not only some of its charac-
teristics. From the mathematical point of view a general cost function can be
defined as

Ik =
∫ ∞

0

fk[e(t)]dt (7.19)

where the function fk can contain various terms. Suitable candidates should
lead to a higher value of Ik when the control quality deteriorates.

Most often, the following functions are used:
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• fk = e(t) : (IE = integral of error) is the simplest function. The advan-
tage are simple calculations. However, it is only suitable for overdamped
transient responses as otherwise positive and negative parts cancel them-
selves and the criterion can be zero even if the transient response is highly
oscillatory.

• fk = |e(t)| : (IAE = integral absolute value of error) removes the drawback
of the previous approach and is also suitable for oscillatory responses. How-
ever, from the computational point of view, it can be difficult to implement
as the absolute value is non-differentiable.

• fk = |e(t)|t : (ITAE = integral time multiplied absolute value of error)
the time term in the cost function penalises the settling time, as well as
reduces the large initial error in the cost function. Otherwise it is the same
as the previous one.

• fk = e2(t) : (ISE = integral squared value of error) combines advantages of
a simple surface and of the absolute value. Large values of control error are
penalised more than small values and lead to controllers with larger settling
time than the IAE cost. Squared error is mathematically convenient for
analytical purposes.

• fk = e2(t)t : improves the previous cost and decreases the settling time.
• fk = e2(t)+φė2(t) : by penalising a square of derivative suppresses oscilla-

tory behaviour typical for ISE cost. Dampens large changes of the control
error and thus also large values of the manipulated input and its change.
The choice of the penalisation factor φ can be difficult.

• fk = e2(t) + φu2(t) : can suitably penalise the manipulated variable and
simply regulate the ratio between speed and robustness of the controller.

In each case it has been assumed that e(t) and u(t) are stable and con-
verge to zero, so that the cost functions converge. If this is not correct, it is
necessary to work with deviations of the variables from their steady state or
to implement some special strategy.

7.3.3 Control Quality and Frequency Indices

Control quality can also be characterised by frequency domain indices. Some
of them measure directly quality, others describe relative stability, i. e. quantify
how far is the closed-loop system away from instability.

• Gain margin measures relative stability and is defined as the amount of
gain that can be inserted in the loop before the closed-loop system reaches
instability. Mathematically spoken it is the magnitude of the reciprocal of
the open-loop transfer function evaluated at the frequency ωπ at which
the phase angle of the frequency transfer function is −180◦

GM =
1

|Go(ωπ)| (7.20)
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where argGo(ωπ) = −180◦ = −π and ωπ is called the phase crossover
frequency.

• Phase margin is a measure of relative stability and it is defined as 180◦ plus
the phase angle of the open-loop at the frequency ω1 at unity open-loop
gain

φPM = 180◦ + ϕ[Go(ω1)] (7.21)

where |Go(ω1)| = 1 and ω1 is called the gain crossover frequency. Recom-
mended values are between 30◦ − 65◦.
Gain and phase margins are graphically shown in Bode plots in Fig. 7.5.
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Fig. 7.5. Gain and phase margins for a typical continuous system. Intersection for
ω1 is at the value 0 dB

• Bandwidth ωb. Loosely spoken it is defined as the frequency range over
which the system responds satisfactorily. Often it is defined as the fre-
quency range where the magnitude is approximately constant compared
to the value at some specified frequency and differs by not more than
−3 dB. However, there are also other definitions. A good approximation is
the frequency ω1 defined by (7.21).

• Cutoff rate is the frequency rate at which the magnitude decreases beyond
the cutoff frequency ωc. For example it can be chosen as 6 dB / decade.

• Resonance peak Mp is the maximum of the magnitude frequency response.
• Resonant frequency ωp is the frequency at which the resonance peak oc-

curs.

These indices are shown in Fig. 7.6.

Example 7.2: Gain and phase margins
Let us consider a system with the transfer function
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Fig. 7.6. Bandwidth, resonant peak, and resonance frequency in magnitude fre-
quency response

G(s) =
432

s(s2 + 13s+ 115)

Substituting s = jω, the magnitude and phase of the transfer function is
given as

|G(jω)| =
∣∣∣∣ 432
(jω)3 + 13(jω)2 + 115(jω)

∣∣∣∣
=

432
| − 13ω2 + j(115ω − ω3)| =

432√
169ω4 + (115ω − ω3)2

ϕ = ϕ(1) − ϕ(−13ω2 + j(115ω − ω3)) = − arctan
115ω − ω3

13ω
To find the gain margin it is necessary to determine the frequency when
the phase is equal to ϕ = −π. This gives

−π = − arctan
115ωπ − ω3

π

13ωπ
⇒ 115ωπ − ω3

π

13ωπ
= tanπ ⇒ ωπ =

√
115

Gain margin is given by the reciprocal of the magnitude of the transfer
function at this frequency (7.20), hence

GM =
1

|G(jωπ)| =
1

0.2897
= 3.45

For phase margin it is necessary to find the frequency when the magnitude
is equal to one

432√
169ω4

1 + (115ω1 − ω3
1)2

= 1

Manipulating this equation yields the 6th order equation

ω6
1 − 61ω4

1 + 1152ω2
1 − 4322 = 0

Solving this equation gives a single real positive root ω1 = 3.858. From
the phase at this frequency follows from (7.21) φPM = 63◦.
Fig. 7.5 illustrates graphical procedure to find the indices for this system.
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Example 7.3: Determination of the resonant peak
Consider a system with the transfer function

G(s) =
5

s2 + 2s+ 5

We will find values of the resonant peak Mp, the corresponding resonance
frequency ωp, and bandwidth ωb. As these are calculated from the mag-
nitude frequency resonance, this will be derived at first

|G(jω)| =
5

| − ω2 + 2jω + 5| =
5√

ω4 − 6ω2 + 25

The maximum can be found by setting the derivative equal to zero

ωp(ω2
p − 3) = 0

Only the second root has meaning and thus ωp =
√

3. The resonant peak
is then

Mp = |G(jωp)| =
5√

ω4
p − 6ω2

p + 25
= 1.25

Bandwidth can be determined if the magnitude of G(s) decreases by 3 dB
as compared to the value at the beginning (0.707G(0)). As G(0) = 1, it
holds

|G(jωb)| =
√

2
2

⇒ ωb = 2.97.

Fig. 7.6 illustrates graphical procedure to find the indices.

7.3.4 Poles

Very often specification of the control quality can be described by the locations
of poles. Of course, stability dictates the left half plane for the pole locations.
A suitable pole region is shown in Fig. 7.7.

In general, the closer the pole is near the origin, the larger settling time
results. A real pole is coupled with aperiodic (overdamped) response. If the
closed-loop system has more poles, some of them dominate the process dy-
namics – the so called dominant poles. These poles are at least five times
nearer to the origin as the other. This means that for example when designing
a pole placement control design it is necessary to characterise only 2-3 poles
and the rest needed for physical realisation of the controller can be chosen
within the far left half plane.

To clarify the relations and influences among several specifications let us
consider the following example.



264 7 The Control Problem and Design of Simple Controllers

Fig. 7.7. Suitable region for pole locations of a closed-loop system

Example 7.4: A second order system - quality indices
Let us consider a closed-loop system with the transfer function of the form

Gyw =
GR

1 +GR
=

ω2
0

s2 + 2ζω0s+ ω2
0

(7.22)

where ζ is the damping coefficient and ω0 is the natural undamped
frequency. This transfer function can be obtained with a first order con-
trolled system with gain Z and time constant T controlled by a controller
with the transfer function R = 1/TIs. In that case holds ω2

0 = Z/TTI a
2ζω0 = 1/T .
Assume that the damping coefficient is inside ζ ∈ (0, 1). If the setpoint is
the unit step change then the controlled output is given as

y(t) = 1− 1√
1 − ζ2

e−ζω0t sin
(
ω0t

√
1 − ζ2 + ϕ

)
, ϕ = arctan

√
1 − ζ2

ζ

(7.23)

Similarly, the transfer function between the output and a disturbance
acting on the plant input is given as

Gyd =
G

1 +GR
=
Z

T

s

s2 + 2ζω0s+ ω2
0

(7.24)

and the time response for the unit step change of the disturbance is

e(t) =
Z

ω0T
√

1 − ζ2
e−ζω0t sin

(
ω0t

√
1 − ζ2

)
(7.25)

The closed-loop poles are complex conjugated and of the form

p1,2 = −ζω0 ± jω0

√
1 − ζ2 (7.26)
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When the frequency ω0 is assumed constant then poles are located in the
complex plane on half circles with radius ω0 centered in origin. If ζ is
constant, then half lines from origin occur with slope being a function of
ζ (Fig. 7.8).
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Fig. 7.8. Curves with constant values of ζ, ω0 (ζ1 < ζ2 < ζ3, ω1 < ω2 < ω3)

The process is underdamped with a period

Tp =
2π

ω0

√
1 − ζ2

(7.27)

and damping coefficient

ζd =
1
ω0

eϕ/ tan ϕ (7.28)

Settling time Tε for a band with accuracy ±p from the steady state is a
complex function of parameters, but can be approximated as

Tε ≈
log

(
p
√

1 − ζ2
)

ζω0
(7.29)

Maximum overshoot is given by the relation

emax = e−πζ
√

1−ζ2
=
√
ζd (7.30)

and occurs at the time

t(emax) =
π

ω0

√
1 − ζ2

(7.31)

If a step change of a disturbance at the plant input is considered, then for
its maximum value holds
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emax =
Z

Tω0

√
1 − ζ2

eϕ tan ϕ sinϕ (7.32)

t(emax) =
1

ω0

√
1 − ζ2

ϕ (7.33)

and the integral performance index IE can be derived as

IIE =
Z

ω2
0T

(7.34)

These expressions can be used for better understanding of performance
indices and their relations to controller parameters and vice versa. Integral
cost function value is inversely proportional to ω2

0 . Maximum overshoot
and all time indices are inversely proportional to ω0. Transient response
of the closed-loop system to setpoints or disturbances is improved by in-
creasing ω0. Further, maximum overshoot or damping coefficient increase
with decreasing ζ.

Results presented in the example do not hold only for closed-loop systems
with the given transfer function but can also be generalised for other systems
as almost any process can be decomposed into a set of the first and second
order systems. Moreover, from the dynamic point of view, in the majority of
processes some subsystem dominates over the rest and the overall system is
approximable by a second order system.

7.4 PID Controller

Among various controllers used in industry, the PID (proportional-integral-
derivative) controller is the most often employed. There are estimates that
more than 90% of controllers are of PID type. Its advantage is simplicity,
robustness as well as the fact that it can be realised in various analogue
(electrical, pneumatic), as well as digital versions.

The principle of the PID controller is processing of its input signal – control
error in three branches that will be examined in more detail below.

7.4.1 Description of Components

Proportional Controller

Consider the most simple form of a feedback controller described be the ex-
pression

u(t) =
{
umax if e(t) > 0
umin if e(t) < 0 (7.35)

In this case the manipulated input u can have only two values depending on the
control error e sign. This controller is called on-off controller. Its advantage
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is simplicity and easy implementation. As the control signal is not defined
for e = 0 (see eq. (7.35)), it is usually modified by introducing some kind of
hysteresis in the neighbourhood of zero.

Its drawbacks are oscillations of the controlled variable in the steady-state
as even a small control error causes the maximum value of the manipulated
input. A suitable improvement for this situation can be introduction of pro-
portional behaviour for small control errors

u(t) = ZRe(t) (7.36)

The controller that realises this equation is called proportional (P controller)
and ZR is its gain.

From the practical point of view can any controller realise proportional
action only in some limited range of control errors as the manipulated vari-
able can always be only in the range between umin and umax. Proportional
behaviour of the controller can then be characterised either by its gain ZR or
by some range when the controller is linear – proportionality band Pp. Their
relation is

umax − umin = ZRPp (7.37)

If we consider the maximum range of the manipulated variable normalised, e.
g. umax − umin = 100% then

ZR =
100
Pp

(7.38)

If the control error is too large in magnitude then the P controller implements
on-off behaviour with the manipulated variable constrained to its maximum
and minimum values.

From steady-state analysis of the P controller (see page 256) follows that
if the controlled system does not contain at least one pure integrator, the
closed-loop system will exhibit non-zero permanent control error. The sim-
plest scheme to guarantee the zero steady-state control error is to introduce
a suitable constant term ub to the manipulated variable

u(t) = ZRe(t) + ub(t) (7.39)

such that for e(t) = 0 holds u = ub.

Example 7.5: Proportional control of a heat exchanger www
Consider a feedback control of a heat exchanger with the P controller
described by the transfer function R(s) = ZR. The heat exchanger can be
given by the differential equation

T1y
′ + y = Z1u+

Z2

Z1
d
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where u is the manipulated variable and d is a disturbance. For the sim-
ulation purposes assume that Z1 = 1, T1 = 1.
Consider at first the disturbance rejection case when the disturbance is a
step change. (W (s) = 0, D(s) = A/s).
The closed-loop transfer function with respect to the disturbance is in this
case given as

Gyd =
GGd

1 +GR
=

Z1
T1s+1

Z2
Z1

1 + ZR
Z1

T1s+1

The output variable is then given as

Y (s) =
Z1

T1s+1
Z2
Z1

1 + ZR
Z1

T1s+1

A

s
=

AZ2

1 + ZRZ1

1
1 + T1

1+ZRZ1
s

A

s

y(t)
AZ2

=
1

1 + ZRZ1

(
1 − e−

t
T1/(1+ZRZ1)

)
The heat exchanger output is stable for any value of ZR and its new
steady-state settles at the value

y(∞) =
AZ2

1 + ZRZ1

A permanent control error exists

e(∞) = w(∞) − y(∞) = − AZ2

1 + ZRZ1

This confirms that by increasing the controller gain decreases the control
error (Fig. 7.9).
The slope of the response in time t = 0 will be derived by evaluating the
derivative

1
AZ2

dy
dt

=
1

1 + ZRZ1

1 + ZRZ1

T1
e−

t
T1/(1+ZRZ1)

1
AZ2

dy
dt

∣∣∣∣
t=0

=
1
T1

It is clear that all step responses have the same slope in time t = 0
(Fig. 7.9).
Consider now tracking case when the setpoint is a step change (W (s) =
A/s, D(s) = 0).
The closed-loop transfer function with respect to the setpoint is in this
case given as

Gyw =
GR

1 +GR
=

ZRZ1

T1s+ 1 + ZRZ1

The output variable is then given as
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Y (s) =
ZRZ1

T1s+ 1 + ZRZ1

A

s
=

AZRZ1

1 + ZRZ1

1
T1

1+ZRZ1
s+ 1

1
s

y(t)
A

=
ZRZ1

1 + ZRZ1

(
1 − e−

t
T1/(1+ZRZ1)

)
The heat exchanger output is stable for any value of ZR and its new
steady-state settles at the value

y(∞) =
AZRZ1

1 + ZRZ1

A permanent control error exists

e(∞) = w(∞) − y(∞) = A

(
1 − ZRZ1

1 + ZRZ1

)

This again confirms that by increasing the controller gain decreases the
control error.
The slope of the response in time t = 0 is given as

1
A

dy
dt

=
ZRZ1

1 + ZRZ1

1 + ZRZ1

T1
e−

t
T1/(1+ZRZ1)

1
A

dy
dt

∣∣∣∣
t=0

=
ZRZ1

T1

Compared to the disturbance rejection case, here the speed of the response
increases with the increasing controller gain (Fig. 7.10).
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In both cases it can be noticed that the controller changes the closed-loop
time constant from the open-loop value T1 to T1/(1 + ZRZ1). If negative
feedback is assumed, both gains ZR a Z1 have to be positive and the
resulting time constant is smaller than the one of the controlled system
– the closed-loop acts faster to a setpoint or disturbance changes as the
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controlled system. When pole locations are considered for the original
(s = −1/T1) and closed-loop system, the closed-loop pole is pushed more
to the left half part of the complex plane. This also means that an unstable
system can be stabilised by the P controller with a sufficiently high gain
that causes the closed-loop pole moved to the left of the imaginary axis.

Example 7.6: Proportional control of a higher order systemwww
Consider again proportional control of a system with the transfer function

G(s) =
1

(s+ 1)4

Fig. 7.11 shows simulations with various gains of the controller.
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Fig. 7.11. Proportional control to the setpoint value w = 1 with various gains ZR

of the controller

Simulation results again illustrate typical features of proportional control.
Permanent control error decreases with increasing controller gain. How-
ever, stability indices deteriorate and for a sufficiently high ZR can the
closed-loop system become instable.

Integral Control

The problem of the steady-state control error is not satisfactorily solved even
with the modified proportional controller with the shift ub. If the setpoint
changes, it is necessary to find a new value of ub. A more appropriate solution
is to introduce a pure integrator – the manipulated variable changes while the
control error is not zero. This can mathematically be defined as
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du(t)
dt

=
1
TI
e(t) (7.40)

where the constant TI is called integral time constant and determines the
speed of the change of the manipulated variable in the case of the unit control
error. The smaller value TI the larger changes of u are generated.

Historically, the integral action (I controller) was discovered by improving
equation (7.39) where the shift ub was calculated using feedback with the first
order filter with time constant TI

Ub(s) =
1

TIs+ 1
U(s) (7.41)

Combining (7.39), (7.41) and eliminating the intermediate variables yields

ZRE(s) = TIsUb(s) ⇔ TI
dub(t)

dt
= ZRe(t) (7.42)

U(s) =
TIs+ 1
TIs

ZRE(s) ⇔ u(t) = ZR

(
e(t) +

1
TI

∫ t

0

e(τ)dτ
)

(7.43)

This represents integral action for ub(t) and the PI controller for u(t).

Example 7.7: Heat exchanger control with the PI controller www
Consider feedback control of the heat exchanger with the PI controller
defined with the transfer function R(s) = ZR[1 + 1/(TIs)].
Transient response of the exchanger to a step change of the disturbance
with magnitude A (setpoint is considered to be zero) in the Laplace trans-
form is given as

Y (s) =
Z2
Z1

Z1
T1s+1

1 + ZR
TIs+1

TIs
Z1

T1s+1

A

s

=
AZ2TI

TIT1s2 + (TI + ZRTIZ1)s+ ZRZ1

This function is stable and converges to zero. Some simulations for ZR =
10 are shown in Fig. 7.12.
The exchanger response to a step change of the setpoint with magnitude
A (disturbance is considered to be zero) in the Laplace transform is

Y (s) =
Z1ZR(TIs+ 1)

TIT1s2 + (TI + ZRTIZ1)s+ ZRZ1

A

s
The steady-state control error is given as

e(∞) = w(∞) − y(∞) = A− lim
s→0

sY (s) = A−A = 0

We can see that the controller removes the steady-state control error.
Compared to the disturbance transfer function the numerator contains a
stable zero s = −1/TI that amplifies with decreasing value TI and thus
approaches instability. Practical consequence will be increasing overshoot.
Some simulation results are shown for ZR = 10 in Fig. 7.13.
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tracking with the PI controller

Example 7.8: Higher order system with the PI controller www
Consider again control of a higher order system with the transfer function
of the form

G(s) =
1

(s+ 1)4

controlled by the PI controller with proportional gain ZR = 1. Fig. 7.14
illustrated effects of changing the integral time constant.
Simulation results demonstrate typical features of PI control. The steady-
state control error is zero, only with a large TI the output variable con-
verges only slowly. On the other side, with the decreasing TI (increasing
integral action) the controller becomes more aggressive and magnitudes of
oscillations increase as well. The closed-loop system can eventually become
instable for a sufficiently small TI .

Derivative Control

Derivative action theoretically improves stability of the closed-loop system. P,
I controllers do not influence the loop instantaneously but only after a certain
time. Derivative controller defined by equation

u(t) = TD
de(t)
dt

(7.44)

where TD is derivative constant forecasts the future value of the control error.
This can be shown by using the Taylor expansion of the term e(t+ TD)

e(t+ TD) ≈ e(t) + TD
de(t)
dt

(7.45)

Graphical representation of this equation is shown in Fig. 7.15.
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Fig. 7.15. Graphical representation of derivative controller effects

An ideal derivative controller is rather sensitive to noise in the controlled
variable and the derivative action can lead to frequent and large changes of
the manipulated variable. Besides, the ideal derivative action is not realisable
as it is not proper.

This has lead to introduction of a filtered D controller with the transfer
function

R(s) =
TDs

1 + TD

N s
(7.46)

This is nothing else than the ideal D controller in series with a first order
system with the time constant TD/N . Typical values of N are between 5
and 20.

Example 7.9: Higher order system PID control www
Consider again control of a higher order system with the transfer function
of the form
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G(s) =
1

(s+ 1)4

controlled by the PID controller and assume constant parameters ZR =
3.76, TI = 2.85. Fig. 7.16 shows simulations with different values of the
derivative constant.
We can see that the increasing TD improves the speed of control and
overshoot. Theoretically performance should always improve. However,
as the derivative action has predictive behaviour, the presence of noise
inhibits arbitrary increase of TD.
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Fig. 7.16. PD control with setpoint w = 1 and several values of TD

Loosely speaking PID controller parameters influence performance and
stability in the following way:

• increase of P action increases speed and reduces stability,
• increase of I action decreases speed and improves stability,
• increase of D action increases speed and improves stability.

7.4.2 PID Controller Structures

The PID controller contains three components: proportional, integral, and
derivative. Its realisations can be different depending on implementation (elec-
trical, pneumatic, electronic, etc.)

Most often the following PID structures are used:

• without interaction
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R(s) = ZR

(
1 +

1
TIs

+ TDs

)
(7.47)

• with interaction (in series)

R(s) = ZR

(
1 +

1
TIs

)
(1 + TDs) (7.48)

• parallel

R(s) = ZR +
1
TIs

+ TDs (7.49)

It is important to remember that the controller constants are closely tied
to its realisation and that alternative representation results in their different
values. Design methods presented in Section 7.4.6 usually assume the structure
without interaction (7.47).

7.4.3 Setpoint Weighting

The standard PID controller processes control error. A more flexible structure
can be defined with a controller of the form

u(t) = ZR

(
ep(t) +

1
TI

∫ t

0

e(τ)dτ + TD
ded(t)

dt

)
(7.50)

where modified P and D variables are defined as

ep(t) = bw(t) − y(t) (7.51)
ed(t) = cw(t) − y(t) (7.52)

and b, c are user defined parameters. Both influence response to an abrupt
change of setpoint w where the traditional PID controller reacts by a step
change of proportional and derivative part. The parameter b controls the
maximum overshoot that is the smallest with b = 0. Field tested values are
between 0.3− 0.8. (see Example 7.15 on page 291). Similarly, the parameter c
can be used to suppress large changes of the manipulated variable caused by
derivative action.

In general, the classical controller described by equations (7.47)–(7.49)
represents a one degree-of-freedom controller that reacts in exactly the same
way to changes in disturbance or setpoint. Often however, closed-loop speci-
fications are different and responses to setpoints and disturbances have to be
specified independently. In that case a more suitable structure can be that of
the two degree-of-freedom controller (Fig. 7.17). Here actually two controllers
are used. The feedback part Rfb deals with the control error and the feed-
forward part Rff processes only the setpoint. Their transfer functions can be
specified as
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Rfb = ZR

(
1 +

1
TIs

+ TDs

)
(7.53)

Rff = ZR

(
b+

1
TIs

+ cTDs

)
(7.54)

Rfb

Rff

G(s)�

�

� � � � �

w

− y

Fig. 7.17. Closed-loop system with a two degree-of-freedom controller

7.4.4 Simple Rules for Controller Selection

• Most often the best controller is the simplest, i. e. the proportional con-
troller. It can be used if nonzero steady-state error is acceptable or if the
controlled system contains pure integrator. In process control its typical
use is in pressure control or level control.

• PI controller can be used if the simple proportional action is unaccept-
able and dynamics of the controlled system is simple. Its advantage is the
zero steady-state error but at the price of larger overshoot and oscillatory
behaviour. Moreover, further increase of the controller gain can lead to
instability.

• PD controller – grace to derivative action does not exhibit large overshoot
and settles fairly quickly. However, without integral action, the nonzero
steady-state error results with the same value as that of the P controller.
It is used mainly for processes with integrating behaviour or with large
time constants.

• PID controller is suitable in remaining cases - it is robust, forecasts fu-
ture process behaviour and in general its gain is smaller than that of the
corresponding PI controller. Its drawback is an increased sensitivity to
measurement noise.

• Problematic processes for PID controllers include systems with time delay,
with time variant parameters or oscillatory processes.
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7.4.5 Practical Aspects

Integrator Windup and Constraints Handling

Manipulated variables are always limited within the interval (umin, umax). For
example valves can be somewhere between fully closed and fully open, the
smallest motor speed is zero and the largest is given by its technical parame-
ters, etc.

If a controller contains pure integrator(s) and the manipulated variable
is on the constraint, the state corresponding to the integrator continues to
integrate the control error. Hence, even if the control error sign finally changes,
the manipulated variable does not change immediately, as the integral part
dominates the controller. Classical symptoms of (integrator windup) are large
overshoots caused by delayed activity of the controller. This phenomenon is
illustrated in the next example.

Example 7.10: Integrator windup www
Consider again control of a higher order system with the transfer function
of the form

G(s) =
1

(s+ 1)4

with the PI controller of the form

R(s) = 1 +
1
2s

Assume step setpoint change w = 1 and constraints on the input u ∈
〈0.9, 1.1〉. Simulation results are shown in Fig. 7.18a. Even if the controlled
output y reaches setpoint at time t = 7, the manipulated variable remains
at the upper constraint up to time t = 20. This implies a larger settling
time. To understand better this phenomenon, state of the integral part is
also shown in the figure. This variable increases even if the manipulated
variable is on the upper constraint.
Improvement can be observed when feedback procedure described below is
used. The simulation results are shown in Fig. 7.18b. Integrator value de-
creases rapidly and both control and the controlled output react correctly
when constraints are active.

There are several ways how to eliminate or suppress the windup phe-
nomenon. Often, it is caused by a sudden change of the setpoint variable. In
that case it may be possible to change the setpoint smoothly and more slowly
so that the control signal remains within limits.

Another possibility is to use velocity (incremental) algorithms when the
controller generates only changes of the manipulated variable. Of course, if
the manipulated variable hits the constraint, the controller output is zero.

The most commonly used method is the back calculation – if the manip-
ulated variable is out of limits, the integral part is recalculated back so that
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Fig. 7.18. Windup phenomenon. (a) Problem, (b) Solution

the control signal is on the constraint. In practice however, this is not realised
in each calculation step but dynamically with a time constant Tt. The block
scheme of this anti-windup setup is shown in Fig. 7.19.

1
Tt

1
TI

1
s

ZR TDs

� �
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� � �

�

� �

�

�

�e uPID u
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Fig. 7.19. Anti-windup controller

The modification consists in an additional feedback loop on the input of
which is difference between calculated and really applied control signal. If the
manipulated variable is within constraints, this error is zero and the original
controller remains. If the error is nonzero, the integral signal is changed until
it is again at the desired value.
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The time constant Tt specifies speed of the integral rewind. At the first
sight it seems that it should be the smallest possible. However, it has been
found that in presence of noise the integrator could interrupt its activity. An
empirical rule of thumb is the value about Tt =

√
TITD.

Bumpless Transfer

Modern PID controllers can function in automatic and manual modes. The
standard mode is automatic when the controller calculates the control signal.
The manual mode serves to handle nonstandard situations when the control
signal is specified by process operators. It is important to guarantee that
change between the modes is without undesired transient effects, i. e. the new
mode should start smoothly at the last calculated value of the old mode.

The bumpless transfer problem can be removed if incremental form of con-
trollers is used. In other cases it is possible to use the anti-windup scheme
(Fig. 7.19) where the controller follows the actually applied signal to the
process.

Transient effects can also occur when controller parameters are changed.
In that case it is necessary to recalculate the integral action.

Digital Implementation

The first PID controllers were constructed as thecontinuous-time pneumatic or
(later) electric devices. With the recent advances of microprocessors controllers
are mostly implemented digitally as discrete-time algorithms. In general, this
brings many advantages as the microprocessor not only implements the control
law but it can also trigger alarms, filter input variables, etc. However, there are
some features and properties special to digital devices as such a controller does
not process the analogue signal continuously but only at some time instants
– sampling times.

The most important parameters of a digital device is its sampling period
Ts. If it is chosen too large, some dynamic effects can escape. Practical rule of
thumb is to choose it such that the interval (5 − 10)Ts should cover the rise
time of the plant. In the frequency domain this can correspond to 10 times
the bandwidth. If there is no information about the controller process, it is
recommended to choose the sampling time as small as possible. Theoretical
issues on the choice of Ts are also discussed in Section 5.1.

The discretisation in itself covers approximation of all three parts of the
PID controller when the original differential equation is transformed into a
difference equation.

To derive a digital version of the PID controller assume the parallel form
given by (7.47). Its discrete version can be obtained in various ways. For
example by backward approximation of the derivative and integral parts as
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de(t)
dt

≈ e(kTs) − e((k − 1)Ts)
Ts

,

∫ t

0

e(τ)dτ ≈ Ts

k∑
i=1

e(Ts(i− 1)) (7.55)

where the continuous time t has been replaced by its discrete time counterpart
in sampling times kTs, k = 0, 1, . . .. This gives for the control law

u(kTs) = ZR

{
e(kTs) +

Ts

TI

k∑
i=1

e(Ts(i− 1)) +
TD

Ts
[e(kTs) − e((k − 1)Ts)]

}

(7.56)

Another possibility is to use forward or trapezoidal approximation:
∫ t

0

e(τ)dτ ≈ Ts

k∑
i=1

e(iTs) ≈
Ts

2

k∑
i=1

[e(iTs) − e((i− 1)Ts)] (7.57)

If for example forward approximation of the part I is used then digital PID
controller is given as

u(kTs) = ZR

{
e(kTs) +

Ts

TI

k∑
i=1

e(iTs)) +
TD

Ts
[e(kTs) − e((k − 1)Ts)]

}

(7.58)

If the sampling time is sufficiently small, there are no large differences between
approximations. Some precaution has to be taken in the case of forward or
trapezoidal transformations when for small values of Ts can the approxima-
tions be unstable.

Equation (7.58) is not particularly suitable for practical implementation
as it is necessary to know all values of past control errors. Therefore, recurrent
versions are used that can be obtained by subtracting u in sampling times kTs

and (k − 1)Ts:

u(kTs) = Δu(kTs) + u((k − 1)Ts) (7.59)

Δu(kTs) = ZR

[
e(kTs)

(
1 +

Ts

TI
+
TD

Ts

)
− e((k − 1)Ts)

(
1 +

2TD

Ts

)

+ e((k − 2)Ts)
TD

Ts

]
(7.60)

A general form of a digital PID controller can be given as

u(k) = q0e(k) + q1e(k − 1) + q2e(k − 2) + u(k − 1) (7.61)

The corresponding discrete time transfer function is then

R(z−1) =
q0 + q1z

−1 + q2z
−2

1 − z−1
(7.62)

The presented technique can be used for an arbitrary transformation of a
continuous-time PID controller to a digital form.
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7.4.6 Controller Tuning

Analytical Methods

Standard Forms

The method of standard forms belongs to the class of analytical methods where
transfer function of the controlled process is known. Standard forms refer to
some known transfer function structures and coefficients where behaviour of
the closed-loop system is known and optimal in some sense.

Consider the closed-loop system transfer function of the form

Gc(s) =
a0

ansn + an−1sn−1 + · · · a1s+ a0
(7.63)

that can be obtained if the open-loop transfer function contains one pure
integrator and no zeros. Standard forms for this case are:

• Binomial form with a real stable pole s = −ω0 with mutiplicity of n

Gc(s) =
ωn

0

(s+ ω0)n
(7.64)

Different system orders n imply the following standard forms
s+ ω0

s2 + 2ω0s+ ω2
0

s3 + 3ω0s
2 + 3ω2

0s+ ω3
0

s4 + 4ω0s
3 + 6ω2

0s
2 + 4ω3

0s+ ω4
0

This standard form provides relatively sluggish underdamped transient
responses.

• Butterworth form where the poles are located in the left half of the complex
plane on the semicircle with radius of ω0. Normalised polynomials are then
of the form

s+ ω0

s2 + 1.4ω0s+ ω2
0

s3 + 2ω0s
2 + 2ω2

0s+ ω3
0

s4 + 2.6ω0s
3 + 3.4ω2

0s
2 + 2.6ω3

0s+ ω4
0

• Minimual t5% – the fastest transient reponse with maximum overshoot of
5%.

s+ ω0

s2 + 1.4ω0s+ ω2
0

s3 + 1.55ω0s
2 + 2.10ω2

0s+ ω3
0

s4 + 1.60ω0s
3 + 3.15ω2

0s
2 + 2.45ω3

0s+ ω4
0

• Minimum of ITAE cost function.
s+ ω0

s2 + 1.4ω0s+ ω2
0

s3 + 1.75ω0s
2 + 2.15ω2

0s+ ω3
0

s4 + 2.1ω0s
3 + 3.4ω2

0s
2 + 2.7ω3

0s+ ω4
0
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Fig. 7.20. Step responses of selected standard transfer functions

The above mentioned standard forms for various system orders and normalised
with respect to ω0 lead to step responses shown in Fig. 7.20.

Possible drawbacks of standard forms include a rather strict restriction
on the open-loop system structure. The solution very often leads to a under
or overdetermined system of equations and is practically useless for standard
PID design. On the other side, denominators of standard forms are frequently
used in pole placement control design.

The Naslin Method

Here the controller is designed based on the requirement on the maximum
overshoot. The method considers relations between the coefficients of the
closed-loop denominator (7.63) of the form

a2
i = αai−1ai+1 (7.65)

where the coefficient α is determined as a function of the desired overshoot
from the table
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α 1.7 1.8 1.9 2 2.2 2.4
emax 20 12 8 5 3 1

Example 7.11: Naslin method
The controlled system with the transfer function

G(s) =
1

12s2 + 8s+ 1

is subject to unit step disturbance on the system input. Design PI con-
troller using the Naslin method with maximum overshoot of 5%.
The transfer function between the disturbance and the process output in
the closed-loop system can be derived using the block algebra

Gyd(s) =
G(s)

1 +G(s)R(s)

Assume the PI controller with the structure

R(s) = ZR

(
1 +

1
TIs

)

The closed-loop denominator polynomial is then given as

12s3 + 8s2 + (1 + ZR)s+
ZR

TI
= 0

If the maximum overshoot of 5% is specified then α = 2 and two equations
can be written

a2
1 = 2a0a2 ⇒ (1 + ZR)2 = 16

ZR

TI

a2
2 = 2a1a3 ⇒ 64 = 24(1 + ZR)

The resulting controller is then given as

R(s) =
5
3

(
1 +

4
15s

)

The Strejc Method

To determine parameters of the PID controller of the form

R(s) = ZR

(
1 +

1
TIs

+ TDs

)
(7.66)

using the Strejc method let us consider the controlled system of the form

F (s) =
Z

(Ts+ 1)n
e−Tds (7.67)
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where Z is the process gain, T time cosntant, Td time delay, and n the process
order.

The controller parameters can then be read from Table 7.1. If only step
response of the process is known, the transfer function can be estimated using
the Strejc identification method described in Section 6.2.3.

We choose a suitable controller structure and read its parameters from
the corresponding row of the table. If PID structure is chosen, the controlled
process has to be at least of the third order. For P and PI controllers the
system order has to be at least two. This follows from the controller gain ZR

calculations in Table 7.1.

Table 7.1. Controller tuning using Strejc method

Controller ZR TI TD

P
1

Z

1

n − 1

PI
1

Z

n + 2

4(n − 1)
T

n + 2

3

PID
1

Z

7n + 16

16(n − 2)
T

7n + 16

15
T

(n + 1)(n + 3)

7n + 16

Example 7.12: The Strejc methodwww
Consider again the controlled process with parameters Z = 1, T = 1,
n = 4. When PID controller structure is chosen, its parameters calculated
from Table 7.1 are ZR = 1.38, TI = 2.93, TD = 0.80. The simulation
results are shown in Fig. 7.21.

Pole Placement

One drawback of standard forms methods is that the overall transfer function
of the closed-loop system is prescribed. This narrows the applicability of the
method considerably. In pole placement control design only the closed-loop
denominator that determines stabilility is specified. The advantage of this
approach is its usability for a broad range of systems. On the other side, as
the closed-loop numerator cannot be specified, it can happen that its zeros
can have impact on performance.

If the controlled system is of the first or second order and the controller of
PID structure then the characteristic equation can be one of the following

s+ ω0 = 0 (7.68)
s2 + 2ζω0s+ ω2

0 = 0 (7.69)
(s+ αω0)(s2 + 2ζω0s+ ω2

0) = 0 (7.70)
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Fig. 7.21. The PID controller tuned according to Strejc

where ζ is relative damping, ω0 natural undamped frequency, and α a coef-
ficient. Specifying suitable values of parameters ζ, ω0, α in (7.68)–(7.70) can
lead to one of the standars forms. If higher order characteristic polynomial is
to be considered, then it is usually taken with the structure of Butterworth
polynomials or some other standard forms.

Consider the controlled system of the first order with transfer function

G(s) =
Z

Ts+ 1
(7.71)

controlled by the PID controller of the form

R(s) = ZR

(
1 +

1
TIs

+ TDs

)
=
ZR(TIs+ 1 + TITDs

2)
TIs

(7.72)

The closed-loop transfer function between the setpoint and output is given by
equation (7.3) as

Gyw(s) =
ZZR(TIs+ 1 + TITDs

2)
(T + ZZRTD)s2 + (1 + ZZR)s+ ZZR/TI

(7.73)

The characteristic equation is of the second degree and thus it is possible to
assign two poles. As the PID controller contains three tunable parameters,
one of them is superfluous. Hence, we will in the further consider only the PI
controller structure. In this case the characteristic equation can be written as

s2 +
1 + ZZR

T
s+

ZZR

TTI
= 0 (7.74)
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To place the poles, the standard characteristic equation (7.69) will be used.
Comparing the coefficients at the corresponding powers of s yields

2ζω0 =
1 + ZZR

T
, ω2

0 =
ZZR

TTI
(7.75)

Therefore, the controller parameters are given as

ZR =
2ζω0T − 1

Z
TI =

2ζω0T − 1
Tω2

0

(7.76)

The closed-loop system Gyw numerator contains a stable zero s = −1/TI .
If the integrating time constant is large, this zero is located near unstable
region and can have impact on overshoot. To prevent this is is recommended
either to lower the time constant or to use the two degree-of-freedom controller
structure and weigh the setpoint influence by the parameter b (see (7.50)).

Example 7.13: Pole placement design for a heat exchangerwww
Let us consider minimisation of the ITAE performance index with require-
ment that the controlled output reaches the setpoint at T100% = 0.5min.
We assume the heat exchanger time constant T = 1min and the gain
Z = 1.
Comparing the second order standard ITAE polynomial with equa-
tion (7.69) gives the value of ζ = 0.7. The corresponding normalised step
response specifies for time T100% relation ω0T100% = 3.1, hence ω0 = 6.2.
The controller parameters are then

ZR = 7.68, TI = 0.2

Simulation of the closed-loop system is shown in Fig. 7.22. It can be no-
ticed that requirements on the closed-loop system were not exactly met
as T100% is smaller than specified. This is caused by the fact that the nu-
merator is not constant but the first order polynomial. Smaller overshoot
and thus larger T100% can be achieved by modification of the controller
with the parameter b.

Let us now consider the pole placement design for a second order system
with the transfer function of the form

G(s) =
b1s+ b0

s2 + a1s+ a0
(7.77)

controlled by the PID controller

R(s) = ZR

(
1 +

1
TIs

+ TDs

)
=
ZR(TIs+ 1 + TITDs

2)
TIs

(7.78)

The closed-loop transfer function between the setpoint and output is given as

Gyw(s) =
ZR(TIs+ 1 + TITDs

2)(b1s+ b0)
TIs(s2 + a1s+ a0)ZR(TIs+ 1 + TITDs2)(b1s+ b0)

(7.79)
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Fig. 7.22. Heat exchanger control using pole placement design

The characteristic equation is of the third order. Hence, it is possible to choose
three poles. As the PID controller has three tunable parameters, it is suitable
for this system. We can use the standard characteristic equation (7.70) with
three parameters that specify an arbitrary type of the standard forms.

Comparing the coefficients at the corresponding powers of s yields the
system of equations with three unknowns – controller parameters

a1 + b1ZR + b0ZRTD = ω0(α+ 2ζ)(1 + b1ZRTD) = c1(1 + b1ZRTD)(7.80)

a0 + b0ZR + b1
ZR

TI
= ω2

0(1 + 2αζ)(1 + b1ZRTD) = c2(1 + b1ZRTD)(7.81)

b0
ZR

TI
= ω3

0α(1 + b1ZRTD) = c3(1 + b1ZRTD) (7.82)

The equations are nonlinear as they contain multiplication and division of
unknown variables. If a substitution with T̄I = ZR/TI , T̄D = ZRTD will be
introduced, a system of linear equations with unknown variables ZR, T̄I , T̄D

will be obtained⎛
⎝b1 (b0 − c1b1) 0
b0 −c2b1 b1
0 −c3b1 b0

⎞
⎠
⎛
⎝ZR

T̄I

T̄D

⎞
⎠ =

⎛
⎝c1 − a1

c2 − a0

c3

⎞
⎠ (7.83)

Solution of the equations and backsubstitution yield the controller parameters.

Experimental Methods

All analytical methods assume knowledge of the process transfer function.
As this is rarely precisely known, the methods can be used only for the first
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estimate of the controller parameters. Next, these are applied to the process
and manually retuned to yield the desired performance.

These drawbacks can partially be eliminated by using experimental meth-
ods that explore dynamic properites of the controlled process to find controller
parameters.

Trial-and-Error Method

A typical tuning of PID controller parameters can be as follows:

• Integral and derivative actions are turned off (TI is on maximum, TD is
zero) so that only proportional action with small controller gain results.

• The proportional gain is gradually increased until permanent oscillations
result (undamped behaviour). A care has to be taken so that the manip-
ulated variable is not on the constraints.

• The proportional gain is reduced to a half.
• Integral time constant is gradually reduced until again permanent oscilla-

tions occur. TI is then set to 3TI,crit.
• Derivative action is increased until again permanent oscillations occur. TD

is then set to a third of the critical value.

The method cannot always be used as permanent oscillations can compromise
the safety of the technology. In any case these steps indicate influence of each
controller part and their relation to controller tuning.

Ziegler-Nichols Methods

These are among the most used and widely spread methods for PID controller
tuning that have been in use since 1950. The derivation is based on the first
order controlled system with time delay and the controller parameters are
optimised for underdamped transient response with the damping coefficient of
about 25%. The procedure can either be applied using permanent oscillations
or is based on the step response. The method of permanent oscillations is in
fact only a modification of the trial-and-error method.

Method of Permanent Oscillations The controller is at first set up only with
a proportional action and its gain is increased until permanent oscillations
occur. The closed-loop system is only marginally stable at this point. Criti-
cal proportional gain ZRk amd critical time period of the oscillations Tk are
obtained. These values are used for a given controller structure for the calcu-
lation of its parameters from Table 7.2. Several settings are given in the table
– the usual Ziegler-Nichols settings as well as the settings for more robust
controller with a smaller or zero overshoot.

Another possibility of getting permanent oscillations in the closed-loop
system can be realised using a relay with hysteresis. In this case the process
input is of rectangular shape. The advantage is that the output magnitude
can be tuned. The relay output changes every time the control error changes
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Table 7.2. Ziegler-Nichols controller tuning based on permanent oscillations. PID1

sets smaller overshoot, PID2 is underdamped

Regulátor ZR TI TD

P 0.5ZRk

PI 0.4ZRk 0.8Tk

PID 0.6ZRk 0.5Tk 0.125Tk

PID1 0.33ZRk 0.5Tk Tk/3
PID2 0.2ZRk 0.5Tk Tk/3

sign (Fig. 7.23). After a certain time the oscillations settle and it is possible
to find out the value of Tk. If we consider the magnitude of the input ±u
and the magnitude of the output ±y then it follows the theory of harmonic
equilibrium that the critical controller gain is given as

ZRk =
4u
πy

(7.84)

PID

�
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G(s)��
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w

−
u y

Fig. 7.23. Closed-Loop system with a relay

Step Response Method Often it is not possible to find the critical gain of the
controller for safety reasons. In this case it can be easier to measure a step
response of the process and to calculate the controller parameters from it using
Table 7.3. Note that it is not necessary to measure the whole step response,
only the values Tu and Z/Tn given from the slope of the curve in the inflexion
point.

Table 7.3. The Ziegler-Nichols controller tuning based on the process step response

Regulátor ZR TI TD

P 1
Z

Tn
Tu

PI 0.9
Z

Tn
Tu

3.33Tu

PID 1.2
Z

Tn
Tu

2Tu 0.5Tu

Example 7.14: The Ziegler-Nichols method www
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Consider the fourth order system described by

G(s) =
1

(s+ 1)4

with the PID controller. The step response gives Tu = 1.425, Tn = 4.463
and thus ZR = 3.76, TI = 2.85, TD = 0.71. Simulation results are shown in
Fig. 7.24. The closed-loop response is fairly oscillatory. This is a common
drawback of Ziegler-Nichols methods.
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t

 w
 y
 u

Fig. 7.24. PID control tuned with the Ziegler-Nichols method

Åström-Hägglund Methods

A possible disadvantage of Ziegler-Nichols methods is that they are based on
only two process characteristics: either Tu, Tn for a step response or ZRk, Tk

for permanent oscillations. Generally speaking, Ziegler-Nichols methods have
the following in common:

• transient responses are fairly oscillatory,
• not suitable for tume-delay systems,
• difficult tuning.

Based on these observations, Åström a Hägglund have developed a new
method that uses three process characteristics. The third one is optional –
maximum of the sensitivity function Ms that specifies robustness of the con-
troller. Ms is tunable and two choices exist: 1.4 and 2.0. The higher value of
Ms characterises a faster controller.
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The PID controller is assumed with setpoint weighting with the parame-
ters: proportional gain ZR, integral time constant TI , derivative time constant
TD, and setpoint weighting b

u(t) = ZR

(
bw(t) − y(t) +

1
TI

∫ t

0

e(s)ds+ TD
de(t)
dt

)
(7.85)

Similarly to the Ziegler-Nichols method, the authors have developed con-
troller tuning based on frequency or step response.

Step Response To calculate the controller parameters, three process charac-
teristics are used: process gain Z, time constant T , and time delay Td found by
step response identification. For the identification procedure of these param-
eters see Section 6.2.1. For the further derivation of the method, normalised
parameters are introduced

a = Z
Td

T
(7.86)

τ =
Td

Td + T
(7.87)

If the controlled process is unstable with a pure integrator, it is recommended
to measure its impulse response by applying a short pulse on the process input.
From such a stable response fictitious values of Z ′, T ′, T ′

d can be determined
and normalised parameters from them

a = Z ′(T ′ + T ′
d) (7.88)

τ = T ′ + T ′
d (7.89)

The controller parameters are normalised in the similar way to the process
and are of the form aZR, TI/Td (or TI/T for stable processes), and TD/Td.

Controller parameters have been obtained empirically from numerous sim-
ulations with different process models and interpolating the best results. The
authors have shown that it is advantageous to relate the controller parameters
to the normalised time delay τ in the functional form

f(τ) = a0 exp(a1τ + a2τ
2) (7.90)

PI and PID controller tuning for stable processes are given in Tables 7.4,
7.5, respectively. In the same manner, integrating processes are covered by
Tables 7.6 (PI) and 7.7 (PID).

Example 7.15: Åström-Hägglund method www
Consider the fourth order system with the transfer function of the form

G(s) =
1

(s+ 1)4

controlled by PID controller. The process step response gives Td = 1.425,
T = 4.463. For the PID controller follow from Table. 7.5 parameter values
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Table 7.4. PI controller tuning based on step response for stable processes. Param-
eters are given as functions of τ of the form (7.90)

Ms = 1.4 Ms = 2
a0 a1 a2 a0 a1 a2

aZ 0.29 -2.7 3.7 0.78 -4.1 5.7
TI/Td 8.9 -6.6 3.0 8.9 -6.6 3.0
TI/T 0.79 -1.4 2.4 0.79 -1.4 2.4

b 0.81 0.73 1.9 0.44 0.78 -0.45

Table 7.5. PID controller tuning based on step response for stable processes. Pa-
rameters are given as functions of τ of the form (7.90)

Ms = 1.4 Ms = 2
a0 a1 a2 a0 a1 a2

aZ 3.8 -8.4 7.3 8.4 -9.6 9.8
TI/Td 5.2 -2.5 -1.4 3.2 -1.5 -0.93
TI/T 0.46 2.8 -2.1 0.28 3.8 -1.6
TD/Td 0.89 -0.37 -4.1 0.86 -1.9 -0.44
TD/T 0.077 5.0 -4.8 0.076 3.4 -1.1

b 0.40 0.18 2.8 0.22 0.65 0.051

Table 7.6. PI controller tuning based on step response for processes with pure
integrator. Parameters are given as functions of τ of the form (7.90)

Ms = 1.4 Ms = 2
a0 a1 a2 a0 a1 a2

aZ 0.41 -0.23 0.019 0.81 -1.1 0.76
TI/Td 5.7 1.7 -0.69 3.4 0.28 -0.089

b 0.33 2.5 -1.9 0.78 -1.9 1.2

Table 7.7. PID controller tuning based on step response for processes with pure
integrator. Parameters are given as functions of τ of the form (7.90)

Ms = 1.4 Ms = 2
a0 a1 a2 a0 a1 a2

aZ 5.6 -8.8 6.8 8.6 -7.1 5.4
TI/Td 1.1 6.7 -4.4 1.0 3.3 -2.3
TD/Td 1.7 -6.4 2.0 0.38 0.056 -0.60

b 0.12 6.9 -6.6 0.56 -2.2 1.2

ZR = 2.39, TI = 3.58, TD = 0.87, and b = 0.49. Fig. 7.25 shows two
simulations. The first uses the calculated controller, the second shows
the influence of the setpoint weighting parameter b = 1. In contrast to
the Ziegler-Nichols tuning control performance is better and oscillations
are more heavily damped. When no setpoint weighting is used, larger
overshoot results. However, compared to Example 7.14 on page 289, it is
still smaller.

Frequency Response Like above, there are empirical procedures for PID con-
troller tunung in the frequency domain. In this case it is necessary to find
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Fig. 7.25. PID control using the Åström-Hägglund method

values of Tk, ZRk, that are approximated as functions of the parameter
κ = 1/ZZR.

Results for stable processes are given in Table 7.8 (PI controller) and in
Table 7.9 (PID controller). When integrating processes are considered, it can
be possible to find the parameters by setting κ = 0 for the PI controller. The
case of the PID controller is more complex and the settings cannot be used.

Table 7.8. PI controller tuning based on frequency response for stable processes.
Parameters are given as functions of κ of the form a0 exp(a1κ + a2κ

2)

Ms = 1.4 Ms = 2
a0 a1 a2 a0 a1 a2

Z/ZRk 0.053 2.9 -2.6 0.13 1.9 -1.3
TI/Tk 0.90 -4.4 2.7 0.90 -4.4 2.7

b 1.1 -0.0061 1.8 0.48 0.40 -0.17

Table 7.9. PID controller tuning based on frequency response for stable processes.
Parameters are given as functions of κ of the form a0 exp(a1κ + a2κ

2)

Ms = 1.4 Ms = 2
a0 a1 a2 a0 a1 a2

Z/ZRk 0.33 -0.31 -1.0 0.72 -1.6 1.2
TI/Tk 0.76 -1.6 -0.36 0.59 -1.3 0.38
TD/Tk 0.17 -0.46 -2.1 0.15 -1.4 0.56

b 0.58 -1.3 3.5 0.25 0.56 -0.12
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SNTL/ALFA, Praha, 1982. (in Czech).

PID controllers, their design, tuning, and implementation are covered by
the works:

J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers.
Trans. ACME, 64(8):759–768, 1942.
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7.6 Exercises

Exercise 7.1:
Consider a system with the transfer function

G(s) =
1 − 2s

s2 + s+ 1

Find the following frequency indices:
1. gain and phase margins,
2. bandwidth,
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3. resonant frequency and resonance peak.

Exercise 7.2:
Consider a system with the transfer function

G(s) =
1

(s+ 1)3

The task is:
1. to control the process and to find the critical P control gain, as well as

the critical period,
2. to calculate both parameters analytically,
3. to design PI and PID controllers by the Ziegler-Nichols and Åström-

Hägglund methods,
4. to compare the control performance.

Exercise 7.3:
Consider a controlled system with the transfer function

G(s) =
1 − 2s
s2 + 1

1. find the PID controller by the pole placement design method. The closed-
loop poles should be placed using various standard forms with ω0 = 1,

2. compare the performance of the closed-loop system for all cases.

Exercise 7.4:
A continuous-time PID controller can be transformed to its discrete-time coun-
terpart using the following substitutions:
1. backward approximation:

s =
1 − z−1

z−1Ts

2. forward approximation:

s =
1 − z−1

Ts

3. the Tustin approximation:

s =
2
Ts

1 − z−1

1 + z−1

Derive the discrete-time controllers.

Exercise 7.5:
Consider a closed-loop system consisting of the controlled process

G(s) =
1

s3 + 2s2 + 3s+ 4
and a controller with the structures P, I, PI. Find such intervals of controller
parameters that the closed-loop system is stable.
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Optimal Process Control

This chapter explains design of optimal feedback control based on state-space
and input-output representations of linear systems. In the first part, dynamic
programming and principle of minimum are presented. Then the pole place-
ment feedback control design is derived. This serves as a basis for all advanced
design methods. Based on the pole placement, stability of the closed-loop sys-
tem is guaranteed. In the next parts it is shown how optimal pole locations
can be found. This can be done either for minimisation of an integral cost or
of H2 norm. The Youla-Kučera parametrisation of all stabilising controllers is
derived. Included are also state reconstruction and estimation.

The chapter deals mainly with continuous-time systems. However, discrete-
time equivalents are also presented and differences in both domains are ex-
plained. In addition, dead-beat control is also presented.

In all cases, state-space control design is completed with the input-output
design based on Diophantine equations.

8.1 Problem of Optimal Control and Principle
of Minimum

There are many possible formulations of optimal control design in process con-
trol. One of them that leads to optimal feedback control of lumped continuous-
time systems can be formulated as follows.

Consider a controlled process with mathematical model of the form

dx(t)
dt

= f(x(t),u(t)), x(t0) = x0 (8.1)

where x is n-dimensional vector of state variables and u is m-dimensional
vector of manipulated variables. f is n-dimensional vector function and it is
assumed that it is continuous-time and continuously differentiable with respect
to all its variables.
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The optimal control design is to find such u(t) that the cost function

I(u(t)) = Gtf (x(tf )) +
∫ tf

t0

F (x(t),u(t))dt (8.2)

is minimal. It is assumed that there are no constraints on x, u. Functions Gtf ,
F are scalars and continuously differentiable.

Variations of this problem can cover additional requirements and con-
straints that can be included. This covers constraints on input and state vari-
ables, constraints on final state vector x(tf ). Some of the problems deal with
fixed end time tf , sometimes final time is also minimised.

Let us assume that the optimal control trajectory u∗(t) exists. If any other
control trajectory u(t) is considered, it holds:

I [u(t)] ≥ I [u∗(t)] (8.3)

Equation (8.3) holds in general. However, it can happen that u∗(t) sat-
isfying (8.3) does not exist. It is very difficult to prove the existence of op-
timal control. Therefore, applications of optimal control often use intuition
and based on it assume that the optimal control trajectory exists. Its proof is
based on the Hamilton-Jacobi equation.

Let us therefore assume that the optimal solution u∗(t) exists. We will
derive conditions that this solutions has to satisfy. These are only necessary
conditions and are based on the variational calculus. We assume a small change
of u∗(t) leading to a new trajectory u(t) and study change of the cost function
I.

Let u∗(t) be the optimal control and x∗(t) the corresponding optimal
system response given by (8.1). Indefinitely small control variation δu(t) then
produces state variation δx(t). The system response is then given as

x(t) = x∗(t) + δx(t) (8.4)

that is caused by the control

u(t) = u∗(t) + δu(t) (8.5)

Variation of the time derivative of state can be rewritten as

δ

(
dx

dt

)
=

dx

dt
− dx∗

dt
(8.6)

=
dx∗

dt
+

d (δx)
dt

− dx∗

dt
(8.7)

=
d (δx)

dt
(8.8)

It follows from (8.8) that linear operators d/dt and δ are commutative. The
Taylor expansion in the neighbourhood of the optimal state gives
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f(x,u) = f(x∗,u∗) +
(
∂f

∂x

)∗
δx +

(
∂f

∂u

)∗
δu (8.9)

where only linear terms were taken into account. Partial derivatives in (8.9)
are evaluated for optimal trajectories u∗(t), x∗(t).

The terms

(
∂f

∂x

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... · · ·

...
∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.10)

(
∂f

∂u

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
... · · ·

...
∂fn

∂u1

∂fn

∂u2
· · · ∂fn

∂um

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.11)

are Jacobi matrices. Superscripts (·)∗ denote optimal trajectories of u∗, x∗.
Equation (8.9) can be rewritten when considering (8.1) and (8.8) as

d (δx)
dt

=
(
∂f

∂x

)
δx +

(
∂f

∂u

)
δu (8.12)

The cost function I(u) attains the minimum for the function u∗ = u∗(t)
from a class of permitted functions if an arbitrary function u(t) satisfies in-
equality (8.3).

In general, an increment of the cost function I(x) can be defined as

ΔI = I(x + δx) − I(x) (8.13)

and thus it can be written as

ΔI = ΔI(x, δx) (8.14)

The first variation δI is the part of ΔI that is linear in the variation δx.
The fundamental theorem of the variational calculus says that if x∗ is on the
extreme then necessary condition for extremum of the cost function is

δI(x∗, δx) = 0 (8.15)

for all possible δx.
It can be noted that there exists a formal similarity between extremes of

a function y = y(x) of the form (dy/dx) = 0 and relation (8.15).
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It can be shown that if the increments ΔI and its variation δI are con-
tinuous functions and the variation δu can be arbitrary, then the equality

δI = 0 (8.16)

is the necessary condition of extremum. If only single-sided variations (for
example δu ≥ 0) are permitted then δI = 0 does not constitute the necessary
condition.

The variation of the cost (8.2) can be written as

δI =
(
∂Gtf

∂x(tf )

)T

δx(tf ) +
∫ tf

t0

[(
∂F

∂x

)T

δx +
(
∂F

∂u

)T

δu

]
dt (8.17)

Partial derivatives in (8.17) are calculated in optimal trajectories.
Equation (8.17) holds if the final time tf is fixed. The final state of the

system x(tf ) is considered to be free.
Let us define an adjoint vector λ(t) and manipulate equation (8.12) as

follows

λT d (δx)
dt

= λT

(
∂f

∂x

)
δx + λT

(
∂f

∂u

)
δu (8.18)

Integrating (8.18) from t = t0 to t = tf yields
∫ tf

t0

[
λT d (δx)

dt
− λT

(
∂f

∂x

)
δx − λT

(
∂f

∂u

)
δu

]
dt = 0 (8.19)

Adding (8.17) to (8.19) gives for δI

δI =
(
∂Gtf

∂x (tf )

)T

δx(tf )

+
∫ tf

t0

{[(
∂F

∂x

)T

+ λT

(
∂f

∂x

)]
δx +

[(
∂F

∂u

)T

+ λT

(
∂f

∂u

)]
δu

}
dt

−
∫ tf

t0

λT d (δx)
dt

dt (8.20)

Derivative of the term λT δx gives

λT d(δx)
dt

=
d
dt
(
λT δx

)
− dλT

dt
δx (8.21)

and thus equation (8.20) is of the form

δI =
(
∂Gtf

∂x (tf )

)T

δx (tf ) +
∫ tf

t0

[(
∂F

∂x

)T

+ λT

(
∂f

∂x

)
+

dλT

dt

]
δx

+
∫ tf

t0

[(
∂F

∂u

)T

+ λT

(
∂f

∂u

)]
δudt+ λT δx|t=t0 − λT δx|t=tf

(8.22)
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Let us now introduce the Hamilton function or Hamiltonian

H = F + λT f(x,u) (8.23)

If the adjoint vector λ(t) satisfies the differential equation

dλ

dt
= −∂H

∂x
(8.24)

then for a fixed initial state x(t0) = x0 (where δx(t0) = 0) the necessary
condition for existence of optimal control is given as

δI =
∫ tf

t0

(
∂H

∂u

)T

δudt = 0 (8.25)

with the terminal condition for the adjoint vector λ(t)

λ(tf ) =
(
∂Gtf

∂x

)
t=tf

(8.26)

Equation (8.25) specifies the relation between variation of the cost function
and variation of the control trajectory. If some of the elements of the vector
x(tf ) are fixed at the terminal time then the variation of control at this point
is not arbitrary. However, it can be shown that an equivalent result can be
obtained in unspecified or fixed terminal points.

If we suppose that the variation of δu(t) is arbitrary (u(t) is unbounded)
then the following equation

∂H

∂u
= 0 (8.27)

is the necessary condition for extremum (minimum) of the cost function.
If there are constraints on control variables of the form

−αj ≤ uj(t) ≤ βj , j = 1, 2, . . . , (8.28)

where αj and βj are constants for minimum and maximum values of elements
uj of the vector u then δu(t) cannot be arbitrary and (8.27) does not guarantee
the necessary condition for existence of extremum. If the control variable is
on the lower constraint, the only variation allowed is δuj > 0. Equation (8.25)
then requires that

u∗j = −αj , if
∂H

∂uj
> 0 (8.29)

Similarly, if the control variable uj is on the upper constraint, the only
variation allowed is δuj < 0. Equation (8.25) then requires that
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u∗j = βj , if
∂H

∂uj
< 0 (8.30)

It is clear in both cases that the control variable minimises H if it is on the
constraint.

Necessary conditions for optimal control u∗(t) if the variation δu is arbi-
trary follow from (8.27).

The exact formulation of the principle of minimum will not be given here.
Based on the derivation presented above, important relations from (8.23),
(8.24) are

∂H

∂λ
= f (x,u) (8.31)

∂H

∂λ
=

dx

dt
(8.32)

∂H

∂x
=
∂F

∂x
+
(

λT ∂f

∂x

)T

(8.33)

dλ

dt
= −∂F

∂x
−
(

λT ∂f

∂x

)T

(8.34)

dλ

dt
= −∂H

∂x
(8.35)

Derivative of H with respect to time is given as

dH
dt

=
(
∂H

∂x

)T dx

dt
+
(
∂H

∂u

)T du

dt
+
(
∂H

∂λ

)T dλ

dt
(8.36)

From (8.32), (8.24) follows

(
∂H

∂x

)T dx

dt
+
(
∂H

∂λ

)T dλ
dt

= 0 (8.37)

Due to (8.27) is the right hand of equation (8.37) equal to zero

dH
dt

= 0 (8.38)

if unconstrained control is assumed (or if control never hits constraints).
From (8.38) follows that Hamiltonian is constant when optimal control is
applied.

Example 8.1: Optimal control of a heat exchangerwww
Consider a heat exchanger (Fig. 1.1, page 3) for heating a liquid. We
assume ideal mixing, negligible heat losses, constant holdup, inlet and
outlet flowrates. Mathematical model of the exchanger is given as

V

q

dϑ
dt′

+ ϑ = ϑv +
ω

qρcp
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where ϑ is the outlet temperature, ϑv – inlet temperature, t′ - time, ω
– heat input, ρ – liquid density, V – liquid volume in the exchanger, q –
volumetric liquid flowrate, cp – specific heat capacity.
Denote

ϑu =
ω

qρcp

As ω/qρcp is in temperature units, ϑu can be considered a manipulated
variable. Assume that the temperature ϑu is constant for a sufficiently
long time (ϑu = ϑu0). If the inlet temperature is constant ϑv = ϑv0

steady-state of the exchanger is given as

ϑ0 = ϑv0 + ϑu0

Let us now consider another steady-state ϑ1 given by the manipulated
variable ϑu1

ϑ1 = ϑv0 + ϑu1

The optimal control problem consists in determination of a trajectory
ϑu(t′) from ϑu0 to ϑu1 in such a way that a given cost function be min-
imal. This cost function will be defined later. Before it, let us define di-
mensionless deviation variables from the final steady state.
The new state variable is defined as

x(t′) =
ϑ(t′) − ϑ1

ϑu1 − ϑv0

The new manipulated variable is defined as

u(t′) =
ϑu(t′) − ϑu1

ϑu1 − ϑv0

Further, we define a new dimensionless time variable

t =
q

V
t′

Mathematical model of the heat exchanger is now given by the first order
differential equation

dx(t)
dt

+ x(t) = u(t)

with initial condition

x(0) = x0 =
ϑ0 − ϑ1

ϑu1 − ϑv0
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Consider now a controlled system described by the first order differential
equation dx/dt+ x = u. Let us find a trajectory u(t) such that minimum
is attained of the cost function

I =
∫ tf

t0

[
x2(t) + ru2(t)

]
dt

where t0 = 0 is the initial time of optimisation that specifies initial state
value x(0) = x0, tf – final time of optimisation, r > 0 – weighting coeffi-
cient.
Final time x(tf ) is not specified. Therefore, this is the dynamic optimi-
sation problem with free final time. As the final value of x(tf ) is given,
the cost function I depends only on u(t) as u(t) determines x(t) from the
differential equation of the controlled process.
Hamiltonian is in our case given as

H = x2 + ru2 + λ(−x+ u)

From the optimality conditions further holds

dλ
dt

= −∂H
∂x

= −2x+ λ

The final value of the adjoint variable λ(t) is

λ(tf ) = 0

Optimality condition of partial derivative of the Hamiltonian H with re-
spect to u determines the optimal control trajectory

∂H

∂u
= 0 ⇔ 2ru+ λ = 0

Optimal control is thus given as

u∗(t) = − 1
2r
λ∗(t)

To check whether this extremum is really minimum, the second partial
derivative of H with respect to u should be positive

∂2H

∂u2
= 2r > 0

which confirms this fact.
Next, the system of equations

dλ∗

dt
= −2x∗ + λ∗

dx∗

dt
= −x∗ − 1

2r
λ∗
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with initial and terminal conditions

λ∗(tf ) = 0

x∗(0) = x0

can be solved to find the optimal control trajectory u∗(t) = −(1/2r)λ∗(t).
The system of equations possesses a unique solution

λ∗(t) =
2x0

β
sinh γ(tf − t)

x∗(t) =
x0

β
[γ cosh γ(tf − t) + sinh γ(tf − t)]

where β = γ cosh γtf + sinh γtf , γ =
√

1 + 1/r. The proof that λ∗(t) and
x∗(t) are solution of the system of differential equations is simple – by
substitution. It can be shown that the solution is unique. The existence of
the optimal control trajectory can be proved mathematically. However, in
applications is this existence confirmed by physical analysis of the prob-
lem. u∗(t) specifies the optimal control and x∗(t) specifies the response of
the controlled system to it. In our case is the optimal control trajectory
given as

u∗(t) =
x0

r′β
sinh γ(tf − t)

In may applications is the final time given as t = ∞. In that case the
optimal state and control trajectories are given as

x∗(t) = x0e−γt

u∗(t) = − x0

r(1 + γ)
e−γt

Fig. 8.1 shows optimal trajectories of u(t) and x(t) for tf = ∞, x0 = 1,
r = 1.

8.2 Feedback Optimal Control

Optimal control of processes presented in Section 8.1 can also be implemented
using the feedback configuration.

The problem of optimal feedback control of a linear time-invariant dynamic
system can be formulated as follows.

Consider a completely controllable system

ẋ(t) = Ax(t) + Bu(t) (8.39)

with initial condition at time t0 = 0

x(0) = x0 (8.40)

and terminal condition x(tf ), tf . We assume that tf is fixed.
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Fig. 8.1. Optimal trajectories of input and state variables of the heat exchanger

The cost function is defined as

I =
1
2
xT (tf )Qtf

x(tf ) +
1
2

tf∫
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (8.41)

where Qtf
and Q are real symmetric positive semidefinite weighting matrices

and R is a real symmetric positive definite weighting matrix.
Our aim is to find a feedback control law of the form

u = function(x) (8.42)

such that I be minimal for any initial condition x0.
Optimal feedback control guarantees the change of the operating point

within t ∈ [0, tf ] from state x0 to a neighbourhood of the origin x = 0.
Hamiltonian is for our case defined as

H =
1
2
(xT Qx + uT Ru) + λT (Ax + Bu) (8.43)

where the adjoint vector λ(t) satisfies the differential equation

λ̇ = −Qx − AT λ (8.44)

with terminal condition
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λ(tf ) = Qtf
x(tf ) (8.45)

If there are no constraints on u(t) then the optimal control condition can
be written as

Ru + BT λ = 0 (8.46)

Optimal control u is then given as

u(t) = −R−1BT λ(t) (8.47)

The matrix R−1 exists as R is square symmetric positive definite matrix.
Optimal control has to minimise the Hamiltonian. The necessary condition

∂H/∂u only specifies an extremum. To assure minimum for u, the second
partial derivative with respect to control ∂2H/∂u2 with dimensions m × m
needs to be positive definite. From (8.46) follows

∂2H

∂u2
= R (8.48)

As R is assumed to be positive definite, the optimal control (8.47) indeed
minimises the Hamiltonian.

Substitute now u(t) from (8.47) to (8.39)

ẋ(t) = Ax(t) − BR−1BT λ(t) (8.49)

Let us denote

S = BR−1BT (8.50)

Matrix S has dimensions n× n. Equations (8.49), (8.44) can now be written
as ⎛

⎝ ẋ(t)
−−
λ̇(t)

⎞
⎠ =

⎛
⎝A | −S

−− −− −−
−Q | −AT

⎞
⎠
⎛
⎝x(t)

−−
λ(t)

⎞
⎠ (8.51)

This represents 2n of linear differential equations with constant coefficients.
Its solution can be found if 2n initial conditions are known. In our case there
are n initial conditions x(0) = x0 and n terminal conditions on the adjoint
vector given by (8.45).

Let Φ(t, t0) be the state transition matrix of the system (8.51) with di-
mensions 2n× 2n and t0 = 0. If λ(0) denotes the unknown initial value of the
adjoint vector, the solution of (8.51) is of the form

(
x(t)
λ(t)

)
= Φ(t, t0)

(
x(t0)
λ(t0)

)
(8.52)

At t = tf it holds
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(
x(tf )
λ(tf )

)
= Φ(tf , t)

(
x(t)
λ(t)

)
(8.53)

Let us divide the matrix Φ(tf , t) to four matrices of dimensions n× n

Φ(tf , t) =

⎛
⎝Φ11(tf , t) | Φ12(tf , t)

−−−−− | − −−−
Φ21(tf , t) | Φ22(tf , t)

⎞
⎠ (8.54)

Equation (8.53) can now be written as

x(tf ) = Φ11(tf , t)x(t) + Φ12(tf , t)λ(t) (8.55)
λ(tf ) = Φ21(tf , t)x(t) + Φ22(tf , t)λ(t) = Qtf

x(tf ) (8.56)

After some manipulations from (8.55) and (8.56) follows

λ(t) = [Φ22(tf , t)−Qtf
Φ12(tf , t)]−1[Qtf

Φ11(tf , t)−Φ21(tf , t)]x(t) (8.57)

provided that the inverse matrix in (8.57) exists. Equation (8.57) says that
the adjoint vector λ(t) and the state vector x(t) are related as

λ(t) = P (t)x(t) (8.58)

where

P (t) = [Φ22(tf , t) − Qtf
Φ12(tf , t)]−1[Qtf

Φ11(tf , t) − Φ21(tf , t)] (8.59)

Equation (8.58) determines the function (8.42) of the optimal feedback
control law minimising the cost function I

u(t) = −R−1BT P (t)x(t) (8.60)

It can be proved that P (t) exists for any time t where t0 ≤ t ≤ tf . However,
to determine P (t) from (8.59) is rather difficult. Another possibility of finding
it is to derive a differential equation with solution P (t). This equation will be
derived as follows.

Suppose that solutions of (8.51) are tied together by equation (8.58) for
t ∈ 〈t0, tf 〉.

Differentiating (8.58) with respect to time yields

λ̇(t) = Ṗ (t)x(t) + P (t)ẋ(t) (8.61)

Substituting u(t) from (8.47) and λ(t) from (8.58) into (8.39) gives

ẋ(t) = Ax(t) − BR−1BT P (t)x(t) (8.62)

Equations (8.61), (8.62) give

λ̇(t) = [Ṗ (t) + P (t)A − P (t)BR−1BT P (t)]x(t) (8.63)



8.2 Feedback Optimal Control 309

From (8.44) and (8.58) yields

λ̇(t) = [−Q − AT P (t)]x(t) (8.64)

Equating the right-hand sides of (8.63) and (8.64) gives the relation

[Ṗ (t)+P (t)A−P (t)BR−1BT P (t)+AT P (t)+Q]x(t) = 0, t ∈ 〈t0, tf 〉
(8.65)

As the vector x(t) is a solution of the homogeneous equation (8.62), matrix
P (t) obeys the following differential equation

dP (t)
dt

+ P (t)A + AT P (t) − P (t)BR−1BT P (t) = −Q (8.66)

Comparing the expression

λ(tf ) = P (tf )x(tf ) (8.67)

and expression (8.45) yields a terminal condition needed to solve equa-
tion (8.66) of the form

P (tf ) = Qtf
(8.68)

Equation (8.66) is a Riccati matrix differential equation. Its solution exists
and is unique. It can be shown that the matrix P (t) is positive definite and
symmetric

P (t) = P T (t) (8.69)

Further, optimal control for the system (8.39) exists and is unique for the cost
function (8.41). It is given by the equation

u(t) = −K(t)x(t) (8.70)

where

K(t) = R−1BT P (t) (8.71)

It is important to realise that the matrix P (t) can be calculated before-
hand.

Controllability of the system (8.39) is not the necessary condition for the
fact that the optimal control is given by the control law (8.70). This is because
the influence of uncontrollable elements in the cost function I is always finite
if the time interval of optimisation is finite. If, on the other hand, the final
time tf goes to infinity, controllability is required to guarantee the finite value
of I.

Example 8.2: Optimal feedback control of a heat exchanger www
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Consider the heat exchanger from Example 8.1 and the problem of its
optimal feedback control. The system state-space matrices are A = −1,
B = 1 and the cost function is defined by Qtf

= 0, Q = 2, R = 2r′ = r.
Optimal feedback control is given as

u(t) = −1
r
P (t)x(t)

where P (t) is the solution of the differential equation of the form

dP (t)
dt

− 2P (t) − P 2(t)
r

= −2

with terminal condition

P (tf ) = 0

Fig. 8.2 shows trajectories of P for various values of r if tf = 1.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

P

r = 0.01
r = 0.02
r = 0.10

Fig. 8.2. Trajectories of P (t) for various values of r

Example 8.2 shows a very important fact. If the matrix Riccati equation
starts at time tf = ∞ then its solutions given by elements of matrix P (t)
will be constant. Such a matrix P containing steady-state solution of the
differential matrix Riccati equation can be used in optimal control for all
finite times with initial time equal to t = 0.
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Therefore, optimal control design can be simplified considerably in the case
of infinite final time as it is shown below.

Consider the system (8.39) with the initial condition (8.40) and the cost
function

I =
1
2

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (8.72)

where Q is a real symmetric positive semidefinite weighting matrix and R is
a real symmetric positive definite weighting matrix.

Solution of the optimisation problem, i. e. minimisation of I for any x0

satisfies the feedback control law

u(t) = −Kx(t) (8.73)

where

K = R−1BT P (8.74)

and where P is a symmetric positive semidefinite solution of the matrix Riccati
equation

PA + AT P − PBR−1BT P = −Q (8.75)

x = Ax + Bu

-K

.

x0

xu

Fig. 8.3. Optimal feedback control

Equation (8.73) is easily implementable. It is a feedback control law. As
K is a constant matrix, the controller implements proportional action. This
controller is called Linear Quadratic Regulator (LQR). This says that the
controlled system is linear, the cost function is quadratic and the controller
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regulates the system in the neighbourhood of the setpoint xw = 0. Block
scheme of feedback LQR control is shown in Fig. 8.3.

Example 8.3: Optimal feedback control of two heat exchangers in series www
Consider two heat exchangers (Fig. 8.4) where a liquid is heated.

1ϑ

0ϑ

ω
1 ω2

1ϑ

2ϑV2
V1

2ϑq
q

Fig. 8.4. Two heat exchangers in series

Assume that heat flows from heat sources into liquid are independent
from liquid temperature. Further assume an ideal liquid mixing and zero
heat losses. We neglect accumulation ability of exchangers walls. Hold-
ups of exchangers, as well as flow rates and liquid specific heat capacity
are constant. Under these assumptions the mathematical model of the
exchangers is given as

V1

q

dϑ1

dt′
+ ϑ1 = ϑ0 +

ω1

qρcp
V2

q

dϑ2

dt′
+ ϑ2 = ϑ1 +

ω2

qρcp
where ϑ1 is temperature in the first exchanger, ϑ2 – temperature in the
second exchanger, t′ – time, ϑ0 – liquid temperature in the first tank inlet
stream, ω1, ω2 – heat input, q – volumetric flowrate of liquid, ρ – liquid
density, V1, V2 – liquid volume, cp – specific heat capacity.
Denote

ϑu1 =
ω1

qρcp
, ϑu2 =

ω2

qρcp
, T1 =

V1

q
, T2 =

V2

q

ϑu1, ϑu2 are in temperature units and T1, T2 are time constants. The
process inputs are temperatures ϑ0, ϑu1, and ϑu2. The state variables are
ϑ1 and ϑ2. Temperature ϑu1 will be assumed as the manipulated variable.
Assume that the manipulated input is constant for a sufficiently long
time and equal to ϑu10. If the inlet temperature to the first exchanger
is constant ϑ0 = ϑ00 and the heat input to the second exchanger will
be constant as well (ϑu2 = ϑu20) then the heat exchangers will be in a
steady-state described by equations

ϑ10 = ϑ00 + ϑu10, ϑ20 = ϑ10 + ϑu20
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Let us now assume a new steady-state characterised by the manipulated
variable ϑu11 defined by equations

ϑ11 = ϑ00 + ϑu11, ϑ21 = ϑ11 + ϑu20

The problem of optimal control is now to find a way to shift the system in
the original steady-state with the manipulated variable ϑu10 to the new
steady-state with ϑu11 in such a way that some cost function be minimal.
At first we define new state variables as dimensionless deviation variables
from the final steady-state

x1(t′) =
ϑ1(t′) − ϑ11

ϑu11 − ϑ00

x2 (t′) =
ϑ2(t′) − ϑ21

ϑu20 − ϑ11
A new manipulated variable is defined as

u1(t′) =
ϑu1(t′) − ϑu11

ϑu11 − ϑ00

Further, a dimensionless time variable is given as

t =
q

V1
t′

This gives for the heat exchanger model
dx1(t)

dt
+ x1(t) = u1(t)

k1
dx2(t)

dt
+ x2(t) = k2x1(t)

where k1 = V2/V1 a k2 = (ϑu11 − ϑ00)/(ϑu20 − ϑ11).
Transformed initial conditions are given as

x1(0) = x10 =
ϑ10 − ϑ11

ϑu11 − ϑ00

x2(0) = x20 =
ϑ20 − ϑ21

ϑu20 − ϑ11
Let us now design an optimal feedback controller that minimises the cost
function

I =
1
2

∫ ∞

0

[
xT (t)Qx(t) + ru1(t)

]
dt

where x = (x1 x2)T

Q =
(
q11 0
0 q22

)
, R = r

The controlled system is defined as
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A =

⎛
⎝−1 0
k2

k1
− 1
k1

⎞
⎠ , B =

(
1
0

)

Optimal feedback is thus given as

u1(t) = −1
r
BT Px(t)

and P is solution of the equation

PA + AT P − PBR−1BT P = −Q

where

P =
(
p11 p12

p12 p22

)

Fig. 8.6 shows optimal trajectories x1, x2, and u1 of the heat exchangers
(Fig. 8.4) for k1 = 1, k2 = −1/5, q11 = q22 = 1, and r = 1.
Matrix

K = (k11 k12) =
1
r

(p11 p12)

was calculated using MATLAB (program 8.1) and trajectories x1, x2, and
u1 in Fig. 8.6 were obtained from SIMULINK program shown in Fig. 8.5
with initial conditions x10 = 1, x20 = −1/3.

Program 8.1 (Program to calculate LQ gains for Example 8.3)
% LQR feedback for the heat exchanger
% program: lqvym2rm.m

x0 = [1;-1/3];

A = [-1 0; -0.2 -1];
B = [1; 0];
C=eye(2);
D=zeros(2,1);

Q=eye(2);
R=1;

[K,S,E]=LQR(A,B,Q,R);

Consider now the system shown in Fig. 8.3. It is described by

ẋ(t) = Ax(t) − BKx(t) (8.76)
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x
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u

u

lqvym2rm

lqvym2rm

x’ = Ax+Bu
 y = Cx+Du

System Scope x
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K

Matrix
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−1 Gain

Fig. 8.5. Simulink program to simulate feedback optimal control in Example 8.3
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Fig. 8.6. LQ optimal trajectories x1, x2, u1 of heat exchangers
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with initial condition at time t0 = 0

x(0) = x0 (8.77)

where K = R−1BT P and P is the solution of (8.75).
Equation (8.76) can also be written as

ẋ(t) = (A − BK) x(t), x(0) = x0 (8.78)

The transition matrix of the closed-loop system is given as

Ā = A − BK (8.79)

The system (8.78) is solution of the optimisation problem based on min-
imisation of the cost function (8.72). This cost function can be written as

I =
1
2

∫ ∞

0

(
xT (t)Qx(t) + xT (t)KT RKx(t)

)
dt (8.80)

or

I =
1
2

∫ ∞

0

xT (t)
(
Q + KT RK

)
x(t)dt (8.81)

and can also be formulated as follows

I =
1
2

∫ ∞

0

xT
0 eĀT tQ̄eĀtx0dt (8.82)

or

I =
1
2
xT

0 Px0 (8.83)

where

Q̄ = Q + KT RK (8.84)

and

P =
∫ ∞

0

eĀT tQ̄eĀtdt (8.85)

Matrix P can be integrated by parts yielding

P = eĀT tQ̄Ā−1eĀt
∣∣∣∞
0

−
∫ ∞

0

ĀT eĀT tQ̄Ā−1eĀT tdt (8.86)

If matrix Ā is stable then

P = −Q̄Ā−1 − ĀT

∫ ∞

0

eĀT tQ̄eĀtdtĀ−1 (8.87)
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and after some manipulations

ĀT P + PĀ = −Q̄ (8.88)

This is the Lyapunov equation. It is known that for an arbitrary symmetric
positive definite matrix Q̄ there a is symmetric positive definite matrix P that
is solution of this equation if matrix Ā is asymptotically stable.

When Ā is back-substituted into (8.88) from (8.79) and Q̄ from (8.84),
then we obtain

(A − BK)T
P + P (A − BK) = −Q −

(
R−1BT P

)T
R
(
R−1BT P

)
(8.89)

This equation can be easily rewritten to the form (8.75).
It is important to observe that the optimal feedback control shown in

Fig. 8.3 places optimally poles of the closed-loop system.
Pole Placement (PP) represents such feedback control design where the

matrix K in (8.79) is chosen so that the matrix Ā is asymptotically stable.
LQR control is in this aspect only a special case of the PP control design.

Consider now a system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (8.90)
y(t) = Cx(t) (8.91)

and cost function

I =
1
2

∫ ∞

0

(
yT (t)Qyy(t) + uT (t)Ru(t)

)
dt (8.92)

Substituting equation (8.91) into (8.92) yields

I =
1
2

∫ ∞

0

(
xT (t)CT QyCx(t) + uT (t)Ru(t)

)
dt (8.93)

Denote as

Q = CT QyC (8.94)

then the cost function (8.93) is of the same form as (8.72) and the output
regulation problem has been transformed into the classical LQR problem. So-
lution of the optimal problem, i. e. minimisation of I from (8.93) for arbitrary
x0 guarantees the state feedback given by equation (8.73). The block diagram
of output LQR is shown in Fig. 8.7.

8.3 Optimal Tracking, Servo Problem, and Disturbance
Rejection

Previous section was devoted to the problem when a system was to be steered
from some initial state to a new state in some optimal way. In fact, this is
only a special case of a general problem of optimal setpoint tracking.
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x = Ax + Bu

-K

.
y = Cx

x yu

Fig. 8.7. Optimal LQ output regulation

The tracking problem of some desired trajectories can be divided into two
subproblems. If desired trajectories are prescribed functions of time then we
speak about the tracking problem. If the process outputs should follow some
class of desired trajectories then we speak about the servo problem.

LQ design leads to a proportional feedback control. However, such design
results in the steady-state control error if setpoint changes or disturbances
occur. If the zero steady-state control error is desired, it is necessary to modify
the controller with integral action.

8.3.1 Tracking Problem

Consider a controllable and observable linear system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (8.95)
y(t) = Cx(t) (8.96)

Let w(t) be a vector of setpoint variables of dimensions r. Our aim is to
control the system in such a way that the control error vector

e(t) = w(t) − y(t) (8.97)

should be “close” to zero with a minimum control effort.
The cost function that is to be minimised is of the form

I =
1
2
eT (tf )Qytf

e(tf ) +
1
2

∫ tf

0

(
eT (t)Qye(t) + uT (t)Ru(t)

)
dt (8.98)

Assume that tf is fixed, Qytf
and Qy are real symmetric positive semidefinite

matrices, R is a real symmetric positive definite matrix.
Hamiltonian is of the form

H =
1
2

(w − Cx)T
Qy (w − Cx) +

1
2
uT Ru + λT (Ax + Bu) (8.99)
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Optimality condition

∂H

∂u
= 0

gives

u(t) = −R−1BT λ(t) (8.100)

Adjoint vector λ(t) is the solution of the differential equation

λ̇ = −∂H
∂x

or

dλ(t)
dt

= CT Qy (w(t) − Cx(t)) − AT λ(t) (8.101)

Similarly, as (8.58) was derived, we can write

λ(t) = P (t)x(t) − γ(t) (8.102)

Derivative of (8.102) with respect to time gives

dλ(t)
dt

=
dP (t)

dt
x(t) + P (t)

dx(t)
dt

− dγ(t)
dt

(8.103)

From (8.95) and (8.100) follows

ẋ(t) = Ax(t) − BR−1BT λ(t) (8.104)

Substituting for λ(t) from (8.102) gives

ẋ(t) = Ax(t) − BR−1BT P (t)x(t) + BR−1BT γ(t) (8.105)

Differential equation (8.103) can now be written as

λ̇(t) =
[
Ṗ (t) + P (t)A − P (t)BR−1BT P (t)

]
x(t)+PBR−1BT γ(t)−γ̇(t)

(8.106)

This can be simplified using (8.101) and (8.102) as

λ̇(t) =
[
−CT QyC − AT P (t)

]
x(t) + AT γ(t) + CT Qyw(t) (8.107)

As the optimal solution exists, equations (8.106) and (8.107) hold for any x(t)
and w(t). From this follows that matrix P (t) with dimensions n × n has to
satisfy the equation

Ṗ (t) = −P (t)A − AT P (t) + P (t)BR−1BT P (t) − CT QyC (8.108)
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Further, for vector γ(t) with dimension n holds

γ̇(t) =
[
P (t)BR−1BT − AT

]
γ(t) − CT Qyw(t) (8.109)

Final conditions for the adjoint variables are specified by (8.102)

λ(tf ) = P (tf )x(tf ) − γ(tf ) (8.110)

and the principle of minimum gives

λ(tf ) =
∂

∂x(tf )

[
1
2
eT (tf )Qytf

e(tf )
]

(8.111)

= CT Qytf
Cx(tf ) − CT Qytf

w(tf ) (8.112)

Equations (8.110) and (8.112) hold for any x(tf ) and w(tf ). Thus

P (tf ) = CT Qytf
C (8.113)

γ(tf ) = CT Qytf
w(tf ) (8.114)

The optimal state trajectory is defined by solution of linear differential equa-
tion (8.105).

The control law can be written as

u(t) = R−1BT [γ(t) − P (t)x(t)] (8.115)

Symmetric positive definite matrix P (t) with dimension n× n is solution
of (8.108) with terminal condition (8.113). Vector γ(t) with dimension n is
solution of (8.109) with terminal condition (8.114).

To calculate γ(t), vector w(t) is needed in the entire interval [0, tf ]. This
is a rather impractical condition. However, if w(t) = 0 and tf → ∞ optimal
control law is described by (8.73) where matrix P is given by (8.75) where
Q = CT QC.

8.3.2 Servo Problem

Consider now an optimal feedback control where the desired vector of output
variables is generated as

ẋw(t) = Awxw(t), xw(0) = xw0 (8.116)
w(t) = Cwxw(t) (8.117)

We want to ensure that y(t) is “close” to w(t) with minimal control effort.
This problem can mathematically be formulated as minimisation of the cost
function

I =
∫ ∞

0

(
(y(t) − w(t))T

Qy (y(t) − w(t)) + uT (t)Ru(t)
)

dt (8.118)

Substituting y(t) from (8.96) and w(t) from (8.117) into the cost gives
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I =
∫ ∞

0

(
(Cx(t) − Cwxw(t))T

Qy (Cx(t) − Cwxw(t)) + uT (t)Ru(t)
)
dt

(8.119)

or, after some manipulations

I =
∫ ∞

0

((
xT (t) xT

w(t)
)( CT QyC −CT QyCw

−CT
wQyC CT

wQyCw

)(
x(t)
xw(t)

)

+ uT (t)Ru(t)
)

dt (8.120)

To solve the optimal control problem, an expanded controlled system is
assumed(

ẋ(t)
ẋw(t)

)
=
(

A 0
0 Aw

)(
x(t)
xw(t)

)
+
(

B
0

)
u(t) (8.121)

From previous derivations follows that the solution of this problem leads
to the Riccati equation of the form

(
A 0
0 Aw

)
P + P

(
A 0
0 Aw

)
− P

(
B
0

)
R−1

(
B
0

)T

P

= −
(

CT QyC −CT QyCw

−CT
wQyC CwQyCw

)
(8.122)

If matrix P is decomposed into

P =
(

P 11 P 12

P 21 P 22

)
(8.123)

then the optimal control law is given as

u(t) = −R−1BT [P 11x(t) + P 12xw(t)]

8.3.3 LQ Control with Integral Action

LQ control results in proportional feedback controller. This leads to the
steady-state control error in case of setpoint changes or disturbances. There
are two possible ways to add integral action to the closed-loop system and to
remove the steady-state error.

In the first case the LQ cost function is modified and vector u(t) is replaced
by its time derivative u̇(t).

Another possibility is to add new states acting as integrators to the closed-
loop system. The number of integrators is equal to the dimension of the control
error.
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8.4 Dynamic Programming

8.4.1 Continuous-Time Systems

Bellman with his coworkers developed around 1950 a new approach to system
optimisation – dynamic programming. This method is often used in analysis
and design of automatic control systems.

Consider the vector differential equation

dx(t)
dt

= f(x(t),u(t), t) (8.124)

where f and x are of dimension n, vector u is of dimension m. The control
vector u is within a region

u ∈ U (8.125)

where U is a closed part of the Euclidean space Em.
The cost function is given as

I =
∫ tf

t0

F (x(t),u(t), t)dt (8.126)

The terminal time tf > t0 can be free of fixed. We will consider the case with
fixed time.

Let us define a new state variable

xn+1(t) =
∫ t

t0

F (x(τ),u(τ), τ) dτ (8.127)

The problem of minimisation of I is equivalent to minimisation of the state
xn+1(tf ) of the system described by equations

dx̃(t)
dt

= f̃ (x̃(t),u(t), t) (8.128)

where

x̃T =
(
xT , xn+1

)
f̃T =

(
fT , F

)
and with initial conditions

x̃T (t0) =
(
xT (t0), 0

)
(8.129)

This includes the time optimal control with F = 1.
If a direct presence of time t in (8.124) is undesired, it is possible to intro-

duce a new state variable x0(t) = t and a new differential equation
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dx0(t)
dt

= 1 (8.130)

with initial condition x0(t0) = 0. The new system of differential equations is
then defined as

dx(t)
dt

= f (x(t),u(t)) (8.131)
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Fig. 8.8. Optimal trajectory in n-dimensional state space

Dynamic programming is based on the principle of optimality first for-
mulated by Bellman. Let us consider the optimal trajectory in n-dimensional
state space (Fig. 8.8). Position of moving point in time t = t′(t0 < t′ < tf )
will be denoted by x(t′). This point divides the trajectory into two parts.

The principle of optimality states that any part of the optimal trajectory
from point x(t′) to point x(tf ) is optimal. From this follows that for the initial
point x(t′) the second part of the trajectory between points x(t′) and x(tf )
is optimal and does not depend on the system history, i. e. the way how the
point x(t′) was reached. Suppose now that this does not hold, i. e. we find a
trajectory (shown in Fig. 8.8 by dashed line), where the cost function value
is smaller. The overall cost function value is given as the sum of values in the
both trajectory parts. This means that it is possible to find a better trajectory
than the original. To do so, it is necessary to find a control vector trajectory
in such a way that the first part of the state trajectory remains the same and
the second coincides with the dashed line. This is in contradiction with the
assumption that the original trajectory is optimal. Therefore, it is not possible
to improve the second part of the trajectory and it is optimal as well.
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The principle of optimality makes it possible to obtain general conditions
of optimisation that are valid for both continuous-time and discrete-time sys-
tems. Although its formulation is very simple, we can derive the necessary
optimisation conditions.

The principle of optimality can alternatively be formulated as follows:
optimal trajectory does not depend on previous trajectory and is determined
only by the initial condition and the terminal state.

Based on the principle of optimality, determination of the optimal trajec-
tory is started at the terminal state x(tf ). We stress again that the trajectory
that ends in the optimal terminal state is optimal. In other words, optimality
of one part depends on the optimality of the entire trajectory.

We can check optimality of the last part of the trajectory and after that
the optimality of preceding parts. Optimality of partial trajectories depends
on the optimality of the entire trajectory. The opposite statement does not
hold, i. e. the optimality of the overall trajectory does not follow from the
optimality of partial trajectories.
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Fig. 8.9. Optimal trajectory

Consider a vector differential equation of a non-linear controlled object of
the form

dx(t)
dt

= f (x(t),u(t), t) (8.132)

The cost function to be minimised is given as

I =
∫ tf

t0

F (x(t),u(t), t) dt (8.133)
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Suppose that x∗(t) is the optimal trajectory with the initial state x(t0) and
terminal state x(tf ) (Fig. 8.9). Denote by I∗(x∗(t0), t0) minimum of the cost
function I. It follows from the principle of optimality that the part of the
trajectory with the initial state x∗(t), terminal state x(tf ) and that satisfies
equation (8.132) is optimal as well.

From this follows that

I∗ (x∗(t), t) = min
u∈U

∫ tf

t

F (x∗(τ),u(τ), τ) dτ (8.134)

This is Bellman’s functional equation. For a sufficiently small interval Δt and
time t′ = t + Δt, the minimum value of the cost function on the interval
x∗(t′) = x∗(t+ Δt), x(tf ) is given as

I∗ (x∗(t′), t′) = min
u∈U

∫ tf

t′
F (x∗(τ),u(τ), τ) dτ (8.135)

The arguments x∗(t′), t′ of the left hand side of equation (8.135) denote initial
state of the given trajectory. Comparing integrals (8.134) and (8.135) gives

I∗ (x∗(t), t) = min
u∈U

{∫ tf

t′
F (x∗(τ),u(τ), τ) dτ + F (x∗(t),u(t), t) Δt

}

+ o1 (Δt) (8.136)
= min

u∈U
{I∗ (x∗(t′), t′) + F (x∗(t),u(t), t) Δt} + o1 (Δt)

(8.137)

where o1(Δt) is a remainder satisfying

lim
Δt→0

o1 (Δt)
Δt

= 0 (8.138)

The remainder is nonzero because the interval Δt has a finite value in the
right hand parts of equations (8.136), (8.137).

The Taylor expansion gives

x(t′) = x (t+ Δt) = x(t) + ẋ(t)Δt+ o2 (Δt) (8.139)

where o2(Δt) is a remainder. Taking (8.132) into account gives

x(t′) = x(t) + f (x(t),u(t), t) Δt+ o2 (Δt) (8.140)

Substituting x(t′) from (8.140) into I∗(x(t′), t′) and applying the Taylor ex-
pansion (assuming that partial derivatives ∂I∗/∂xi, (i = 1, 2, . . . , n), ∂I∗/∂t
exist) gives
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I∗ (x(t′), t′) = I∗ (x (t+ Δt) , t+ Δt) (8.141)
= I∗ {x(t) + f (x(t),u(t), t) Δt+ o2 (Δt) , t+ Δt} (8.142)

= I∗ (x(t), t) +
n∑

i=1

∂I∗ (x(t), t)
∂xi

fi (x(t),u(t), t) Δt

+
∂I∗ (x(t), t)

∂t
Δt+ o3 (Δt) (8.143)

where o3(Δt) is a remainder. Denote as

∂I∗

∂x
=
(
∂I∗

∂x1
,
∂I∗

∂x2
, · · · , ∂I

∗

∂xn

)T

(8.144)

then equation (8.143) can be rewritten as

I∗ (x(t′), t′) = I∗(x(t), t)

+
∂I∗ (x(t), t)

∂xT
f (x(t),u(t), t) Δt+

∂I∗ (x(t), t)
∂t

Δt+ o3 (Δt) (8.145)

This expression is substituted into the right hand side of equation (8.137) as-
suming that x(t) = x∗(t). As expressions I∗(x(t), t), ∂I∗/∂t do not depend on
u(t) they can be taken out before the operator min. Simplifying the expression
and dividing the equation by Δt yields

− ∂I∗ (x∗(t), t)
∂t

=

min
u∈U

{
∂I∗ (x∗(t), t)

∂x∗T
f (x∗(t),u(t), t) + F (x∗(t),u(t), t)

}
+
o4 (Δt)

Δt
(8.146)

where o4(Δt) is a remainder. If Δt → 0, the last term on the right hand of
the equation vanishes. This gives the Hamilton-Jacobi equation (or Hamilton-
Jacobi-Bellman (HJB) equation)

− ∂I∗ (x∗(t), t)
∂t

=

min
u∈U

{
∂I∗ (x∗(t), t)

∂x∗T
f (x∗(t), u(t), t) + F (x∗(t), u(t), t)

}
(8.147)

This is the basic equation of dynamic programming for continuous-time
systems. The first part is independent on control u(t) after minimisation. The
equation holds only for optimal control u∗(t). HJB equation is often used in
the form

−∂I
∗ (x∗(t), t)
∂t

=
∂I∗ (x∗(t), t)

∂x∗T
f (x∗(t),u∗(t), t) + F (x∗(t),u∗(t), t)

(8.148)
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As (∂I∗/∂t+(∂I∗/∂xT )f) is equal to dI∗/dt, the equation can also be written
as

dI∗ (x∗(t), t)
dt

+ F (x∗(t),u∗(t), t) = 0 (8.149)

Similarly, the basic HJB equation (8.147) can be written as

min
u∈U

{
dI∗ (x∗(t), t)

dt
+ F (x∗(t),u∗(t), t)

}
= 0 (8.150)

The Hamilton-Jacobi-Bellman equation (8.147) or (8.150) specifies necessary
optimality conditions. Under some assumptions can sufficent conditions be
formulated similarly.

We will now show that optimal control described by the equation (8.70) is
unique.

The proof is based on the fact that the solution of the Riccati equation
P (t) with terminal condition P (t) = Qtf

is unique.
If the optimal control exists then it is unique and determined by equa-

tion (8.70).
If the matrix P (t) is unique then the optimal control is the unambiguos

function of the state. Suppose that there are two optimal control trajectories
u1(t), u2(t) and two optimal state trajectories x1(t), x2(t) with x1(t0) =
x2(t0). Vectors x1(t), x2(t) are two different solutions of the equation

dx(t)
dt

=
(
A − BR−1BT P (t)

)
x(t) (8.151)

and x1(t0) = x2(t0). As the matrix P (t) is unique, the same holds for matrix
(A − BR−1BT P ). Equation (8.151) is linear and homogenous, therefore its
solution is unique. It follows that x1(t) = x2(t), u1(t) = u2(t) in any time
t ∈ 〈t0, tf 〉.

The next theorem can be used in proof of existence of optimal control and
calculation of value of I∗(x∗(t), t).

Theorem 8.1. Consider a linear system (8.39) and the cost function given
by (8.41). Denote

I∗ (x(t), t) =
1
2
xT (t)P (t)x(t) (8.152)

where P (t) is a symmetric matrix of dimensions n × n that is a solution
of the Riccati equation (8.66) with terminal condition (8.68). If for optimal
control holds u(t) = 0 for all states then P (t) is positive definite in any time
t, t0 ≤ t ≤ tf and P (tf ) = Qtf

is positive semidefinite. As the equation

I∗ =
1
2
xT (t)P (t)x(t)
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is determined for all x(t) and t, optimal control exists and the minimum value
of the cost function is equal to I∗.

Proof. We show that I∗ is the solution of the HJB equation and the corre-
sponding boundary conditions.

At time t = tf can equation (8.152) be written as

I∗ (x∗(tf ), tf ) =
1
2
xT (tf )Qtf

x(tf ) (8.153)

and thus it defines the terminal state.
The HJB equation for the system (8.39) and for the cost function (8.41)

is of the form

0 =
∂

∂t
I∗ (x(t), t)

+min
u(t)

{
1
2
xT (t)Qx(t) +

1
2
uT (t)Ru(t) +

∂I∗ (x(t), t)
∂xT (t)

(Ax(t) + Bu(t))
}

(8.154)

The term in brackets is minimised for

u(t) = −R−1BT ∂I
∗ (x(t), t)
∂x(t)

(8.155)

Substituting equation (8.155) into (8.154) yields

∂I∗

∂t
+

1
2
xT (t)Qx(t) +

1
2

(
R−1BT ∂I∗

∂x(t)

)T

BT ∂I∗

∂x(t)

+ (Ax(t))T ∂I∗

∂x(t)
−
(

BR−1BT ∂I∗

∂x(t)

)T
∂I∗

∂x(t)
= 0 (8.156)

The following relations hold

∂I∗

∂t
=

1
2
xT (t)

dP (t)
dt

x(t) (8.157)

∂I∗

∂x(t)
= P (t)x(t) (8.158)

Substituting (8.157) and (8.158) into (8.156) gives

1
2
xT (t)

dP (t)
dt

x(t) +
1
2
xT (t)Qx(t) + (Ax(t))T P (t)x(t)

− 1
2
(
BR−1BT P (t)x(t)

)T
P (t)x(t) = 0 (8.159)

As the matrix P (t) is symmetric, the following holds
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(Ax(t))T
P (t)x(t) =

1
2

(Ax(t))T
P (t)x(t) +

1
2

(Ax(t))T
P (t)x(t) (8.160)

or

(Ax(t))T
P (t)x(t) =

1
2
xT (t)AT P (t)x(t) +

1
2
xT (t)P (t)Ax(t) (8.161)

Equation (8.161) can be substituted into (8.159). This gives after some alge-
braic manipulations

1
2

{
xT (t)

(
dP (t)

dt
+ P (t)A + AT P (t)

− P (t)BR−1BT P (t) + Q(t)
)

x(t)
}

= 0 (8.162)

If P (t) is a solution of the Riccati equation (8.66) then the matrix in brackets
is zero and equation (8.162) holds. The opposite statement is also true.

Positive definitness of P can be also shown. Suppose that P (t) is not
positive definite for t = t′ < tf . In this case x(t′) can exist such that
1
2

(
xT (t′)P (t′)x(t′)

)
≤ 0. This contradicts the fact that I(u) is positive for

u = 0. Therefore, P (t) is positive definite for any t, t0 ≤ t ≤ tf . 	


For the optimal system holds

F +
dI∗

dt
= 0 (8.163)

Hence

dI∗

dt
= −F (8.164)

Let the function I∗ be the Lyapunov function. As −F is negative definite then
positive definite I∗ implies asymptotic stability of the optimal system.

8.4.2 Dynamic Programming for Discrete-Time Systems

Let us consider optimal control of discrete-time systems described by the
state-space representation

x(k + 1) = f [x(k),u(k)] (8.165)

where x(k) is the state vector of dimension n, u(k) – vector of input variables
of dimension m, and f – vector of functions of dimension n.

As it was shown for the case of continuous-time systems, dynamic pro-
gramming is based on the principle of optimality. We will present the basic
facts.

The cost function is of the form
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IN = G1 [x(N)] +
N−1∑
k=0

F [x(k),u(k)] (8.166)

The variable N in the cost function (8.166) shows that the system is to be
optimised at N intervals (Fig. 8.10). The variable k will denote time in the
sequel.

0 1 2 

TIME

BEGINNING

N-j N-j+1

PLACE END

NN-1

Fig. 8.10. Time scale with time intervals

Denote by I∗N minimum of the cost function IN , thus

I∗N [x(0)] = min
u(k)

k=0,...,N−1

{
G1 [x(N)] +

N−1∑
k=0

F [x(k),u(k)]

}
(8.167)

Further let us define

INj
[u,x(N − j)] = G1 [x(N)] +

N−1∑
k=N−j

F [x(k),u(k)] , j = 1, 2, . . . , N

(8.168)

I∗Nj
[x(N − j)] = min

u(k)
k=N−j,...,N−1

⎧⎨
⎩G1 [x(N)] +

N−1∑
k=N−j

F [x(k),u(k)]

⎫⎬
⎭
(8.169)

From the principle of optimality follows that for j = 1 holds

I∗N1
[x(N − 1)] = min

u(N−1)
G1 [x(N)] + F [x(N − 1),u(N − 1)] (8.170)

From equation

x(N) = f [x(N − 1),u(N − 1)] (8.171)

follows that I∗N1
depends only on x(N − 1).

If j = 2

I∗N2
[x(N − 2)] = min

u(N−2)

{
F [x(N − 2),u(N − 2)] + I∗N1

[x(N − 1)]
}
(8.172)
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From

x(N − 1) = f [x(N − 2),u(N − 2)] (8.173)

is evident that I∗N2
depends only on x(N − 2). Continuing with the same line

of reasoning, we can write

I∗Nj
[x(N − j)] =

min
u(N−j)

{
F [x(N − j),u(N − j)] + I∗N(j−1) [x(N − j + 1)]

}
(8.174)

From equation

x(N − j + 1) = f [x(N − j),u(N − j)] (8.175)

follows that I∗Nj
depends only on x(N − j).

Equations (8.170), (8.172)–(8.174), . . .make it possible to calculate recur-
sively the optimal control input u(N − 1),u(N − 2), . . . ,u(N − j), . . .

We give the discrete equivalent of the principle of minimum without details
at this place. It can be derived analogically as its continuous-time counterpart.

Consider the system (8.165) with the initial state x(0) and the cost func-
tion (8.166). The Hamiltonian of the system is defined as

H(k) = F [x(k),u(k)] + λT (k + 1)f [x(k),u(k)] (8.176)

For λ(k) holds

λ(k) =
∂H(k)
∂x(k)

, k = 0, 1, . . . , N − 1 (8.177)

λ(N) =
∂G1

∂x(N)
(8.178)

The necessary condition for the existence of minimum (8.166) is

∂H(k)
∂u(k)

= 0, k = 0, 1, . . . , N − 1 (8.179)

8.4.3 Optimal Feedback

Consider the system described by the equation

x(k) = Ax(k) + Bu(k) (8.180)

with initial condition x(0). We would like to find u(0),u(1), . . . ,u(N − 1)
such that the cost function
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IN [u,x(0)] = xT (N)QNx(N) +
N−1∑
k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]

(8.181)

is minimised. Suppose that the constant matrices QN ,Q,R are symmetric
and positive definite.

Equation (8.170) is in our case given as

I∗N1
[x(N − 1)] = min

u(N−1)

{
xT (N)QNx(N)

+
[
xT (N − 1)Qx(N − 1) + uT (N − 1)Ru(N − 1)

]}
(8.182)

We substitute for x(N) from equation

x(N) = Ax(N − 1) + Bu(N − 1) (8.183)

into (8.182) and get

I∗N1
[x(N − 1)] =

min
u(N−1)

{
[Ax(N − 1) + Bu(N − 1)]T QN [Ax(N − 1) + Bu(N − 1)]

+
[
xT (N − 1)Qx(N − 1) + uT (N − 1)Ru(N − 1)

]}
(8.184)

Optimal control u(N − 1) can be derived if the right hand of equa-
tion (8.184) is differentiated with respect to u(N − 1), equated to zero to
yield

2BT QNAx(N − 1) + 2BT QNBu(N − 1) + 2Ru(N − 1) = 0 (8.185)

BT QNAx(N − 1) +
(
BT QNB + R

)
u (N − 1) = 0 (8.186)

Optimal control is then given as

u(N − 1) = −
(
BT QNB + R

)−1
BT QNAx(N − 1) (8.187)

Second partial derivative of equation (8.186) with respect to u(N−1) gives

BT QNB + R > 0 (8.188)

This confirms that minimum is attained for u(N − 1).
For u(N − 1) holds

u(N − 1) = −K(N − 1)x(N − 1) (8.189)

where
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K(N − 1) =
(
BT QNB + R

)−1
BT QNA (8.190)

Denote by

QN = P (N) (8.191)

Then

K(N − 1) =
[
BT P (N)B + R

]−1
BT P (N)A (8.192)

Substituting (8.189) into (8.184) gives

I∗N1
[x(N − 1)] = xT (N − 1) P (N − 1) x (N − 1) (8.193)

where

P (N−1) = AT P (N)A−AT P (N)B
[
BT P (N)B + R

]−1
BT P (N)A+Q

(8.194)

The following holds

I∗N2
[x(N − 2)] = min

u(N−2)

{
xT (N − 2)Qx(N − 2)

+ uT (N − 2)Ru(N − 2) + I∗N1
[x(N − 1)]

}
(8.195)

We substitute for I∗N1
[x(N − 1)] from (8.193) into (8.195) and then subtitute

for x(N − 1) from the equation

x(N − 1) = Ax(N − 2) + Bu(N − 2) (8.196)

This gives

I∗N2
[x(N − 2)] = min

u(N−2)

{[
Ax(N − 2) + Bu(N − 2)

]T

× P (N − 1) [Ax(N − 2) + Bu(N − 2)]

+ xT (N − 2) Qx (N − 2) + uT (N − 2) Ru (N − 2)
}

(8.197)

Optimal control u(N −2) can be derived if the right hand of equation (8.197)
is differentiated with respect to u(N − 1), equated to zero to yield

2BT P (N − 1) Ax (N − 2)

+ 2BT P (N − 1) Bu (N − 2) + 2Ru (N − 2) = 0 (8.198)

Optimal control is then given as
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u(N − 2) = −K(N − 2)x(N − 2) (8.199)

where

K (N − 2) =
[
BT P (N − 1) B + R

]−1
BT P (N − 1) A (8.200)

Vector u(N − 2) guarantees the minimum.
Substituting (8.199) into (8.197) gives

I∗N2
[x(N − 2)] = xT (N − 2)P (N − 2)x(N − 2) (8.201)

where

P (N − 2) = AT P (N − 1) A

− AT P (N − 1) B
[
BT P (N − 1)B + R

]−1
BT P (N − 1)A + Q

(8.202)

Remaining stages u(N − 3), u(N − 4) ,. . . , or I∗N3
, I∗N4

, . . . can be derived
analogously to yield

u(N − j) = −K(N − j)x(N − j) (8.203)

where

K (N − j) =
[
BT P (N − j)B + R

]−1
BT P (N − j)A (8.204)

I∗Nj
[x(N − j)] = xT (N − j)P (N − j)x(N − j) (8.205)

where

P (N − j) = Q + AT P (N − j + 1)A

−AT P (N − j + 1) B
[
BT P (N − j + 1) B + R

]−1
BT P (N − j + 1) A

(8.206)

If N → ∞ then P (N − j) and K(N − j) asymptotically converge to matrices
P and K given as solutions of equations

P = AT PA − AT PB
[
BT PB + R

]−1
BT PA + Q (8.207)

K =
[
BT PB + R

]−1
BT PA (8.208)

and optimal control is given as

u(k) = −Kx(k), i = 0, 1, 2, . . . (8.209)
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8.5 Observers and State Estimation

LQ control, as well as other control designs supposes that all states x(t) are
fully measurable. This cannot be guaranteed in practice. A possible remedy
is to estimate states x(t) based on measurement of output variables y(t).
Below we give derivations and properties of deterministic and stochastic state
estimation techniques.

8.5.1 State Observation

The deterministic state estimation or state observation can be implemented
using an observer. An observer is a dynamic system having the property that
its state converges to the state of the observed deterministic system i. e. the
system without noise and measurement error. Observers use information about
the output y(t) and input u(t) vectors to determine the state vector x(t).

yu CONTROLLED
SYSTEM

OBSERVER

- K
x̂

Fig. 8.11. Block diagram of the closed-loop system with a state observer

Nowadays, theory of deterministic state observation is in mature state.
Fig. 8.11 shows how the observed state x̂(t) is used in automatic control.

Luenberger introduced a concept of an observer illustrated in scheme in
Fig. 8.12. The observer has the form of the estimated linear process extended
with a feedback

uL(t) = L [y(t) − ŷ(t)] (8.210)

This is a proportional feedback loop designed to minimise the difference (y(t)−
ŷ(t)). The task of constructing a desired observer is thus transformed into the
problem of finding a suitable L.
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0x̂
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C
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B

B

A

A
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Fig. 8.12. Scheme of an observer

The observer will be designed for an observed system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (8.211)
y(t) = Cx(t) (8.212)

The observer from Fig. 8.12 is described by equations
˙̂x(t) = Ax̂(t) + Bu(t) + L [y(t) − ŷ(t)] , x̂(0) = x̂0 (8.213)
ŷ(t) = Cx̂(t) (8.214)

Let us now find a matrix L such that the estimation error

e(t) = x(t) − x̂(t) (8.215)

with initial value

e(0) = x0 − x̂0 (8.216)

converges asymptotically to zero.
From (8.215) follows

ė(t) = ẋ(t) − ˙̂x(t) (8.217)

Substituting ẋ and ˙̂x form (8.211) and (8.213) yields

ė(t) = Ax(t) − Ax̂(t) − L [y(t) − ŷ(t)] (8.218)

Finally, using (8.212) and (8.214) gives

ė(t) = (A − LC) e(t), e(0) = e0 (8.219)

The system (8.219) meets the requirements on observer design if it is asymp-
totically stable.

Asymptotic stability of the system (8.219) can be guaranteed for arbitrary
initial conditions of the observed system and the observer if and only if eigen-
values of the matrix (A − LC) lie in the left half-plane. Thus, matrix L has
to be chosen in such a way that the matrix (A − LC) be stable.
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8.5.2 Kalman Filter

The Kalman filter is a special case of the Luenberger observer that is optimised
for the observation and input noises. We consider an optimal state estimation
of a linear system

ẋ(t) = Ax(t) + ξx(t) (8.220)

where ξx(t) is n-dimensional stochastic process vector. We assume that the
processes have properties of a Gaussian noise

E {ξx(t)} = 0 (8.221)
Cov (ξx(t), ξx(τ)) = E

{
ξx(t)ξT

x (τ)
}

= V δ(t− τ) (8.222)

Initial condition is given as

x(0) = x̄0 + ξx0 (8.223)

where

E {x(0)} = x̄0 (8.224)

Cov (x(0)) = E
{

[x̄0 − x(0)] [x̄0 − x(0)]T
}

= N0 (8.225)

The mathematical model of the measurement process is of the form

y(t) = Cx(t) + ξ(t) (8.226)

where

E {ξ(t)} = 0 (8.227)
Cov (ξ(t), ξ(τ)) = E

{
ξ(t)ξT (τ)

}
= Sδ(t− τ) (8.228)

ξ0(t) and ξ(t) are uncorrelated in time and with the initial state.
The problem is now to find a state estimate so that the cost function

I =
1
2

[x(0) − x̄0]
T

N−1
0 [x(0) − x̄0]

+
1
2

∫ tf

0

(
[ẋ(t) − Ax(t)]T V −1 [ẋ(t) − Ax(t)]

)
dt

+
1
2

∫ tf

0

(
[y(t) − Cx(t)]T S−1 [y(t) − Cx(t)]

)
dt (8.229)

is minimised. The first right-hand term in (8.229) minimises the squared es-
timation error in initial conditions. The second term minimises the integral
containing squared model error. Finally, the third term penalises the squared
measurement error.

Let us define a fictitious control vector

u(t) = ẋ(t) − Ax(t) (8.230)
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The cost function I is then of the form

I =
1
2

[x(0) − x̄0]
T

N−1
0 [x(0) − x̄0]

+
1
2

∫ tf

0

[
uT (t)V −1u(t)

]
+ [y(t) − Cx(t)]T S−1 [y(t) − Cx(t)] dt

(8.231)

and the optimal state estimation problem is then transformed into the deter-
ministic LQ control problem. The aim of this deterministic optimal control
is to find the control u(t) that minimises I of the form (8.231) subject to
constraint

ẋ = Ax + u (8.232)

Hamiltonian of this problem is defined as

H =
1
2

[
uT V −1u + (y − Cx)T

S−1 (y − Cx)
]

+ λT (Ax + u) (8.233)

The adjoint vector λ(t) is given as

λ̇ = −∂H
∂x

= CT S−1y − CT S−1Cx − AT λ (8.234)

Final state is not fixed and gives the terminal condition for the adjoint vector

λ(tf ) = 0 (8.235)

x(0) is free as well and thus

x(0) = x̄0 + N0λ(0) (8.236)

Optimal control follows from the optimality condition

∂H

∂u
= 0 (8.237)

This gives

V −1u + λ = 0 (8.238)

u(t) = −V λ(t) (8.239)

We note that our original problem is the state estimation of the system with
random signals. This problem is commonly denoted as filtration and belongs to
a broader class of interpolation, filtration, and prediction. All three problems
are closely tied together and the same mathematical apparatus can be used
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to solve each of them. In the sequel only the filtration problem in the Kalman
sense will be investigated.

Filtration can be thought of as the state estimation at time t′ where all
information up to time t′ is used.

Let x̂ (t|tf ) be the optimal estimate at time tf with known data y(t) up
to time tf . The optimal estimate can be determined as

˙̂x (t|tf ) = Ax̂ (t|tf ) − V λ(t) (8.240)

Let us introduce a transformation

x̂ (t|tf ) = z(t) − N(t)λ(t) (8.241)

The problem of finding the optimal state estimate can be solved if z(t) and
N(t) will be found. Equation (8.240) can be rewritten using the transforma-
tion (8.241) as

ż(t) − Ṅ(t)λ(t) − N(t)λ̇(t) = A [z(t) − N(t)λ(t)] − V λ(t) (8.242)

Substituting λ̇(t) from (8.234) and using (8.241) gives

ż(t) − Ṅ(t)λ(t)

− N(t)
[
CT S−1y(t) − CS−1C (z(t) − N(t)λ(t)) − AT λ(t)

]
= A [z(t) − N(t)λ(t)] − V λ(t) (8.243)

and after some manipulations

ż(t) − N(t)CT S−1 (y(t) − Cz(t)) − Az(t)

=
[
Ṅ(t) − N(t)AT − AN(t) + N(t)CS−1CN(t) − V

]
λ(t) (8.244)

We can choose z(t) and N(t) such that

ż(t) = Az(t) + N(t)CT S−1[y(t) − Cz(t)] (8.245)
z(0) = x̄0 (8.246)

V = Ṅ(t) − N(t)AT − AN(t) + N(t)CS−1CN(t) (8.247)
N(0) = N0 (8.248)

Note that both equations (8.245) and (8.247) are solved forward in time from
t = 0.

The state estimate x̂ (tf |tf ) is based on available information up to time
tf . If t = tf , the transformation (8.241) is given as

x̂ (tf |tf ) = z(tf ) − N(tf )λ(tf ) (8.249)

Using (8.235) gives
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x̂ (tf |tf ) = z(tf ) (8.250)

State estimates are thus given continuously at time t as

x̂ (t|t) = Ax̂ (t|t) + N(t)CT S−1 [y(t) − Cx̂ (t|t)] (8.251)
x̂(0) = x̄0 (8.252)

where N(t) is solution of (8.247). Equations (8.251) and (8.247) describe the
Kalman filter.

Its gain is given for steady-state solution of (8.247) as

L = NCT S−1 (8.253)

Define the estimation error

e(t) = x(t) − x̂ (t|t) (8.254)

then we can write

ė(t) =
(
A − N(t)CT S−1C

)
e(t) + ξx(t) − N(t)CT S−1ξ(t) (8.255)

where

e(0) = ξx0 (8.256)

From (8.255) and (8.256) follows

d
dt

(E {e(t)}) =
(
A − NCT S−1C

)
E {e(t)} , E {e(0)} = 0 (8.257)

Equation (8.257) gives

E {e(t)} = 0 (8.258)

and thus the estimate is unbiased. It can be shown that the covariance matrix
of the estimate is

Cov (e(t)) = N(t) (8.259)

The covariance matrix N is symmetric and positive semidefinite and it is a
solution of the Riccati equation similar to the LQ Riccati equation.

8.6 Analysis of State Feedback with Observer
and Polynomial Pole Placement

8.6.1 Properties of State Feedback with Observer

We have seen in previous chapters that the optimal LQ control design leads
to state feedback
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u(t) = −Kx(t) (8.260)

where K is a constant matrix. This controller implements proportional ac-
tion and it is not able to guarantee the zero steady-state control error. This
drawback can be circumvented by introducing a state feedback of the form

u(t) = −Kx(t) + w̃(t) (8.261)

However, this state feedback control law cannot usually be implemented as
not all states are measurable. A possible remedy is to implement the state
feedback as

u(t) = −Kx̂(t) + w̃(t) (8.262)

where x̂ is the deterministic state estimate. The realisation of the feed-
back (8.262), i. e. state feedback with state observer is shown in Fig. 8.13.
It is important to observe that even if the control law of the form (8.262) is
realised and x(t) and x̂(t) are different, the stability of the closed-loop system
is still assured. Combined state feedback with state observer can be separated
into two independent designs as the following theorem states.
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Fig. 8.13. State feedback with observer

Theorem 8.2 (Separation principle). Consider state the feedback control
with observer for a completely controllable and observable system (8.211),
(8.212), with observer (8.213) and state feedback (8.262). Closed-loop eigen-
values consist of eigenvalues of matrix A − BK (state feedback without ob-
server) and of eigenvalues of matrix A − LC (observer dynamics).

Proof. Substituting (8.262) and (8.215) into (8.211) yields



342 8 Optimal Process Control

ẋ(t) = (A − BK) x(t) + BKe(t) + Bw̃(t), x(0) = x0 (8.263)

Equations (8.263), (8.219) give the complete closed-loop dynamics(
ẋ(t)
ė(t)

)
=
(

A − BK BK
0 A − CL

)(
x(t)
e(t)

)
+
(

B
0

)
w̃(t), (8.264)

(
x(0)
e(0)

)
=
(

x0

e0

)

y(t) =
(
C 0

)(x(t)
e(t)

)
(8.265)

Eigenvalues of this upper triangular matrix are given by the eigenvalues at
the main diagonal. As the closed-loop dynamics is governed by such a matrix,
the proof is complete. 	


We note that the estimation error is not reachable from the reference input
w̃.

The separation principle thus makes it possible to design the state feedback
independently on the fact whether all states are measurable or not. If the
controlled system is fully controllable, eigenvalues of the closed-loop system
can be placed arbitrarily. We illustrate this fact on a singlevariable system.

Consider a singlevariable fully controllable system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (8.266)
y(t) = Cx(t) (8.267)

It can be transformed using

x = TxR (8.268)

to the controllable canonical form

ẋR(t) = ARxR(t) + BRu(t) (8.269)
y(t) = CRxR(t) (8.270)

where

AR = T−1AT (8.271)
BR = T−1B (8.272)
CR = CT (8.273)

Matrix T is non-singular and we will not go into details of its construction
here. xR is a new state vector with dimension n. Matrices AR, BR, CR of
the controllable canonical form are
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AR =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞
⎟⎟⎟⎟⎟⎠

(8.274)

BR =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

(8.275)

CR =
(
b0 b1 · · · bn−1

)
(8.276)

The state feedback applied to the system (8.266)

u(t) = −KRT−1x(t) + w̃(t) (8.277)

corresponds to the state feedback (cf. (8.268))

u(t) = −KRxR(t) + w̃(t) (8.278)

If

KR =
(
kR1 kR2 · · · kRn

)
(8.279)

and the state feedback (8.278) is applied to the system (8.269) then the closed-
loop state representation is given by

ẋR(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0

0 0
. . . 0

...
...

0 0 · · · 1
−a0 − kR1 −a1 − kR2 · · · −an−1 − kRn

⎞
⎟⎟⎟⎟⎟⎟⎠

xR(t) +

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠
w̃(t)

(8.280)

The characteristic polynomial of the controlled system is

aR(s) = det (sI − AR) = sn + an−1s
n−1 + · · · + a1s+ a0 (8.281)

and the characteristic polynomial of the closed-loop system is given as

cRcl(s) = det (sI − ARcl) (8.282)

where
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ARcl =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 . . . 0
...

. . .
...

0 0 0 · · · 1
−a0 − kR1 −a1 − kR2 −a2 − kR3 · · · −an−1 − kRn

⎞
⎟⎟⎟⎟⎟⎠

(8.283)

and after a manipulation

cRcl(s) = sn + aRn−1s
n−1 + · · · aR1s+ aR0 (8.284)

where

aR0 = a0 + kR1

aR1 = a1 + kR2

...
aRn−1 = an−1 + kRn

(8.285)

The last row of the matrix AR contains coefficients of the characteristic
polynomial of the closed-loop system cRcl(s). Therefore, the choice of elements
of matrix KR places arbitrarily eigenvalues of the closed-loop system.

If aR0, aR1,. . . , aRn−1 are prescribed then the feedback is given as

KR =
(
aR0 aR1 · · · aRn−1

)
−
(
a0 a1 · · · an−1

)
(8.286)

We can notice that parameters of a state feedback controller applied to
a system in controllable canonical form are given as the difference between
desired coefficients of the closed-loop characteristic polynomial and coefficients
of the characteristic polynomial of the controlled system.

Of course, the same holds for the closed-loop system consisting of the
original system (8.266) and feedback controller (8.277) where

K = KRT−1 (8.287)

Therefore, the first step in combined state feedback control with observer
is to determine matrix K. This specifies eigenvalues of the closed-loop system
A − BK.

The second step is to design an observer. The design consists in placing its
eigenvalues provided the controlled system is fully observable. The eigenvalues
of the observer are eigenvalues of matrix A − LC and are chosen so that the
estimation error e(t) is removed as fast as possible. Consequence of this is high
gain matrix L implying that noise ξ(t) has a great influence on the estimation
error e(t). This can be seen in

ė(t) = (A − LC) e(t) − Lξ(t) (8.288)

where

ξ(t) = y(t) − Cx(t) (8.289)
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8.6.2 Input-Output Interpretation of State Feedback
with Observer

We analyse the same problem as before using the input-output representation
of the controller and the controlled process. Mainly singlevariable systems
will be investigated but some results will also be presented for multivariable
systems.

Polynomial interpretation of the state feedback with observer is governed
in the following theorem.

Theorem 8.3 (Pole placement design). Consider a state feedback

u(t) = −Kx̂(t) + w̃(t) (8.290)

and an observer

˙̂x(t) = Ax̂(t) + Bu+ L (y − Cx̂) (8.291)

with a completely reachable and observable system

ẋ(t) = Ax(t) + Bu (8.292)

y(t) = Cx(t) (8.293)

The state feedback (8.290) with observer can be written as

p(s)
o(s)

u = −q(s)
o(s)

y + w̃ (8.294)

where p(s) is a polynomial with degree n and q(s) is a polynomial with degree
n− 1. Polynomials p(s) and q(s) satisfy the equation

a(s)p(s) + b(s)q(s) = o(s)f(s) (8.295)

and a(s), b(s) are defined as

C (sI − A)−1
B =

b(s)
a(s)

(8.296)

f(s) is the characteristic polynomial of the matrix A−BK and o(s) is char-
acteristic polynomial of the matrix A − LC.

Proof. To prove the theorem we make use of the following properties of poly-
nomials.

a(s) is the characteristic polynomial of matrix A. If the controlled system
is reachable and observable then polynomials a(s) and b(s) are coprime. This
is an important condition related to the solution of equation (8.295).

If the controlled system is reachable then a(s) and BRs(s) given by
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(sI − A)−1
B =

BRs(s)
a(s)

(8.297)

are right coprime. Equation (8.297) can be written as

(sI − A)BRs(s) = Ba(s) (8.298)

Adding BKBRs(s) to both sides of equation gives

(sI − A) BRs(s) + BKBRs(s) = Ba(s) + BKBRs(s) (8.299)

(sI − (A − BK)) BRs(s) = B (a(s) + KBRs(s)) (8.300)

BRs(s)
a(s) + KBRs(s)

=
adj (sI − (A − BK))
det (sI − (A − BK))

B (8.301)

From (8.301) follows that the feedback gain can be calculated from equation

a(s) + KBRs(s) = f(s) (8.302)

where f(s) is the characteristic polynomial of the closed-loop matrix A−BK.
From stability of the closed-loop system follows that the polynomial a(s) +
KBRs(s) is stable as well.

The observer equations can be written as

sx̂ = (A − LC) x̂ + Bu+ Ly (8.303)

(sI − (A − LC)) x̂ = Bu+ Ly (8.304)

x̂ = (sI − (A − LC))−1
Bu+ (sI − (A − LC))−1

Ly (8.305)

x̂ =
T u(s)
o(s)

u+
T y(s)
o(s)

y (8.306)

where

T u(s) = adj (sI − (A − LC)) B (8.307)

T y(s) = adj (sI − (A − LC)) L (8.308)

o(s) = det (sI − (A − LC)) (8.309)
Equation (8.306) demonstrates that the observer can be defined as in

Fig. 8.14. If the output of the system in Fig. 8.14 would be the variable
ũ = Kx̂ then

Kx̂ =
r(s)
o(s)

u+
q(s)
o(s)

y (8.310)

where

r(s) = KT u(s) (8.311)
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Fig. 8.14. Block diagram of state estimation of a singlevariable system
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Fig. 8.15. Polynomial state estimation

u px

x

y

( )sRsB

( )sb( )( ) 1−sa

Fig. 8.16. Interpretation of a pseudo-state

q(s) = KT y(s) (8.312)

Equation (8.310) is shown in the block diagram in Fig. 8.15.
If we define the pseudo-state as in Fig. 8.16 then

y = b(s)xp (8.313)

u = a(s)xp (8.314)

x = BRs(s)xp (8.315)

Kx = k(s)xp (8.316)

where

k(s) = KBRs(s) (8.317)

Substitution of (8.313) and (8.314) into (8.310) and using (8.316) gives
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o(s)ũ− o(s)Kx = r(s)a(s)xp + q(s)b(s)xp − o(s)k(s)xp (8.318)

o(s) (ũ− Kx) = (r(s)a(s) + q(s)b(s) − o(s)k(s))xp (8.319)
Asymptotic observer is described by (8.310) if and only if o(s) is a stable
polynomial and r(s), q(s) satisfy equation

r(s)a(s) + q(s)b(s) = o(s)k(s) (8.320)

From (8.309) follows that the degree of the polynomial o(s) is n. This
corresponds to a full order observer. If the state estimation has been realised by
a reduced order observer, polynomial o(s) would be a stable monic polynomial
with degree n− 1.

Let us return to the feedback (8.290). If Kx̂ from (8.310) is substituted
into (8.290) then

u = −r(s)
o(s)

u− q(s)
o(s)

y + w̃ (8.321)

If

p(s) = o(s) + r(s) (8.322)

then equation (8.321) reduces to (8.294).
Adding a(s)o(s) to either side of equation (8.320) gives

r(s)a(s) + q(s)b(s) + a(s)o(s) = o(s)k(s) + a(s)o(s) (8.323)

a(s) (r(s) + o(s)) + q(s)b(s) = o(s) (k(s) + a(s)) (8.324)
Taking into account equations (8.302), (8.317), (8.322) then (8.324) is of the
form (8.295). This concludes the proof. 	
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Fig. 8.17. Realisation of a state feedback with an observer

Pole placement theorem thus shows that the state feedback with observer
can be implemented as shown in Fig. 8.17. Transfer function between input
w̃ and output y is given as

y =
b(s)o(s)

a(s)p(s) + b(s)q(s)
w̃ (8.325)
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Fig. 8.18. State feedback control

y =
b(s)
f(s)

w̃ (8.326)

Based on Fig. 8.18 this further gives

y = C (sI − (A − BK))−1
Bw̃ (8.327)

y = C
adj (sI − (A − BK))
det (sI − (A − BK))

Bw̃ (8.328)

From (8.301) follows

BRs(s) = adj (sI − (A − BK)) B (8.329)

and from (8.296), (8.297), (8.301), (8.302) implies

CBRs(s) = b(s) (8.330)

det (sI − (A − BK)) = f(s) (8.331)

The relation between the closed-loop input w̃ and output y in figures 8.17 and
8.18 is thus the same. Hence, the pole placement design is entirely the same in
both state-space and input-output representations. However, the closed-loop
structures in figures 8.17, 8.18 are different.

From (8.307) and (8.308) follows that T u(s) and T y(s) are n-dimensional
vectors with elements being polynomials with degree n− 1. As o(s) is a poly-
nomial with degree n, the polynomial form of the observer consists of strictly
proper transfer functions. The right-hand side polynomial in equation (8.295)
has degree 2n.

The fact that derivation of (8.324) involves cancellation of o(s) implies
that estimated states are not controllable by the input w̃.

The realisation of state feedback with observer in Fig. 8.17 takes the form
of a closed-loop system with the two-degree-of-freedom controller.

If the closed-loop input in Fig. 8.17 is given as

w̃ =
q(s)
o(s)

w (8.332)

then (8.294) can be written as

u = −q(s)
p(s)

y +
q(s)
p(s)

w (8.333)



350 8 Optimal Process Control

or

u = −q(s)
p(s)

(w − y) (8.334)

The choice of w̃ from (8.332) changes the closed-loop system in Fig. 8.17 from
a two-degree-of-freedom to an one-degree-of-freedom system (Fig. 8.19).

The transfer function between w and y is given as

y =
b(s)q(s)
o(s)f(s)

w (8.335)
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Fig. 8.19. Feedback control with one-degree-of-freedom controller

The design procedure of the polynomial pole placement controller as an
alternative to the state feedback controller with observer is as follows:

1. Given are state-space matrices of the controlled process A, B, C. Gain
matrices K and L are also given.

2. Polynomials a(s) and b(s) are calculated from

C (sI − A)−1
B =

b(s)
a(s)

(8.336)

3. Controller polynomials p(s) and q(s) are found from the equation

a(s)p(s) + b(s)q(s) = o(s)f(s) (8.337)

where

o(s) = det (sI − (A − LC)) (8.338)

f(s) = det (sI − (A − BK)) (8.339)

are stable polynomials. Polynomial c(s) = o(s)f(s) has the degree 2n (full
order observer) or 2n− 1 (reduced order observer).

Example 8.4:www
Consider a controlled process of the form

G(s) =
s+ 6

s2 + 5s+ 6
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We choose the closed-loop characteristic polynomial as

o(s)f(s) = (s+ 2)(s+ 4)(s+ 5)(s+ 6)

Our aim is to find the transfer function of a controller that places the
closed-loop poles to locations specified by zeros of o(s)f(s). This transfer
function is of the form

R(s) =
q1s+ q0

p2s2 + p1s+ p0

and the coefficients p2, p1, p0, q1, q0 can be found as the solution of
equation
(
s2 + 5s+ 6

) (
p2s

2 + p1s+ p0

)
+(s+6)(q1s+q0) = (s+2)(s+4)(s+5)(s+6)

Equating coefficients at either side of this equation gives five equations
with five unknowns

s4 : p2 = 1
s3 : 5p2 + p1 = 17
s2 : 6p2 + 5p1 + p0 + q1 = 104
s : 6p1 + 5p0 + 6q1 + q0 = 268
s0 : 6p0 + 6q0 = 240

The controller polynomials are then given as
p(s) = s2 + 12s+ 36
q(s) = 2s+ 4

The derivation of the controller shows that pole placement as the only per-
formance criterium need not be satisfactory. For example, as the controller
does not contain integral part, the steady-state control error is non-zero –
if unit step change of the setpoint is assumed then is settles at the value
of 0.25.

The state feedback with observer interpreted using the input-output mod-
els naturally leads to the problem of the polynomial pole placement.

Calculation of o(s) and f(s) from (8.309), (8.331) is frequently not nec-
essary as the closed-loop poles can directly be assigned by the choice of a
polynomial c(s) on the right-hand side of the equation

a(s)p(s) + b(s)q(s) = c(s) (8.340)

Similarly, polynomials a(s), b(s) are often known and it is not necessary to
solve equation (8.296). Equation (8.340) plays a fundamental role in polyno-
mial pole placement.

8.6.3 Diophantine Equations

A scalar linear polynomial equation
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a(s)x(s) + b(s)y(s) = c(s) (8.341)

is called the Diophantine equation – after the mathematician Diophantos from
Alexandria (275 a. d.).

Polynomials a(s), b(s), and c(s) are given and polynomials x(s), y(s) are
unknown. The solvability of a Diophantine equation is characterised by the
next theorem.

Theorem 8.4 (Solvability of Diophantine equations). Let a(s), b(s),
c(s) be real valued polynomials. Equation (8.341) has a solution if and only if
the greatest common divisor of a(s), b(s) divides c(s).

It follows from the theorem that if a(s) and b(s) are coprime then the
Diophantine equation is solvable for any c(s) including c(s) = 1.

If Diophantine equation is solvable then it has infinitely many solutions.
If x′(s), y′(s) denote a particular solution then general solution can be
parametrised as

x(s) = x′(s) + b̄(s)t(s) (8.342)

y(s) = y′(s) − ā(s)t(s) (8.343)

where t(s) is an arbitrary polynomial, ā(s), b̄(s) are coprime and

b̄(s)
ā(s)

=
b(s)
a(s)

(8.344)

If a(s), b(s) are coprime then ā(s) = a(s), b̄(s) = b(s).
Corollary : Among all solutions of the Diophantine equation there is one

x(s), y(s) where

deg x(s) < deg b̄(s) (8.345)

Similarly, there exists unique solution of the same Diophantine equation where

deg y(s) < deg ā(s) (8.346)

Both solutions coincide if

deg a(s) + deg b(s) ≥ deg c(s) (8.347)

If equation (8.347) holds then the Diophantine equation has the minimum
degree solution and

deg x(s) = deg y(s) (8.348)

If equation (8.347) does not hold, there are solutions for minimal degree of
x(s) or for minimal degree of y(s).
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A versatile tool for Diophantine equations is Polynomial Toolbox for MAT-
LAB. Its use will be illustrated on examples.

Example 8.5:www
Consider polynomials (see Example 8.4) a(s) = s2 + 5s+ 6, b(s) = s+ 6.
Find polynomials x(s), y(s) satisfying equation

a(s)x(s) + b(s)y(s) = c(s)

for various choices of polynomial c(s). Polynomial Toolbox for MATLAB
will be used – function [x,y]=axbyc(a,b,c) where the function argu-
ments are the same as our polynomials.
Case: c(s) = 1 + s. Entering the following commands in MATLAB
>> a = 6 + 5*s+s^2;
>> b = 6 + s;
>> [x, y] = axbyc(a, b, 1+s)

gives the solution:
x = -0.42
y = 0.58 + 0.42 s

Case: c(s) = (1 + s)2:
>> [x, y] = axbyc(a, b, (1+s)^2)
x = 2.1
y = 1.9 - 1.1 s

Case: c(s) = (1 + s)3 (note: inequality (8.347) holds)
>> [x, y] = axbyc(a, b, (1+s)^3)
x = -4.4 + s
y = 4.6 + 2.4 s

Case: c(s) = (1 + s)4 (note: inequality (8.347) does not hold)
>> [x1, y1] = axbyc(a, b, (1+s)^4)
x1 = 1.3 - 2.5 s + s^2
y1 = -1.2 + 2.2 s + 1.5 s^2

This is minimum degree solution where deg(x1) = deg(y1) = 2.
Case: c(s) = (1 + s)4. Minimise the degree of polynomial x.
>> [x2, y2] = axbyc(a, b, (1+s)^4, ’minx’)
x2 = 52
y2 = -52 - 34s - 2 s^2 + s^3

Case: c(s) = (1 + s)4. Minimise the degree of polynomial y.
>> [x2, y2] = axbyc(a, b, (1+s)^4, ’miny’)
x2 = 10 - s + s^2
y2 = -9.9 - 5.1s

Case: c = 1+s. General solution of the form x(s)+f(s)t(s), y(s)+g(s)t(s)
is calculated where t(s) is arbitrary polynomial.
>> [x,y,f,g] = axbyc(a, b, 1+s)
x = -0.42
y = 0.58 + 0.42s
f = -0.6 - 0.1s
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g = 0.6 + 0.5s + 0.1 s^2

8.6.4 Polynomial Pole Placement Control Design

This control design is closely related to the solution of the Diophantine equa-
tion (8.340).

Consider the feedback system shown in Fig. 8.19. The process transfer
function is of the form

G(s) =
b(s)
a(s)

(8.349)

where polynomials

a(s) = ans
n + an−1s

n−1 + ...+ a0 (8.350)
b(s) = bn−1s

n−1 + bn−2s
n−2 + ...+ b0 (8.351)

are coprime and the system is strictly proper.
The controller transfer function is

R(s) =
q(s)
p(s)

(8.352)

where

p(s) = pnp
snp + pnp−1s

np−1 + ...+ p0 (8.353)

q(s) = qnq
snq + qnq−1s

nq−1 + ...+ q0 (8.354)

Desired stable characteristic polynomial of the closed-loop system is specified
as

c(s) = cnc
snc + cnc−1s

nc−1 + ...+ c0 (8.355)

PP controller, case 1: Let c(s) be an arbitrary polynomial of degree nc =
2n− 1. Then there are polynomials p(s) of degree np = n− 1 and q(s) of
degree nq = n− 1 such that

a(s)p(s) + b(s)q(s) = c(s) (8.356)

holds (see Example 8.5 – case 3). Controller R(s) is proper.
PP controller, case 2: Let c(s) be an arbitrary polynomial of degree nc = 2n.

Then there are polynomials p(s) of degree np = n and q(s) of degree
nq = n − 1 such that equation (8.356) holds (see Example 8.5 – case 6).
Controller R(s) is strictly proper.

We note that the choice of the polynomial degrees is not arbitrary. The
simplest controller is that with minimum degree of q(s). From the Diophantine
equation (8.356) follows that the minimum degree of q(s) is less than the
degree of a(s), thus nq = n − 1. The degree of the polynomial p(s) is them
given from realisability of the controller. Its degree has to be equal (PP 1)
or larger (PP 2) than the degree of q(s). Finally, the degree of c(s) can be
determined from the degree of the left hand side of (8.356).



8.6 Analysis of State Feedback with Observer and Polynomial Pole Placement 355

8.6.5 Integrating Behaviour of Controller

The closed-loop system consisting of the controlled system (8.296) and con-
troller (8.334) calculated from (8.295) cannot guarantee the zero steady-state
control error. As we have seen in previous chapters, to solve this issue, pure
integrator is needed in the controller as in Fig. 8.20.

w
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u
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( )sp

sq

s

1 ( )
( )sa

sb

e
d

y

Fig. 8.20. Closed-loop system with a pure integrator

The controller formed by the blocks q(s)/p(s) and 1/s assures that for step
changes of the setpoint variable w and step changes of disturbance d approach
the control error e and variable ũ in the loop in Fig. 8.20 asymptotically zero
if q(s) and p(s) are solution of the equation

a(s)sp(s) + b(s)q(s) = c(s) (8.357)

and c(s) is a stable polynomial.
This can easily be proved using transfer functions between inputs w, d and

outputs e, ũ of the closed-loop in Fig. 8.20. These are of the form

Gew(s) =
a(s)sp(s)

a(s)sp(s) + b(s)q(s)
(8.358)

Ged(s) =
−a(s)sp(s)

a(s)sp(s) + b(s)q(s)
(8.359)

Gũw(s) =
a(s)sq(s)

a(s)sp(s) + b(s)q(s)
(8.360)

Gũd(s) =
−a(s)sq(s)

a(s)sp(s) + b(s)q(s)
(8.361)

Closed-loop poles are characterised by the polynomial a(s)sp(s) + b(s)q(s),
hence c(s) must be stable polynomial.

If w(t) = 1(t) then the final value theorem gives

lim
t→∞ e(t) = lim

t→∞ ũ(t) = 0 (8.362)

Equation (8.362) also holds for d(t) = 1(t). This proves asymptotic properties
of the pole placement controller with integrator.
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The design procedure of the controller with integral action is as follows.
First the controlled system is formally modified to contain a pure integrator.
Polynomials p(s), q(s) are calculated from the Diophantine equation

ã(s)p(s) + b(s)q(s) = c(s) (8.363)

where

ã(s) = sa(s) (8.364)

with degree nI = n+ 1.
In the second step after polynomials p(s), q(s) are found from (8.363) the

integrator is moved to the controller. The controller transfer function is then
given as

R(s) =
q(s)
p̃(s)

(8.365)

where

p̃(s) = sp(s) (8.366)

PP controller with integral action, case 1: Let c(s) be an arbitrary polyno-
mial of degree 2n. Then there are polynomials p(s) of degree np = n − 1
and q(s) of degree nq = n such that equation (8.363) holds. The controller
transfer function q(s) / p(s) is not proper. However, the real controller is
proper.

PP controller with integral action, case 2: Let c(s) be an arbitrary polyno-
mial of degree nc = 2nI − 1 = 2n + 1. Then there are polynomials p(s)
of degree np = nI − 1 = n and q(s) of degree nq = nI − 1 = n such
that equation (8.363) holds. The controller transfer function q(s)/p(s) is
proper. The real controller corresponds to the transfer function (8.365)
and is strictly proper.

PP controller with integral action, case 3: Let c(s) be an arbitrary polyno-
mial of degree nc = 2nI = 2(n + 1). Then there are polynomials p(s)
of degree np = nI = n + 1 and q(s) of degree nq = nI − 1 = n such
that equation (8.363) holds. The controller transfer function q(s) / p(s) is
strictly proper.

We note again that the choice of the polynomial degrees is not arbitrary
and follows from the requirement that the controller numerator degree q(s)
should be minimal. In this case it is given by the Diophantine equation (8.363)
as nq = n. The controller cases then follow from the fact that the minimum
realisable degree of the controller denominator sp(s) is equal to the numerator
degree. Finally, when the degrees of p(s), q(s) are known, the degree of the
right hand side polynomial c(s) can de determined from the left hand side
polynomial of (8.363). The degree of c(s) can also be larger than 2nI . However,
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such controller would be too complicated. In practice, the controller degrees
are usually derived from cases 1 and 2.

Example 8.6:www
The model of the controlled process is of the form

G(s) =
b(s)
a(s)

, a(s) = s+ 2, b(s) = 1

The desired controller transfer function is given as

R(s) =
q(s)
sp(s)

where polynomials p(s), q(s) are solution of the equation

a(s)sp(s) + b(s)q(s) = c(s)

for various cases of the polynomial c(s). We use Polynomial Toolbox for
MATLAB.
Case: c(s) = (s+ 3)2. Typing in MATLAB Command Window
>> ai = s * (s+2);
>> b = 1;
>> c = (s+3)^2;
>> [p,q] = axbyc(ai,b,c)

gives
p = 1
q = 9+4s

The pole placement controller with integral action is of the form

R(s) =
4s+ 9

1s
= 4 +

9
s

Case: c(s) = (s+ 3)2(s+ 4).
>> ai = s * (s+2);
>> b = 1;
>> c = (s+4) * (s+3)^2;
>> [p,q] = axbyc(ai,b,c)

yields
p = 8+s
q = 36+17s

The controller with integral action is of the form

R(s) =
17s+ 36
s (s+ 8)

=
(

17 +
36
s

)(
1

s+ 8

)

Case: c(s) = (s+ 3)2(s+ 4)2.
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>> ai = s * (s+2);
>> b = 1;
>> c = (s+3)^2 * (s+4)^2;
>> [p,q] = axbyc(ai,b,c)

Result:
p = 64+12s+s^2
q = 140+40s-15 s^2

The controller with integral action is of the form

R(s) =
−15s2 + 40s+ 140
s (s2 + 12s+ 64)

Example 8.7:www
The model of the controlled process is of the form

G(s) =
b(s)
a(s)

, a(s) = s2 + 4s+ 4, b(s) = s+ 1

The task is to design a controller in the same way as in Example 8.6.
Case: c(s) = (s+ 3)4. Typing in MATLAB Command Window
>> ai = s * (s^2+4s+4);
>> b = s+1;
>> c = (s+3)^4;
>> [p,q] = axbyc(ai,b,c)

gives
p = -15+s
q = 81+87s+23 s^2

The pole placement controller with integral action is of the form

R(s) =
23s2 + 87s+ 81

s (s− 15)
=

1
s− 15

(
87 +

81
s

+ 23s
)

Case: c(s) = (s+ 3)5.
>> ai = s * (s^2+4s+4);
>> b = s+1;
>> c = (s+3)^5;
>> [p,q] = axbyc(ai,b,c)

yields
p = -22+11s+ s^2
q = 240+250s+64s^2

The controller with integral action is of the form

R(s) =
64s2 + 250s+ 240
s (s2 + 11s− 22)

=
1

s2 + 11s− 22

(
250 +

240
s

+ 64s
)

We can see that the controller denominator polynomial p(s) is unstable.
However, if the roots of the polynomial c(s) have been changed from −3
to −1.5, the denominator would have been stable.
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Even if an unstable controller is capable to guarantee stable closed-loop,
from practical point of view it is more suitable to have a stable controller.
In general, stability of p(s) is influenced by its coefficients that are deter-
mined from from the closed-loop roots. Therefore, placement of the poles
for strong stability is not trivial.

Example 8.6 shows that the pole placement method can be used for design
of PI and PID controllers.

PI Controller for the First Order System

Consider the controlled process model described by the first order transfer
function. If we choose the characteristic polynomial of the closed-loop systems
c(s) to be of the second degree then the structure of the pole placement
controller is with the transfer function (see Example 8.6 – case 1)

R(s) =
q1s+ q0

s
(8.367)

This transfer function is equivalent to the structure of the PI controller

RPI(s) = KP +
KI

s
(8.368)

where

ZR = q1, TI =
1
q0

(8.369)

This controller was also derived in Chapter 7.4.6 (see page 285).

PI Controller with a Filter for the First Order System

Consider the controlled process model described by the first order transfer
function. If we choose the characteristic polynomial of the closed-loop sys-
tems c(s) to be of the third degree then the structure of the pole placement
controller is with the transfer function (see Example 8.6 – case 2)

R(s) =
q1s+ q0
s (s+ p0)

(8.370)

This transfer function is equivalent to the structure of the PI controller with
a first order filter

RPIF(s) =
(
ZR +

1
TIs

)(
1

TPIFs+ 1

)
(8.371)

where

ZR =
q1
p0
, TI =

p0

q0
, TPIF =

1
p0

(8.372)
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PID Controller for the Second Order System

Consider the controlled process model described by a strictly proper second
order system. If we choose the characteristic polynomial of the closed-loop
systems c(s) to be of the fourth degree then the structure of the pole placement
controller is with the transfer function (see Example 8.7 – case 1)

R(s) =
q2s

2 + q1s+ q0
s (s+ p0)

(8.373)

This transfer function is equivalent to the structure of the PID controller

RPIDF(s) =
(
ZR +

1
TIs

+ TDs

)(
1

TPIDFs+ 1

)
(8.374)

where

ZR =
q1
p0
, TI =

p0

q0
, TD =

q2
p0
, TPIDF =

1
p0

(8.375)

The transfer function (8.373) also corresponds to the PID controller with
derivative action filtered by the first order filter

RPIDZ(s) = ZR +
1
TIs

+
TDs

TPIDZs+ 1
(8.376)

where

ZR =
p0q1 − q0

p2
0

, TI =
p0

q0
, TD =

p2
0q2 − p0q1 + q0

p3
0

, TPIDZ =
1
p0

(8.377)

PID Controller with a Filter for the Second Order System

Consider the controlled process model described by a strictly proper second
order system. If we choose the characteristic polynomial of the closed-loop
systems c(s) to be of the fifth degree then the structure of the pole placement
controller is with the transfer function (see Example 8.7 – case 2)

R(s) =
q2s

2 + q1s+ q0
s (s2 + p1s+ p0)

(8.378)

This transfer function is equivalent to the structure of the PID controller with
a filter

RPIDF2(s) =
(
ZR +

1
TIs

+ TDs

)(
1

pF2s2 + pF1s+ 1

)
(8.379)

where

ZR =
q1
p0
, TI =

p0

q0
, TD =

q2
p0
, pF2 =

1
p0
, pF1 =

p1

p0
(8.380)
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Non-Proper PID Controller for the Second Order System

If the structure of the classical PID controller is desired, the characteristic
polynomial of the closed-loop systems c(s) needs to be of the second degree.
The pole placement controller has the structure with the transfer function
(see Example 8.7 – case 2)

R(s) =
q2s

2 + q1s+ q0
p0s

(8.381)

This transfer function is equivalent to the structure of the PID controller of
the form

RPID(s) = ZR +
1
TIs

+ TDs (8.382)

where

ZR =
q2
p0
, TI =

p0

q1
, TD =

q0
p0

(8.383)

This controller was also derived in Chapter 7.4.6 (see page 286).
We can see that controllers RPID from (8.382) and RPIDF from (8.374)

have similar behaviour if the filter time constant TPIDF is sufficiently small.

8.6.6 Polynomial Pole Placement Design for Multivariable Systems

The state feedback control with observer for multivariable systems shown in
Fig. 8.21 can be interpreted as a closed-loop system with the two-degree-of-
freedom controller.

The observer dynamics is given as

x̂ = (sI − A + LC)−1
Bu + (sI − A + LC)−1

Ly (8.384)

The controller output is

u = −Kx̂ + w̃ (8.385)

and after substituting for x̂ from (8.384) yields

u = −K (sI − A + LC)−1
Bu − K (sI − A + LC)−1

Ly + w̃ (8.386)

After some manipulations the controller can be written as
(
I + K (sI − A + LC)−1

B
)

u = −K (sI − A + LC)−1
Ly+w̃ (8.387)

The feedforward part is given as

Rf (s) =
(
I + K (sI − A + LC)−1

B
)−1

(8.388)
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Fig. 8.21. State feedback control with state observation and reference input

The feedback part is given as

R(s) = −
(
I + K (sI − A + LC)−1

B
)−1

K (sI − A + LC)−1
L

(8.389)

The controller in Fig. 8.21 has two degrees of freedom and its description using
matrix transfer functions Rf (s) and R(s) is of the form

u =
(
Rf (s) R(s)

)(w̃
y

)
(8.390)

Using the matrix inversion lemma (Theorem 6.1)

(
I + K (sI − A + LC)−1

B
)−1

= I − K (sI − A + LC + BK)−1
B

(8.391)

and thus

Rf (s) = I − K (sI − A + LC + BK)−1
B (8.392)

R(s) =
(
I − K (sI − A + LC + BK)−1

B
)(

K (sI − A + LC)−1
L
)

= K

(
(sI − A + LC)−1

− (sI − A + LC + BK)−1
BK (sI − A + LC)−1

)
L

= K (sI − A + LC + BK)−1
L (8.393)
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As it was shown in the singlevariable case, pole locations of the closed-loop
system are given by the feedback part of the state controller with observer
with the matrix transfer function (8.393). If left or right matrix fraction of
the pole placement controller is to be determined (8.393), it suffices to study
the case with the zero reference input.

Consider state the feedback

u(t) = −Kx̂(t) (8.394)

with observer

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t) − Cx̂(t)) (8.395)

applied to a controllable and observable system

ẋ(t) = Ax(t) + Bu(t) (8.396)
y(t) = Cx(t) (8.397)

Matrix transfer functions of the controlled system are given as

(sI − A)−1
B = BRs(s)A−1

R (s) (8.398)

where AR, BRs are right coprime polynomial matrices and AR is column
reduced.

C (sI − A)−1 = A−1
L (s)BLs(s) (8.399)

where AL, BLs are left coprime polynomial matrices and AL is row reduced.

C (sI − A)−1
B = A−1

L (s)BL(s) = BR(s)A−1
R (s) (8.400)

where AL, BL are left coprime polynomial matrices, AR, BR are right co-
prime polynomial matrices and

BL(s) = BLs(s)B (8.401)
BR(s) = CBRs(s) (8.402)

Matrix K is chosen such that the closed-loop matrix A − BK reflects
desired dynamics. From (8.398) follows

BAR(s) = (sI − A)BRs(s) (8.403)

Adding BKBRs to either side of (8.403) gives

B(AR(s) + KBRs(s)) = (sI − A + BK)BRs(s) (8.404)
(sI − A + BK)−1B = BRs(s)(AR(s) + KBRs(s))−1 (8.405)

(sI−A) and B are left coprime because the controlled system is controllable.
This implies that (sI − A + BK), B are left coprime as well. Similarly, it
follows from the definition that AR, BRs are right coprime and thus (AR +
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KBRs), BRs are right coprime polynomial matrices. This also implies that
(sI − A + BK) and (AR(s) + KBRs(s)) have the same determinants.

If the gain matrix K exists, it is unique and of the form

K = X−1
L Y L (8.406)

Then XL, Y L are solution of the equation

XLAR(s) + Y LBRs(s) = F R(s) (8.407)

F R(s) is a stable polynomial matrix with detF R(s) = 0. F R(s) is a matrix
with dimensions m×m, it is column reduced and has the same degree as the
matrix AR(s).

The observer gain matrix L is chosen such that the matrix A − LC cor-
responds to the desired dynamics of the observer. From (8.399) follows

AL(s)C = BLs(s)(sI − A) (8.408)

Adding BLs(s)LC to either side of (8.408) gives

(AL(s) + BLs(s)L)C = BLs(s)(sI − A + LC) (8.409)
C(sI − A + LC)−1 = (AL(s) + BLs(s)L)−1BLs(s) (8.410)

C and (sI −A) are right coprime as the controlled system is observable. This
implies that C and (sI−A+LC) are right coprime. Similarly, it follows from
the definition that AL and BLs are left coprime and thus (AL + BLsL) and
BLs are left coprime. This also implies that (sI − A + LC) and (AL(s) +
BLs(s)L) have the same determinants.

If the gain matrix L exists, it is unique and of the form

L = Y RX−1
R (8.411)

Then XR a Y R are solution of the equation

AL(s)XR + BLs(s)Y R = OL(s) (8.412)

OL(s) is a stable polynomial matrix with detOL(s) = 0. OL(s) is a matrix
with dimensions r × r, it is row reduced and has the same degree as matrix
AL(s).

The matrix transfer function of the feedback controller corresponding to
the state feedback controller with observer is given as

K(sI − A + BK + LC)−1L = P−1
L (s)QL(s) = QR(s)P−1

R (s) (8.413)

Matrices P L(s) and QL(s) of the controller left matrix fraction are solution
of the matrix Diophantine equation

P L(s)AR(s) + QL(s)BR(s) = ÕL(s)F R(s) (8.414)
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Matrices P R(s) and QR(s) of the controller right matrix fraction are solution
of the matrix Diophantine equation

AL(s)P R(s) + BL(s)QR(s) = OL(s)F̃ R(s) (8.415)

Matrices ÕL(s) and F̃ R(s) are calculated using auxiliary factorisations of
matricesOL(s) and F R(s). From the practical point of view it is advanta-
geous to use equations (8.393), (8.407) and (8.412) for calculation of the pole
placement controller.

If the singlevariable case is considered i. e. m = r = 1, then

AL(s) = AR(s) = a(s) (8.416)

BL(s) = BR(s) = b(s) (8.417)

OL(s) = o(s) (8.418)

F R(s) = f(s) (8.419)
and equations (8.414) and (8.415) are replaced by (8.295) that determines
transfer function of the singlevariable pole placement controller.

8.7 The Youla-Kučera Parametrisation

Previous sections of control design presented the optimal feedback control as
the pole placement problem. This section deals with all feedback control laws
that guarantee some desired properties of the closed-loop system.

R
e u y

−

w
G

ud

Fig. 8.22. Feedback control system

The control problem shown in Fig. 8.22 consists in findig such a controller
R(s) for the controlled system G(s) that the closed-loop system satisfies de-
sired specifications. This problem can be divided into two tasks. The first is
to stabilise the closed-loop system and the second is to guarantee additional
performance specifications.

The Youla-Kučera parametrisation employed in the second step uses frac-
tional models for all systems. It is possible to parametrise feedback controllers
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from a set of fractions of stable rational functions. Another use of the Youla-
Kučera parametrisation is in the dual parametrisation when a fixed controller
is known and a set of plants that can be stabilised by it is searched. The
dual parametrisation can be used in identification of processes. Finally, the
Youla-Kučera parametrisation can be employed simultaneously for both the
controller and the plant.

The Youla-Kučera parametrisation is based on assumption that a stabilis-
ing controller is known. For its purposes the bounded-input bounded-output
(BIBO) stability definition is suitable.

The closed-loop system is stable if arbitrary bounded input causes results
in a bounded output at any place of the closed-loop system. A system with
transfer function F (s) is BIBO stable if and only if F (s) is proper and Hurwitz-
stable.

From this definition follows that all transfer functions of the closed-loop
system have to be stable and proper.

A system is asymptotically stable if its characteristic polynomial is stable.
We will at first investigate singlevariable systems and then the problem will

be generalised to multivariable systems. Finally, parametrisation of discrete-
time systems will be treated.

8.7.1 Fractional Representation

Fractional representation of systems (plants, controllers) consists in expressing
transfer functions as a fraction of two stable transfer functions. Consider for
example a controlled process of the form

G(s) =
b(s)
a(s)

(8.420)

where a(s), b(s) are coprime polynomials with deg b(s) ≤ deg a(s), and deg
denotes the degree of a polynomial. This transfer function can be rewritten
into a Hurwitz-stable and proper fractional representation as

G(s) =
B(s)
A(s)

(8.421)

where B(s) and A(s) are stable transfer functions of the form

B(s) =
b(s)
c(s)

, A(s) =
a(s)
c(s)

(8.422)

and c(s) is a monic Hurwitz polynomial, i. e. 1/c(s) is asymptotically stable,
and deg c(s) ≥ deg a(s). A monic polynomial contains unit coefficient at the
maximum power of s.

Consider for example a transfer function

G(s) =
b1s+ b0

s2 + a1s+ a0
(8.423)
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Its fractional representation can be of the form

G(s) =

b1s+ b0
s2 + c1s+ c0
s2 + a1s+ a0

s2 + c1s+ c0

(8.424)

where s2 + c1s+ c0 is Hurwitz polynomial.
Let Fps denotes a set of stable proper rational transfer functions in the

above defined sense. Two transfer functions B(s), A(s) ∈ Fps are coprime
if there exist transfer functions X(s), Y (s) ∈ Fps satisfying the Diophantine
equation

A(s)X(s) +B(s)Y (s) = 1 (8.425)

Let us now consider the feedback control system shown in Fig. 8.22 and
apply the concept of the BIBO stability. Input variables of the closed-loop
system are w, du and output variables are u, y. We express the plant and the
controller as ratios of proper stable restional functions. The controlled system
can be written as

G(s) =
B(s)
A(s)

(8.426)

where B(s), A(s) ∈ Fps are coprime. The controller transfer function is of the
form

R(s) =
Q(s)
P (s)

(8.427)

where Q(s), P (s) ∈ Fps are coprime.
The closed-loop system in Fig. 8.22 is BIBO stable if and only if all transfer

functions between inputs w, du and outputs u a y are proper and Hurwitz-
stable.

The transfer functions are given as

Guw(s) =
R(s)

1 +G(s)R(s)
=

A(s)Q(s)
A(s)P (s) +B(s)Q(s)

(8.428)

Gyw(s) =
G(s)R(s)

1 +G(s)R(s)
=

B(s)Q(s)
A(s)P (s) +B(s)P (s)

(8.429)

Gudu
(s) =

1
1 +G(s)R(s)

=
A(s)P (s)

A(s)P (s) +B(s)Q(s)
(8.430)

Gydu
(s) =

G(s)
1 +G(s)R(s)

=
B(s)P (s)

A(s)P (s) +B(s)Q(s)
(8.431)

From equations(
u(s)
y(s)

)
=

1
C(s)

(
A(s)Q(s) A(s)P (s)
B(s)Q(s) B(s)P (s)

)(
w(s)
du(s)

)
(8.432)
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A(s)P (s) +B(s)Q(s) = C(s) (8.433)

follows that the closed-loop system in Fig. 8.22 is BIBO stable if and only if
1/C(s) is proper and Hurwitz-stable.

8.7.2 Parametrisation of Stabilising Controllers

A controller with transfer function R(s) that guarantees the BIBO closed-loop
stability for a controlled system G(s) is called a stabilising controller for the
given controlled system.

Suppose that the controlled system gives rise to the transfer function

G(s) =
B(s)
A(s)

(8.434)

and B(s), A(s) ∈ Fps are coprime. If some controller with Q′(s), P ′(s) ∈ Fps

R(s) =
Q′(s)
P ′(s)

(8.435)

stabilises the controlled system (8.434) then

C(s) = A(s)P ′(s) +B(s)Q′(s) (8.436)

and 1/C(s) is proper and Hurwitz-stable.
Equation (8.436) can be divided by a stable factor C(s) and yields

A(s)
P ′(s)
C(s)

+B(s)
Q′(s)
C(s)

= 1 (8.437)

Introducing the notation

P (s) =
P ′(s)
C(s)

, Q(s) =
Q′(s)
C(s)

(8.438)

follows that P (s), Q(s) are a solution of the equation

A(s)P (s) +B(s)Q(s) = 1 (8.439)

where Q(s), P (s) ∈ Fps.
Stabilising controllers from (8.436) and (8.439) are the same as

R(s) =
Q′(s)
P ′(s)

=
Q(s)
P (s)

(8.440)

where P (s) = 0. Equation (8.439) is a Diophantine equation that has infinity
of solutions. These solutions can be easily parametrised.

We will now show that all controllers that stabilise the controlled system
are solutions of equation (8.439) of the form
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P (s) = X(s) −B(s)T (s), Q(s) = Y (s) +A(s)T (s) (8.441)

where X(s) and Y (s) is a particular solution of the equation and T (s) ∈ Fps.
This follows from the substitution of P (s) and Q(s) from (8.441) into (8.439)

A(s)(X(s) −B(s)T (s)) +B(s)(Y (s) +A(s)T (s)) = 1 (8.442)

or

A(s)X(s) +B(s)Y (s) = 1 (8.443)

This is a very important result as it gives parametrisation of the set of all
stabilising controllers for the controlled system G(s) of the form

R(s) =
Y (s) +A(s)T (s)
X(s) −B(s)T (s)

(8.444)

where Y (s),X(s) ∈ Fps is arbitrary particular solution of the equation

A(s)X(s) +B(s)Y (s) = 1 (8.445)

and T (s) ∈ Fps under the condition that X(s) −B(s)T (s) = 0 holds.
Substracting (8.439) from (8.445) gives

A(s)(X(s) − P (s)) +B(s)(Y (s) −Q(s)) = 0 (8.446)

As A(s), B(s) are coprime, A(s) divides Y (s)−Q(s) and B(s) divides X(s)−
P (s). Denote

Q(s) − Y (s)
A(s)

= T (s) (8.447)

Then from (8.446) follows

P (s) = X(s) −B(s)T (s) (8.448)

Similarly, denote

X(s) − P (s)
B(s)

= T (s) (8.449)

Then from (8.446) follows

Q(s) = Y (s) +A(s)T (s) (8.450)

This shows that any solution of (8.439) is of the form (8.448) and (8.450) for
some T (s) ∈ Fps.

The detailed block diagram of the parametrised controller in the closed-
loop system is shown in Fig. 8.23.
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Fig. 8.23. Block diagram of the parametrised controller

8.7.3 Parametrised Controller in the State-Space Representation

Consider a minimal realisation of the controlled system

G(s) = C(sI − A)−1B (8.451)

State feedback controller with observer is then given as

˙̂x(t) = (A − BK − LC)x̂(t) + Ly(t) (8.452)

u(t) = −Kx̂(t) (8.453)

This controller is shown in Fig. 8.24. It is not difficult to show that this
diagram is the same as the controller in Fig. 8.25.

y
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u

s
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B

L

A
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K−

-

Fig. 8.24. State feedback controller with observer
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Fig. 8.25. State parametrised controller

8.7.4 Parametrisation of Transfer Functions of the Closed-Loop
System

The mathematical model of the closed-loop system in Fig. 8.23 can be written
as

(
u(s)
y(s)

)
=
(
A(s)(Y (s) +A(s)T (s)) A(s)(X(s) −B(s)T (s))
B(s)(Y (s) +A(s)T (s) B(s)(X(s) −B(s)T (s))

)(
w(s)
du(s)

)

(8.454)

Optimal control design for the controlled system with transfer function G(s)
can be performed in two steps. In the first a stabilising controller is found and
in the second a parameter T (s) is chosen such that the performance of the
closed-loop system is optimised. The cost function can be for example LQ.
This procedure will be explained in the following example.

Example 8.8:
Consider a first order controlled system with the transfer function

G(s) =
1

s+ 1

We want to find a stabilising controller for this system. Based on it, the
set of all stabilising controllers will be parametrised. Finally one controller
will be chosen that rejects asymptotically step disturbance.
Numerator and denominator of the process in fractional representation
can for example be given as

A(s) =
s+ 1
s+ c0

, B(s) =
1

s+ c0

where A(s), B(s) ∈ Fps. Equation (8.445) is of the form

s+ 1
s+ c0

X(s) +
1

s+ c0
Y (s) = 1
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One particular solution is X(s) = 1, Y (s) = c0 − 1. This specifies one
stabilising controller. The set of all stabilising controllers is then of the
form

R(s) =
c0 − 1 +

s+ 1
s+ c0

T (s)

1 − 1
s+ c0

T (s)

The transfer function of the parametrised closed-loop system for input
variable du and output variable e = −y is

Gedu
(s) = −B(s)(X(s) −B(s)T (s))

Substituting for B(s) = 1
s+c0

and X(s) = 1 gives

Gedu
(s) = − 1

s+ c0

(
1 − 1

s+ c0
T (s)

)
=

−s− c0 + T (s)
(s+ c0)2

The final value theorem implies that the steady-state control error is zero
if

lim
s→0

Gedu
(s) = 0

or if

T (s) = c0

If this relation is substituted into the transfer function of the parametrised
controller then

R(s) = 2c0 − 1 +
c20
s

This is a PI controller with one design parameter. If c0 = 0.5 then the
response to the unit step change of the disturbance is shown on Fig. 8.26.

8.7.5 Dual Parametrisation

It is not important from the parametrisation point of view which system in
the closed-loop system is parametrised. So far, the controller transfer function
was parametrised. If the controlled system is parametrised we speak about
the dual parametrisation.

Consider again the closed-loop system in Fig. 8.22. The controlled system
is described by transfer function

G(s) =
B(s)
A(s)

(8.455)
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Fig. 8.26. Closed-loop system response to the unit step disturbance on input

where B(s), A(s) ∈ Fps are coprime. This controlled system can be stabilised
by a controller with transfer function

R(s) =
Y (s)
X(s)

(8.456)

where Y (s),X(s) ∈ Fps are coprime. The set of all controlled systems sta-
bilised by the controller (8.456) is given as

B(s) +X(s)S(s)
A(s) − Y (s)S(s)

(8.457)

where S(s) ∈ Fps. The detailed block diagram of the parametrised controlled
system is given in Fig. 8.27.

Dual parametrisation is suitable for identification of the controlled system
in the closed-loop. Here, not the whole transfer function has to be identified.
Instead, only some deviation S(s) from nominal process can be estimated.
Moreover, the problem of estimation of S(s) represents only an open-loop
identification problem as

z(s) = S(s)x(s) (8.458)

and x(t), z(t) can be expressed in terms of u(t), y(t) that are measurable.
From Fig. 8.27 follows that u(s), y(s) are given as

u(s) = (A(s) − Y (s)S(s))x(s) (8.459)

y(s) = (B(s) +X(s)S(s))x(s) (8.460)

Multiplying (8.459) by X(s), (8.460) by Y (s) and summing them gives
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Fig. 8.27. Parametrised controlled system in the closed-loop system

(A(s)X(s) +B(s)Y (s))x(s) = X(s)u(s) + Y (s)y(s) (8.461)

or

x(s) = X(s)u(s) + Y (s)y(s) (8.462)

From Fig. 8.27 also follows that

A(s)x(s) = u(s) + Y (s)z(s) (8.463)
B(s)x(s) = y(s) −X(s)z(s) (8.464)

Let us multiply (8.463) by B(s), (8.464) by Y (s) and substract (8.464)
from (8.463). This yields

(A(s)X(s) +B(s)Y (s))z(s) = A(s)y(s) −B(s)y(s) (8.465)

or

z(s) = A(s)y(s) −B(s)y(s) (8.466)

The data needed for identification based on equation (8.458) are obtained
from (8.462) and (8.466).

We note that if both controller and plant are parametrised then the relation
between Youla-Kučera parameters T (s), S(s) can significantly simplify the
control design problem.

8.7.6 Parametrisation of Stabilising Controllers for Multivariable
Systems

Matrices B̃R(s), ÃR(s) with elements in Fps (B̃R(s), ÃR(s) ∈ Fps) are rigth
coprime if
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X̃L(s)ÃR(s) + Ỹ L(s)B̃R(s) = I (8.467)

where Ỹ L(s), X̃L(s) ∈ Fps. The left coprimeness of matrices ÃL(s) and
B̃L(s) with matrix elements in Fps can be similarly defined.

The same procedure as for singlevariable systems can be performed to show
that the multivariable closed-loop system with structure given in Fig. 8.22 can
be parametrised to guarantee BIBO stability.

Consider a controlled system with a matrix transfer function

G(s) = Ã−1
L (s)B̃L(s) = B̃R(s)Ã−1

R (s) (8.468)

where ÃL(s), B̃L(s) ∈ Fps are left coprime and B̃R(s), ÃR(s) ∈ Fps are right
coprime. The set of all stabilising controllers is given as the matrix of transfer
functions

R(s) = (Ỹ R(s) + ÃR(s)T̃ (s))(X̃R(s) − B̃R(s)T̃ (s))−1 (8.469)

or

R(s) = (X̃L(s) − T̃ (s)B̃L(s))−1(Ỹ L(s) + T̃ (s)ÃL(s)) (8.470)

where Ỹ L(s), X̃L(s) ∈ Fps and Ỹ R(s), X̃R(s) ∈ Fps are solution of the
equation

(
ÃL(s) −B̃L(s)
Ỹ L(s) X̃L(s)

)(
X̃R(s) B̃R(s)
−Ỹ R(s) ÃR(s)

)
= I (8.471)

The Youla-Kučera parameter T̃ (s) ∈ Fps has to be chosen such that X̃L(s)−
T̃ (s)B̃L(s) and X̃R(s) − B̃R(s)T̃ (s) be non-singular.

8.7.7 Parametrisation of Stabilising Controllers for Discrete-Time
Systems

Parametrisation of controllers in the discrete-time domain has to take into
account some specific issues.

A system described by a proper rational transfer function F (z) is BIBO
stable if and only if it is Schur-stable. This implies that the transfer function
does not contain poles in the region |z| ≥ 1.

To have a causal discrete-time closed-loop system and assuming proper
transfer function of the controller, the transfer function of the controlled sys-
tem has to be strictly proper. Stable rational functions in the z operator that
have all poles in the origin z = 0 are in fact polynomials in z−1.

Consider a transfer function of a discrete-time system of the form

G(z) =
b0z + b1

z2 + a1z + a2
(8.472)
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If we choose a stable denominator of the fractional representation as z2 then
the transfer function can be written as

G(z) =
b0z

−1 + b1z
−2

1 + a1z−1 + a2z−2
(8.473)

All relations for calculation of the parametrisation of all stabilising con-
trollers are the same for continuous and discrete-time systems. The difference
between them lies in the fact that continuous-time systems are represented by
stable fractions in s whereas discrete-time systems can be defined by polyno-
mials in z−1.

It can be shown that the optimal feedback control can be interpreted as the
pole placement design problem. From the nature of continuous-time systems
follows that the response of the closed-loop system to a step change in input
settles theoretically in infinity. The discrete-time control however, makes it
possible to force the output to follow the reference value in a finite time.

Dead-Beat Control

Consider the feedback closed-loop system shown in Fig. 8.28. The transfer
function of the controlled process is assumed to be strictly proper. We want
to design such a controller that the control error be zero after a finite time.
When it is found, the Youla-Kučera parametrisation makes it possible to find
a set of such controllers and to choose among them the one that generates the
fastest response. Such a controller is called the dead-beat controller.

)(zR
e u y

−

w
)(zG11

1
−− z

Fig. 8.28. Discrete-time feedback closed-loop system

The controller consists of two parts in series. The first part with the trans-
fer function R(z) will be calculated by the control design, the second part is
fixed and guarantees the integrating properties of the controller.

The controlled process can be characterised by the fractional representa-
tion

G(z−1) =
B(z−1)
A(z−1)

(8.474)

Fractional representation of the controller is of the form

R(z−1) =
Q(z−1)
P (z−1)

(8.475)
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Integral part of the controller has been in the design procedure moved to the
controlled system GI = G/(1 − z−1). All poles of the closed-loop system are
placed in origin z = 0 for dead-beat control. The tracking error is given as

e(z−1) =
1

1 +GI(z−1)R(z−1)
w(z−1) (8.476)

or

e(z−1) = (1 − z−1)A(z−1)P (z−1)w(z−1) (8.477)

where

(1 − z−1)A(z−1)P (z−1) +B(z−1)Q(z−1) = 1 (8.478)

Transfer functions of all stabilising controllers are given as

R(z−1) =
Q(z−1)
P (z−1)

=
Y (z−1) + (1 − z−1)A(z−1)T (z−1)

X(z−1) −B(z−1)T (z−1)
(8.479)

If reference sequence is given as a unit step change then

w(z−1) =
1

1 − z−1
(8.480)

and the control error that is given as

e(z−1) = A(z−1)
(
X(z−1) −B(z−1)T (z−1)

)
(8.481)

is a polynomial. Equation (8.479) characterises a set of finite response con-
trollers with a parameter T (z−1).

The dead-beat controller that generates zero control error in the least
number of steps is obtained when

T (z−1) = 0 (8.482)

Example 8.9: The dead-beat controller for a continuous-time second order www
system

Consider a continuous-time system with a transfer function

G(s) =
Z2

(T1s+ 1)(T2 + 1)

where Z2 is the process gain and T1, T2 are time constants. The transfer
function can be rewritten as

G(s) =
bs0

(as2s2 + as1s+ 1)

where bs0 = Z2, as2 = T1T2, as1 = T1 + T2.
The continuous-time system will be controlled by the feedback controller
(Fig.8.28). The controller R(z−1) has to guarantee
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1. finite time response of the closed-loop system,
2. finite time response of the closed-loop system in the minimum number

of steps.
The discretised transfer function of the controlled system is given in the
fractional representation as

G(z−1) =
b1z

−1 + b2z
−2

1 + aI1z−1 + aI2z−2

where

b1 = Z2

(
−d1 − d2 −

T1(1 + d2)
T2 − T1

+
T2(1 + d1)
T2 − T1

)

b2 = Z2

(
d1 + d2 +

T1d2

T2 − T1
− T2d1

T2 − T1

)

d1 = e−
Ts
T1

d2 = e−
Ts
T2

aI1 = −d1 − d2

aI2 = d1d2

and Ts is the sampling period.
The discrete-time transfer function of the controlled system in series with
the discrete-time integrator is given as

Gi(z−1) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 + a3z−3

where a1 = aI1 − 1, a2 = aI2 − aI1, a3 = −aI2.
The minimum degree controller has the structure of the transfer function
given by (8.479) where polynomials

Y (z−1) = y0 + y1z
−1 + y2z

−2, X(z−1) = x0 + x1z
−1

are solution of the Diophantine equation

(1 + a1z
−1 + a2z

−2 + a3z
−3)X(z−1) + (b1z−1 + b2z

−2)Y (z−1) = 1

If T (z−1) = t0 then the controller with the transfer function

R(z−1) =
y0 + t0 + (y1 + t0a1)z−1 + (y2 + t0a2)z−2 + t0a3z

−3

x0 + (x1 − t0b1)z−1 − t0b2z−2

guarantees the finite-time response in four sampling steps.
If T (z−1) = 0, the controller with the transfer function

R(z−1) =
y0 + y1z

−1 + y2z
−2

x0 + x1z−1

guarantees finite-time response in a minimum time, i. e. in three sampling
steps.
MATLAB Program 8.2 implements the whole finite-time design for pa-
rameters Z2 = 2, T1 = 1, T2 = 2, Ts = 1 and T (z−1) = −1.
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Program 8.2 (Calculation of the dead-beat controller)
(requires the Polynomial Toolbox for MATLAB)
z = 2; t1 = 1; t2 = 2; ts = 1;
G = tf(z, conv([t1 1],[t2 1]));
gz = c2d(G, ts);
zinteg = tf([1 0],[1 -1], ts);

% convert to Polynomial toolbox format manually
[b,a]=tfdata(gz, ’v’);
zii = [1; zi; zi^2];
b = b * [1; zi; zi^2];
a = a * [1; zi; zi^2];
a = a * (1-zi); % add integrator

%Design the DB controller
[x0,y0]=axbyc(a,b,1);
tt = -1;
x = x0 - b * tt;
y = y0 + a * tt;

Fig. 8.29 shows the Simulink diagram using Program 8.2 for finite-time
control. Fig. 8.30a shows trajectories of the manipulated and controlled
variable of the continuous-time second order system with the finite-time
control design and for reference w(t) = 1(t).
Fig. 8.30b shows trajectories of the manipulated and controlled variable
of the same system with the dead-beat control design.
We can notice that the non-zero parameter T (z−1) influences for example
magnitude of the manipulated variable. The price paid for it is a longer
duration of the closed-loop response. The minimum number of non-zero
values of the control error is 3, a constant T (z−1) gives one step more. The
same situation is for the manipulated variable where there are at least 4
non-zero values and one more for a constant T (z−1).
It is still possible for our second order system to find a dead-beat controller
that gives a faster response with smaller number of non-zero control error
values. This can be obtained using a two-degrees-of-freedom controller.
The minimum number of non-zero values of the control error is 2 and the
number of non-zero values of control increments is 3.
If the condition on finite number of control increment steps is relaxed to
a asymptotically stable sequence then it is possible for stable systems to
obtain the zero control error after one sampling step.
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data

To Workspace

Scope
G

Process

zinteg

Discrete
Integrator

Y(z^−1) / X(z^−1)

Controller

1

Constant

w

u

y

Fig. 8.29. Simulink diagram for finite-time tracking of a continuous-time second
order system

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

5
a

t

u,
y

u
y

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

5
b

t

u,
y

u
y

Fig. 8.30. Tracking in (a) finite (b) the least number of steps

8.8 LQ Control with Observer, State-Space
and Polynomial Interpretations

In Section 8.6 the state feedback control with observer was analysed and it is
shown in Fig. 8.13. One of the results is the separation theorem saying that
state feedback can be designed independently on the observer part.

Eigenvalues of the closed-loop system are composed of eigenvalues of the
matrix A − BK (state feedback without observer) and of eigenvalues of the
matrix A − LC. LQ control is then designed as follows:

1. LQ calculation of K,
2. design of L to guarantee stability,
3. state feedback control for singlevariable systems is implemented using the

control law

u = Kx̂ (8.483)

Poles of the closed-loop system are determined by the poles of

o(s) = det (sI − (A − LC)) (8.484)
f(s) = det (sI − (A − BK)) (8.485)
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Based on the results in the state-space domain we will now derive LQ control
in the polynomial domain.

8.8.1 Polynomial LQ Control Design with Observer
for Singlevariable Systems

Consider a linear reachable and observable singlevariable system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (8.486)
y(t) = Cx(t) (8.487)

and a cost function

I =
1
2

∫ ∞

0

(
xT (t)Qx(t) + u2(t)

)
dt (8.488)

where Q is a real symmetric positive semidefinite matrix. LQ control prob-
lem consists in finding a control law (u = function(x)) such that guarantees
asymptotic stability of the closed-loop system and minimisation of I for any
x0.

As it was shown in Section 8.2, the control law is of the form

u = −Kx (8.489)

where

K = BT P (8.490)

and P is a symmetric positive semidefinite solution of the matrix Riccati
equation

PA + AT P − PBBT P = −Q (8.491)

Deterministic state estimate is given as

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t) − Cx̂) , x̂(0) = x̂0 (8.492)

Matrix L is chosen in such a way that the estimation error

e(t) = x(t) − x̂(t) (8.493)

with initial condition

e(0) = x0 − x̂0 (8.494)

asymptotically converges to origin.
Control law (8.489) cannot directly be used. It was shown in Section 8.6

that polynomial implementation of the observer gives the control law of the
form
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u = ũ (8.495)

where

ũ = −Kx̂ (8.496)

Polynomial solution of the deterministic control design with controller input
being y can be obtained as a combination of polynomial controller and ob-
server.

Theorem 8.5 (LQ control with observer). Consider a reachable and
observable singlevariable system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (8.497)
y(t) = Cx(t) (8.498)

where

(sI − A)−1
B =

BRs(s)
a(s)

(8.499)

C (sI − A)−1
B =

b(s)
a(s)

(8.500)

and where a(s) is the characteristic polynomial of the matrix A and polyno-
mials a(s), b(s) are coprime.

The control law based on state estimation and minimising the cost function
I is given as

u = −q(s)
p(s)

y (8.501)

where polynomials p(s), q(s) are a solution of the equation

a(s)p(s) + b(s)q(s) = o(s)f(s) (8.502)

Polynomial p(s) is of degree n if stable polynomial o(s) is of degree n (full
order observer case), or is of degree n−1 is stable polynomial o(s) is of degree
n− 1 (reduced order observer case). Polynomial q(s) is of degree n− 1. Stable
monic polynomial f(s) is defined as

a(−s)a(s) + BRs(−s)QBRs(s) = f(−s)f(s) (8.503)

Proof. The proof of Theorem 8.3 shows that the characteristic polynomial
f(s) of the closed-loop matrix A−BK and the controller gain K satisfy the
following relation

a(s) + KBRs(s) = f(s) (8.504)

where the stable monic polynomial f(s) is solution of spectral factorisation
equation (8.503). If f(s) exists, it is unique. Matrix K from (8.504) is also
solution of the Riccati equation
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PA + AT P − PBBT P = −Q + sP − sP (8.505)

This equation can be manipulated as follows(
−sI − AT

)
P + P (sI − A) = Q − PBBT P (8.506)

BT
(
−sI − AT

)−1 (−sI − AT
)
P (sI − A)−1

B

+ BT
(
−sI − AT

)−1
P (sI − A) (sI − A)−1

B

= BT
(
−sI − AT

)−1 (
Q − PBBT P

)
(sI − A)−1

B (8.507)

BT P (sI − A)−1
B + BT

(
−sI − AT

)−1
PB

= BT
(
−sI − AT

)−1 (
Q − PBBT P

)
(sI − A)−1

B (8.508)

As (8.499) holds, equation (8.508) can be written as

BT PBRs(s)a(−s) + BT
Rs(−s)PBa(s) = BT

Rs(−s)
(
Q − PBBT P

)
BRs

(8.509)

KBRs(s)a(−s) + BT
Rs (−s) KTa(s)

= BT
Rs(−s)QBRs(s) − BT

Rs (−s) KT KBRs(s) (8.510)

a(−s)a(s) + BT
Rs(−s)KTa(s) + KBRs(s)a(−s) + BT

Rs(−s)KT KBRs(s)

= a(−s)a(s) + BT
Rs(−s)QBRs(s) (8.511)

(
a(−s) + BT

Rs (−s) KT
)
(a(s) + KBRs(s))

= a(−s)a(s) + BT
Rs(−s)QBRs(s) (8.512)

Considering (8.504) shows that (8.512) is the same as (8.503) which proves
one part of the theorem.

The proof of Theorem 8.3 also gives equation of the asymptotic ob-
server (8.310) where polynomials on this equation are solution of (8.320).

Substituting Kx̂ from (8.310) into (8.496) yields

u = −r(s)
o(s)

u− q(s)
o(s)

y (8.513)

If

p(s) = o(s) + r(s) (8.514)

then (8.513) is of the form (8.501). As (8.302), (8.317), (8.514) hold, equa-
tion (8.310) can be transformed into (8.502). This concludes the proof. 	
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Example 8.10:
Consider a controlled process with transfer function of the form

G(s) =
b0

s+ a0

The objective is to find for this system the transfer function of the feedback
LQ controller with state observer. It is required that the controller contains
an integration term. Therefore, we consider in the cost function (8.488)
derivative u̇(t) in place of u(t) and the weighting matrix Q is reduced to
Q = Q1.
From Theorem 8.5 follows that the controller transfer function is in our
case given as

R(s) =
q1 + q0

s(p1s+ p0)

where

p0 = o0 + f1 − a0p1 p1 = 1

q0 =
o0f0
b0

q1 =
o0f1 + f0 − a0p0

b0

are solutions of the Diophantine equation

(s+ a0)s(p1s+ p0) + b0(q1s+ q0) = o(s)f(s)

and

o(s) = s+ o0

is a stable monic polynomial. Coefficients of the stable monic polynomial

f(s) = s2 + f1s+ f0

follow from the spectral factorisation equation

(−s+ a0)(−s)(s+ a0)s+
(
b0 −b0s

)(Q1 0
0 0

)(
b0
b0s

)
= f(−s)f(s)

and are given as

f0 = b0
√
Q1, f1 =

√
a2
0 + 2f0

The observer polynomial o(s) can be suitably chosen according to further
requirements on control performance.
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8.8.2 Polynomial LQ Design with State Estimation
for Multivariable Systems

Consider a controllable and observable multivariable system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (8.515)
y(t) = Cx(t) (8.516)

and a cost function

I =
1
2

∫ ∞

0

(xT (t)Qx(t) + uT (t)u(t))dt (8.517)

LQ control law is implemented as

u(t) = −Kx̂(t) (8.518)

where

K = BT P (8.519)

and P is a symmetric positive semidefinite solution of the algebraic Riccati
equation

PA + AT P − PBBT P = −Q (8.520)

Deterministic state estimate is given as

ẋ(t) = Ax̂(t) + Bu(t) + L(y(t) − Cx̂(t)) , x̂(0) = x0 (8.521)

As (8.398) holds then

K = X−1
L Y L (8.522)

where XL, Y L are a solution of the Diophantine equation

XLAR(s) + Y LBRs(s) = F R(s) (8.523)

This was derived in polynomial design of pole placement controllers for multi-
variable systems. LQ control can be interpreted as the pole placement design.
This implies that we need to determine a matrix F R(s) such that LQ cost
function is minimised. To find such a matrix, we will transform the Riccati
equation as follows.

Adding sP to either side of equation (8.520) gives
(
−sI − AT

)
P + P (sI − A) = Q − PBBT P (8.524)

Multiplying from the left by BT (−sI−AT )−1, from the right by (sI−A)−1B
and using (8.522), (8.398) gives



386 8 Optimal Process Control

BT
Rs(−s)KT AR(s) + AT

R(−s)KBRs(s) + BT
Rs(−s)KT KBRs(s)

= BT
Rs(−s)QBRs(s) (8.525)

Adding AT
R(−s)AR(s) to either side of equation yields

(AT
R(−s) + BT

Rs(−s)KT )(AR(s) + KBRs(s))

= AT
R(−s)AR(s) + BT

Rs(−s)QBRs(s) (8.526)

From (8.405) follows that LQ design F R(s) needed for determination of K
from (8.523) is a solution of the spectral factorisation equation

F T
R(−s)F R(s) = AT

R(−s)AR(s) + BT
Rs(−s)QBRs(s) (8.527)

All subsequent steps of the multivariable LQ control design are the same as
in the pole placement design. Thus, L is determined from (8.411) and the
controller transfer function matrix from (8.413).

Example 8.11: Multivariable LQ controlwww
Consider a continuous-time multivariable controlled system with the
transfer function matrix

G(s) = A−1
L (s)BL(s)

where

AL(s) =
(

1 + 0.3s 0.5s
0.1s 1 + 0.7s

)
, BL(s) =

(
0.2 0.4
0.6 0.8

)

The task is to design LQ controller with observer. It is required that the
controller contains an integration term.
The problem can be solved using the relations given above and it is shown
in Program 8.3. We use the Polynomial toolbox for MATLAB.

Program 8.3 (LQ controller design – optlq22.m)
%PLANT
al = [1+.3*s, .5*s; .1*s 1+0.7*s];
bl = [.2 .4;.6 .8];
bl = pol(bl);
[a,b,c,d] = lmf2ss(bl,al);
G = ss(a,b,c,d);

%CONTROLLER
als = al*s;
[As,Bs,Cs,Ds] = lmf2ss(bl,als);

[Brs,Ar] = ss2rmf(As,Bs,eye(4));
Q =10*eye(4);
Fr = spf(Ar’*Ar+Brs’*Q*Brs);
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[Xl,Yl] = xaybc(Ar,Brs,Fr);
K=mldivide(Xl,Yl);
K=lcoef(K);
[Bls,Al] = ss2lmf(As,eye(4),Cs);
%V=10*eye(4);
%Ol = spf(Al*Al’+Bls*V*Bls’);
Ol =[-3.1-3.4*s-0.18*s^2 -0.5-0.58*s-0.011*s^2;

-0.5-0.62*s-0.055*s^2 3.1+4*s+0.9*s^2];

[Xr,Yr] = axbyc(Al,Bls,Ol);
L=mrdivide(Yr,Xr);
L=lcoef(L);
acp = As-L*Cs-Bs*K;
bcp = L;
ccp = K;
dcp = zeros(2);

[brp,arp]=ss2rmf(acp,bcp,ccp,dcp);
[ac,bc,cc,dc] = rmf2ss(brp,arp*s)

The closed-loop system is implemented in Simulink scheme optlq22s.mdl
shown in Fig. 8.31.
Fig. 8.32a,b shows trajectories of input and output variables of the con-
trolled process.

To Workspace

data

Step ScopeProcess

G

Controller

x’ = Ax+Bu
 y = Cx+Du

w

w yu

Fig. 8.31. Scheme optlq22s.mdl in Simulink for multivariable continuous-time LQ
control

Note 8.6. Program 8.3 describes MIMO LQ control design. However, it is writ-
ten to be used in PA, LQG, or H2 control.

If pole assignment is desired, we comment the line in the program that
computes spectral factorisation of the matrix F R

Fr = spf(Ar’*Ar+Brs’*Q*Brs)
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Fig. 8.32. Trajectories of (a) output, and setpoint variables, (b) input variables of
the multivariable continuous-time process controlled with LQ controller

and substitute it with a corresponding matrix of appropriate dimensions that
places the feedback poles.

To calculate LQG controller (see Section 8.9.2), we uncomment lines with
the second spectral factorisation equation

V=10*eye(4)
Ol = spf(Al*Al’+Bls*V*Bls’)

H2 controller can be implemented similarly if differences between right
hand sides of Riccati equations (8.539), (8.576), (8.607), and (8.609) are taken
into account.

8.9 LQG Control, State-Space and Polynomial
Interpretation

Based on the state LQG control with the Kalman filter we will derive expres-
sions for polynomial LQG systems for both singlevariable and multivariable
systems.

8.9.1 Singlevariable Polynomial LQG Control Design

Consider a linear singlevariable controllable and observable system

ẋ(t) = Ax(t) + Bu(t) + ξx(t) (8.528)
y(t) = Cx(t) + ξ(t) (8.529)

where ξx(t) is a random vector process with normal distribution and

E {ξx(t)} = 0 (8.530)
E
{
ξx(t)ξT

x (τ)
}

= V δ (t− τ) , V ≥ 0 (8.531)



8.9 LQG Control, State-Space and Polynomial Interpretation 389

ξ(t) a random vector process with normal distribution and with

E {ξ(t)} = 0 (8.532)
E {ξ(t)ξ (τ)} = δ (t− τ) , (8.533)

We assume thatξx(t) and ξ(t) are uncorrelated in time.
Linear Quadratic Gaussian (LQG) problem consists in finding a control

law (u = function(x)) such that asymptotic stability of the closed-loop system
is guaranteed and the cost function I is minimised where

I = E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
t0 → −∞
tf → ∞

1
tf − t0

∫ tf

t0

(
xT (t)Qx(t) + u2(t)

)
dt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.534)

and Q is a real symmetric positive semidefinite matrix.
The separation theorem says that it is possible to solve LQG problem by

solving the deterministic LQ problem at first

ẋ(t) = Ax(t) + Bu(t) (8.535)

with the cost function

I =
1
2

∫ ∞

0

(
xT (t)Qx(t) + u2(t)

)
dt (8.536)

This results in a control law of the form

u(t) = −Kx(t) (8.537)

where

K = BT P (8.538)

and P is a symmetric positive semidefinite solution (P T = P ≥ 0) of the
algebraic Riccati equation

PA + AT P − PBBT P = −Q (8.539)

In the second step, the state x̂ of the system (8.528), (8.529) is estimated
using the Kalman filter

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t) − Cx̂(t)) (8.540)

where

L = NCT (8.541)

and N is a symmetric positive semidefinite solution (NT = N ≥ 0) of the
algebraic Riccati equation
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AN + NAT − NCT CN = −V (8.542)

Finally, the control law is implemented as

u(t) = −Kx̂(t) (8.543)

The LQG control is illustrated in Fig. 8.33.

-

u y

x̂

K

ξ+=
++=

Cxy

ξBuAxx x&

Kalman filter

xξ ξ

Fig. 8.33. Block diagram of LQG control

Theorem 8.7 (LQG control). Consider a controllable and observable sin-
glevariable system

ẋ(t) = Ax(t) + Bu(t) + ξx(t) (8.544)
y(t) = Cx(t) + ξ(t) (8.545)

where

(sI − A)−1
B =

BRs(s)
a(s)

(8.546)

a(s), BRs(s) are right coprime for a reachable system,

C (sI − A)−1 =
BLs(s)
a(s)

(8.547)

a(s), BLs(s) are left coprime for an observable system,

C (sI − A)−1
B =

b(s)
a(s)

(8.548)
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where a(s) is characteristic polynomial of the matrix A and polynomials a(s),
b(s) are coprime.

The control law based on the state estimate from the Kalman filter and
state feedback (8.543) is defined as

u = −q(s)
p(s)

y (8.549)

and polynomials p(s), q(s) are solution of the Diophantine equation

a(s)p(s) + b(s)q(s) = o(s)f(s) (8.550)

Polynomial p(s) is of degree n and polynomial q(s) is of degree n − 1. Stable
monic polynomial f(s) is defined from

a(−s)a(s) + BT
Rs(−s)QBRs(s) = f(−s)f(s) (8.551)

Stable monic polynomial o(s) is defined from

a(−s)a(s) + BLs(s)V BT
Ls(−s) = o(s)o(−s) (8.552)

Proof. We will first derive the equation for the polynomial o(s) and the gain
matrix L. Equation (8.547) can be written as

BLs(s) (sI − A) = a(s)C (8.553)

Adding BLs(s)LC to either side of the equation gives

BLs(s) (sI − A) + BLs(s)LC = a(s)C + BLs(s)LC (8.554)
BLs(s) (sI − (A − LC)) = (a(s) + BLs(s)L) C (8.555)

BLs(s)
a(s) + BLs(s)L

= C
adj (sI − (A − LC))
det (sI − (A − LC))

(8.556)

From (8.556) follows that the Kalman gain filter L is a solution of

a(s) + BLs(s)L = o(s) (8.557)

where o(s) is the characteristic polynomial of the estimation matrix A−LC.
Stability of the estimate leads to the conclusion that a(s) + BLs(s)L is a
stable polynomial.

The polynomial o(s) can be found as solution of the spectral factorisation
equation (8.552). If o(s) exists then it is unique.

Matrix L = NCT from (8.557) is in LQG control involved in the Riccati
equation

AN + NAT − NCT CN = −V + sN − sN (8.558)

This can be manipulated as follows
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N
(
−sI − AT

)
+ (sI − A) N = V − NCT CN (8.559)

C (sI − A)−1
N
(
−sI − AT

) (
−sI − AT

)−1
CT

+ C (sI − A)−1 (sI − A) N
(
−sI − AT

)−1
CT

= C (sI − A)−1 (
V − NCT CN

) (
−sI − AT

)−1
CT (8.560)

C (sI − A)−1
NCT + CN

(
−sI − AT

)−1
CT

= C (sI − A)−1 (
V − NCT CN

) (
−sI − AT

)−1
CT (8.561)

From (8.547) follows for equation (8.561)

BLs(s)NCTa(−s) + CNBT
Ls(−s)a(s)

= BLs(s)
(
V − NCT CN

)
BT

Ls (−s) (8.562)

BLs(s)La(−s) + LBT
Ls(−s)a(s) = BLs(s)

(
V − LLT

)
BT

Ls (−s) (8.563)

a(−s)a(s) + BLs(s)La(−s) + L−T BT
Ls(−s)a(s) + BLs (s) LLT BT

Ls(−s)
= a(−s)a(s) + BLs(s)V BT

Ls(−s) (8.564)

(a(s) + BLs(s)L)
(
a(−s) + LT BT

Ls(−s)
)

= a(−s)a(s)+BLs(s)V BT
Ls(−s)
(8.565)

Considering equation (8.557), equation (8.565) is equal to (8.552). This con-
cludes the first part of the proof.

Proof of relations (8.551) and (8.550) is the same as the proof of LQ control
with observer. 	


8.9.2 Multivariable Polynomial LQG Control Design

Consider a multivariable linear controllable and observable system

ẋ(t) = Ax(t) + Bu(t) + ξx(t) (8.566)
y(t) = Cx(t) + ξ(t) (8.567)

where ξx(t) and ξ(t) are random processes uncorrelated in time with normal
distribution, zero mean values, and covariances V , I.

The LQG problem consists in finding a control law (u = function(x)) such
that the asymptotic stability of the closed-loop system is guaranteed and a
the cost function I is minimised where
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I = E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
t0 → −∞
tf → ∞

1
tf − t0

∫ tf

t0

(
xT (t)Qx(t) + uT (t)u(t)

)
dt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.568)

As in the previous section, we first use the separation theorem and solve
deterministic LQ problem for the system

ẋ(t) = Ax(t) + Bu(t) (8.569)

and the cost function

I =
1
2

∫ ∞

0

(
xT (t)Qx(t) + uT (t)u(t)

)
dt (8.570)

that results in the control law of the form

u(t) = −Kx(t) (8.571)

where

K = BT P (8.572)

and P is a symmetric positive semidefinite solution of the algebraic Riccati
equation

PA + AT P − PBBT P = −Q (8.573)

Then, in the next step we estimate the state x̂ for the system (8.566), (8.567)
using the Kalman filter

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t) − Cx̂(t)) (8.574)

where

L = NCT (8.575)

and N is a symmetric positive semidefinite solution of the algebraic Riccati
equation

AN + NAT − NCT CN = −V (8.576)

The LQG control law is implemented as

u(t) = −Kx̂(t) (8.577)

As (8.398) holds, matrix K can be determined from (8.522), (8.523), and
(8.527). From (8.399) follows
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L = Y RX−1
R (8.578)

where XR, Y R are solution of the Diophantine equation

AL(s)XR + BLs(s)Y R = OL(s) (8.579)

OL(s) is a polynomial matrix with detOL(s) = 0 and is given from spectral
factorisation as follows.

Adding sN to either side of (8.576) gives

(sI − A) N + N
(
−sI − AT

)
= V − NCT CN (8.580)

Multiplying from left by C(sI − A)−1 and from right by (−sI − AT )−1CT

and using (8.575), (8.399) yields

AL(s)LT BT
Ls(−s) + BLs(s)LAT

L(−s) + BLs(s)LLT BLs(−s)
= BLs(s)V BT

Ls(−s) (8.581)

Adding AL(s)AT
L(−s) to either side of this equation gives

(AL(s) + BLs(s)L)(AT
L(−s) + LT BT

Ls(−s))
= AL(s)AT

L(−s) + BLs(s)V BT
Ls(−s) (8.582)

From (8.410) follows that the matrix OL(s), needed in LQG control for de-
termination of L from (8.579) can be found from the spectral factorisation
equation

OL(s)OT
L(−s) = AL(s)AT

L(−s) + BLs(s)V BT
Ls(−s) (8.583)

The rest of the multivariable LQG design is the same as the multivariable
pole placement design.

8.10 H2 Optimal Control

Robustness of the LQG control can be improved by changing the design to
feedback controller with integral action in the sense of the H2 norm minimi-
sation. This design is more general than the LQG control because it removes
some of its assumptions on properties of random sources as normal distribu-
tion that does not hold in general. However, it can be shown that LQG control
is a special case of more general H2 problem.

The LQG cost function is defined as

I = E
{
xT (t)Qx(t) + uT (t)u(t)

}
(8.584)

H2 optimisation removes stochastic aspects from the controller design. To
show this, we will transform the LQG control into a standard control config-
uration.
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Define a new vector input v as
(

ξx(t)
ξ(t)

)
=
(

B1

D21

)
v(t) (8.585)

where ξx(t) and ξ(t) are defined by (8.220), (8.226). The new output vector
is similarly defined as

z(t) =
(
C1 D12

)(x(t)
u(t)

)
(8.586)

Equations of the controlled system can thus be transformed as

ẋ(t) = Ax(t) + B1v(t) + Bu(t) (8.587)
z(t) = C1x(t) + D11v(t) + D12u(t) (8.588)
y(t) = Cx(t) + D21v(t) + D22u(t) (8.589)

This standard control configuration is shown in Fig. 8.34. G(s) represents the
generalised controlled process. Elements of the input vector v can in general be
disturbances, measurement noise or reference inputs. Vector z represents the
error of control, y is the vector of measured outputs, and u is the manipulated
variable vector.

v z

u y

G(s)

R(s)

Fig. 8.34. Standard control configuration

Transfer function matrix of the generalised process is given as

G(s) =
(

G11(s) G12(s)
G21(s) G22(s)

)
(8.590)

where

G11(s) = C1 (sI − A)−1
B1 + D11 (8.591)

G12(s) = C1 (sI − A)−1
B + D12 (8.592)

G21(s) = C (sI − A)−1
B1 + D21 (8.593)

G22(s) = C (sI − A)−1
B + D22 (8.594)

Following assumptions concerning G(s) are made.
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A1: Pair (A,B1) or (A,B) is stabilisable, i. e. there is such a matrix K1 or
K2 that matrix (A + B1K1) or (A + BK2) is square and stable.

A2: Pair (A,C1) or (A,C) is detectable, i. e. there is such a matrix L1 or L2

that matrix (A + L1C1) or (A + L2C) is square and stable.
A3: Following relations hold:

D11 = 0, D22 = 0 (8.595)

DT
12C1 = 0, DT

12D12 = I (8.596)

B1D
T
21 = 0, D21D

T
21 = I (8.597)

Assumptions A1 and A2 are needed to guarantee the existence of a stabilis-
ing controller. The third assumption is needed to guarantee the existence of
suitable solutions of Riccati equations for the H2 norm minimisation.

If equations (8.586), (8.595), (8.596), and (8.597), as well as

CT
1 C1 = Q (8.598)

hold then LQG cost function can be written as

I = E
{
zT (t)z(t)

}
(8.599)

From Fig. 8.34 follows

z = F (s)v (8.600)

where F (s) is the closed-loop transfer function matrix

F (s) = G11(s) + G12(s) (I − R(s)G22(s))
−1

R(s)G21(s) (8.601)

If v is white noise with the covariance matrix equal to I and if the closed-loop
system is stable then

E
{
zT (t)z(t)

}
=

1
2π

tr
∫ ∞

−∞
F T (−jω) F (jω) dω (8.602)

E
{
zT (t)z(t)

}
=

1
2πj

tr
∫

F T (−s) F (s)ds (8.603)

H2 – norm of a stable transfer function matrix F (s) is given as

‖F ‖2 =
(

1
2π

tr
∫ ∞

−∞
F T (−jω) F (jω) dω

) 1
2

(8.604)

From this follows that LQG optimisation is equivalent to H2 norm minimisa-
tion of the transfer function matrix F .

If assumptions A1., A2., A3. hold, the H2 optimal controller exists and is
unique for the controlled system (8.590) and is defined as
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R(s) = −K (sI − A + LC + BK)−1
L (8.605)

where

K = BT P (8.606)

and P is a symmetric positive definite solution of the algebraic Riccati equa-
tion

PA + AT P − PBBT P = −CT
1 C1 (8.607)

and

L = NCT (8.608)

where N is a symmetric positive semidefinite solution of the algebraic Riccati
equation

AN + NAT − NCT CN = −B1B
T
1 (8.609)

The transfer function matrix of the H2 optimal controller R(s) can also be
determined by Diophantine equations. The derivation of the H2 controller is
the same as in the case of the pole placement, LQ or LQG controller.

If the controlled system is controllable and observable and if (8.398) holds
then K can be determined from (8.522), (8.523) and F R(s) from

F T
R(−s)F R(s) = AT

R(−s)AR(s) + BT
Rs(−s)CT

1 C1BRs(s) (8.610)

If (8.399) holds then L can be determined from (8.578), (8.579) and OL(s)
from

OL(s)OT
L(−s) = AL(s)AT

L(−s) + BLs(s)B1B
T
1 BT

Ls(−s) (8.611)

Elements of matrices C1, B1 are design tunable parameters.
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398 8 Optimal Process Control

The problem formulated by Kalman was published and treated in many
publications. Among them the most important are:

M. Athans and P. L. Falb. Optimal Control. McGraw-Hill, New York, 1966.
B. D. O. Anderson and J. B. Moore. Linear Optimal Control. Prentice Hall,

Englewood Cliffs, New Jersey, 1971.
H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley, New

York, 1972.

If constraints on control variable are considered, the fundamental contri-
bution to optimal control design was done by Pontryagin. We cite only one
publication that inspired many others.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.
The Mathematical Theory of Optimal Processes. Wiley, New York, 1962.

Optimal control as solved by Kalman requires knowledge about state vari-
ables that all of which are usually not measurable. This issue was resolved
using observers for deterministic systems and optimal state estimation for
stochastic systems. The observer design was published in:

D. G. Luenberger. An introduction to observers. IEEE Trans. AC, 16:
596 – 602, 1971.

and the optimal state estimate in:

R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction
theory. J. Basic Engr., 83:95 – 100, 1961.

Optimal feedback design can also be solved by polynomial approach. The
Kalman approach leads to the solution of the Riccati equations. The basic
idea of the input-output approach is to transform the design problem to the
solution of Diophantine equations. The first reference in this domain is

L. N. Volgin. The Fundamentals of the Theory of Controllers. Soviet Radio,
Moskva, 1962. (in Russian).

Polynomial approach can also be used for state-space systems. This can
be found in:
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J. Mikleš. Encyclopedia of Life Support Systems (EOLSS), chapter E6-43-34
Automation and Control in Process Industries, edited by H. Unbehauen.
EOLSS Publishers, Oxford, UK, 2003. [http://www.eolss.net].

it is shown how the LQ, LQG, and H2 control can be used for design and
tuning of industrial controllers.

An alternative to variational approach in optimal control – dynamic pro-
gramming was published for example in:

R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
New York, 1957.

and in many other sources.
Parametrisation of all stabilising controllers was published by Kučera
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8.12 Exercises

Exercise 8.1:
Consider a controlled object with the transfer function of the form

G(s) =
b1s+ b0

s2 + a1s+ a0

where b0 = 2, b1 = 0.1, b0 = 4, a1 = 3.
Find the transfer fuction of a feedback LQ controller with integrator based on
state observation. Choose Q = I in the cost function (8.488).

Exercise 8.2:
Consider a controlled process with the transfer fuction

G(s) =
b1s+ b0

s2 + a1s+ a0

where b0 = 2, b1 = 0.1, b0 = 4, a1 = 3.
Find:

http://www.polyx.com


8.12 Exercises 401

1. A feedback LQ controller with integrator based on state observation.
Choose Q = I in the cost function (8.488). Use the Polynomial toolbox
for MATLAB.

2. Implement the closed-loop system in Simulink.

Exercise 8.3:
Consider a controlled process with the transfer fuction

G(s) =
b1s+ b0

s2 + a1s+ a0

where b0 = 2, b1 = 0.1, b0 = 4, a1 = 3.
Find:
1. State-space representation of the controlled system.
2. Use the Polynomial toolbox for MATLAB and design a H2 controller.
3. Implement the closed-loop system in Simulink and test it for various

choices of design parameters.

Exercise 8.4:
Consider a controlled process with the transfer fuction

G(s) =
b1s+ b0

s2 + a1s+ a0

where b0 = 2, b1 = 0.1, b0 = 4, a1 = 3.
Find:
1. State-space representation of the controlled system.
2. Use the Polynomial toolbox for MATLAB and design a H2 controller with

integrator.
3. Implement the closed-loop system in Simulink and test it for various

choices of design parameters.
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Predictive Control

This chapter deals with a popular control design method – predictive con-
trol. It explains its principles, features, and relations to other control meth-
ods. Compared to other parts of the book where continuous-time processes
are discussed, predictive control is mainly based on discrete-time or sampled
models. Therefore, derivations and expressions are presented mainly in the
discrete-time domain.

9.1 Introduction

Model Based Predictive Control (MBPC) or only Predictive Control is a broad
variety of control methods that comprise certain common ideas:

• a process model that is explicitly used to predict the process output for a
fixed number of steps into future,

• a known future reference trajectory,
• calculation of a future control sequence minimising a certain objective

function (usually quadratic, that involves future process output errors and
control increments),

• receding strategy: at each sampling period only the first control signal of
the sequence calculated is applied to a process controlled.

Among many useful features of MBPC, there is one that has created ex-
tensive industrial interest: the process constraints can easily be incorporated
into the method at the design stage.

MBPC algorithms are reported to be very versatile and robust in process
control applications. They usually outperform PID controllers and are applica-
ble to non-minimum phase, open-loop unstable, time delay, and multivariable
processes.

The principle of MBPC is shown in Fig. 9.1 and is as follows:
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Fig. 9.1. Principle of MBPC

1. The process model is used to predict the future outputs ŷ over some
horizon N . The predictions are calculated based on information up to
time k and on the future control actions that are to be determined.

2. The future control trajectory is calculated as a solution of an optimisa-
tion problem consisting of a cost function and possibly some constraints.
The cost function comprises future output predictions, future reference
trajectory, and future control actions.

3. Although the whole future control trajectory was calculated in the previ-
ous step, only its first element u(k) is actually applied to the process. At
the next sampling time the procedure is repeated. This is known as the
Receding Horizon concept.

9.2 Ingredients of MBPC

9.2.1 Models

MBPC enables to plug-in directly any type of the process model. Of course,
linear models are most often used. This is caused by the possibility of an
analytic solution for the future control trajectory in unconstrained case.

The model should capture the process dynamics and to permit theoretical
analysis. The process model is required to calculate the predicted future out-
put trajectory. Some of the models incorporate directly disturbance model, in
others it is simply assumed that disturbance is constant.

Impulse Response

The theoretical impulse sequence is usually truncated for practical reasons.
The output is related to the input by the equation

y(k) =
N∑

i=1

hiu(k − i) = H(q−1)u(k) (9.1)
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where H(q−1) = h1q
−1 + h2q

−2 + · · ·hNq
−N and q−1 is the backward shift

operator defined as y(k)q−1 = y(k − 1).
The drawbacks of this model are:

• high value of N needed ≈ 50,
• only stable processes can be represented.

Step Response

The step response model is very similar to the FIR model with the same
drawbacks. Again, truncated step response is used for stable systems

y(k) =
N∑

i=1

giΔu(k − i) = G(q−1)(1 − q−1)u(k) (9.2)

As the step and impulse responses are easily collected, the methods based on
them gained large popularity in the industry. The step model is for example
used in DMC.

Transfer Function

This model is used in GPC, EHAC, EPSAC, and others. The output is mod-
elled by the equation

A(q−1)y(k) = B(q−1)u(k) (9.3)

The advantage of this representation is that it is also valid for unstable models.
On the other side, order of the A,B polynomials is needed.

State Space

The representation of the state-space model is as follows:

x(k + 1) = Ax(k) + Bu(k) (9.4)
y(k) = Cx(k) (9.5)

Its advantage is an uncomplicated way of dealing with multivariable processes.
However, the state observer is often needed.

Others

As it was stated before, any other process model is acceptable. Continuous
nonlinear models in the form of ordinary differential equations are often used.
Their drawbacks are large simulation times. The area of dynamic optimisation
usually covers them.

Recently, neural and fuzzy models have gained popularity. Two approaches
have emerged. The model is either directly used, or it only generates some
process characteristics: step or impulse responses.
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Disturbances

The most general disturbance model is an ARMA process (c. f. page 223)
given by

n(k) =
C(q−1)
D(q−1)

ξ(k) (9.6)

with ξ(k) being white noise. Within the MBPC framework, the D = ΔA
polynomial includes the integrator Δ = 1− q−1 to cover random-walk distur-
bances. Another pleasing property of the integrator is the set-point tracking
(integral action).

When the process model of the form (9.3) is used, the overall model is
then called CARIMA (or ARIMAX) and is given as

ΔAy(k) = BΔu(k) + Cξ(k) (9.7)

9.2.2 Cost Function

The standard cost function used in predictive control contains quadratic terms
of (possibly filtered) control error and control increments on a finite horizon
into the future

I =
N2∑

i=N1

[P ŷ(k + i) − w(k + i)]2 + λ

Nu∑
i=1

[Δu(k + i− 1)]2 (9.8)

where ŷ(k + i) is the process output of i steps in the future predicted on the
base of information available upon the time k, w(k + i) is the sequence of
the setpoint variable and Δu(k + i − 1) is the sequence of the future control
increments that have to be calculated.

Implicit constraints on Δu are placed between Nu and N2 as

Δu(k + i− 1) = 0, Nu < i ≤ N2 (9.9)

The cost function parameters are following:

• Horizons N1, N2, and Nu are called minimum, maximum, and control hori-
zon, respectively. The horizons N1 and N2 mark the future time interval
where it is desirable to follow the reference trajectory.N1 should be at least
equal to Td + 1 where Td is the assumed value of the process time delay.
Also, the non-minimum phase behaviour of the process can be eliminated
from the cost by letting N1 to be sufficiently large. The value of N2 should
cover the important part of the step response curve, it is usually chosen
to be about the settling time of the plant T90 (see page 257). The use of
the control horizon Nu reduces the computational load of the method.
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• Reference trajectory w(k + i) is assumed to be known beforehand. If it is
not the case, several approaches are possible. The simplest way is to assume
that the future reference is constant and equal to the desired setpoint w∞.
The preferred approach is to use smooth reference trajectory that begins
from the actual output value and approaches asymptotically via the first
order filter the desired setpoint w∞. It is thus given as

w(k) = y(k) (9.10)
w(k + i) = αw(k + i− 1) + (1 − α)w∞ (9.11)

The parameter α determines smoothness of the trajectory with α → 0
being the fastest and α→ 1 being the slowest trajectory.
The same effect can be achieved with the use of the filter polynomial
P (z−1). The output y follows the model trajectory 1

P w. The corresponding
filter to the previous first order trajectory is given as

P (z−1) =
1 − αz−1

1 − α
(9.12)

9.3 Derivation and Implementation of Predictive Control

In this part, Generalised Predictive Control (GPC) will be derived. The GPC
method is in the principle applicable to both SISO and MIMO processes and
is based on input-output models. We begin the derivation for SISO systems for
simplicity and show in the actual implementation of the method, how to treat
MIMO systems. Alternatively, the predictor equations will also be derived for
state-space models.

9.3.1 Derivation of the Predictor

The first step in the development of MBPC is derivation of the optimal pre-
dictor. We start with the CARIMA model (9.7) of the form

A(q−1)y(k) = B(q−1)u(k − 1) +
C(q−1)
Δ

ξ(k) (9.13)

Note that we use explicitly u(k−1) and thus the polynomial B has a non-zero
absolute coefficient. We use u(k− 1) because u(k) will constitute one element
of the optimised variables.

Now let us think about this equation j steps in the future. This is accom-
plished by multiplication of this equation by qj and it yields

y(t+ j) =
B

A
u(t+ j − 1) +

C

ΔA
ξ(t+ j) (9.14)

The last term of this equation contains past and future values of ξ. We may
separate them by performing long division on the term C/(ΔA) and by sep-
arating the first j terms (quotient) with positive powers of q. This yields
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C(q−1)
ΔA(q−1)

= Ej(q−1) + q−j Fj(q−1)
ΔA(q−1)

(9.15)

where the polynomial Ej has degree j − 1. Inserting back into (9.14) gives

y(t+ j) =
B

A
u(t+ j − 1) + Ejξ(t+ j) +

Fj

ΔA
ξ(k) (9.16)

The last term contains actual value of the disturbance ξ(k). This can be
calculated from (9.13) and inserted back into the last equation

y(t+ j) =
B

A
u(t+ j − 1) − FjB

ΔAC
Δu(k − 1) +

Fj

C
y(k) +Ejξ(t+ j)

=
[
B

ΔA
− q−j FjB

ΔAC

]
Δu(t+ j − 1) +

Fj

C
y(k) + Ejξ(t+ j)

=
B

C

[
C

ΔA
− q−j Fj

ΔA

]
Δu(t+ j − 1) +

Fj

C
y(k) + Ejξ(t+ j)(9.17)

and finally substituting (9.15) into the term containing Δu(t+ j − 1) yields

y(t+ j) =
BEj

C
Δu(t+ j − 1) +

Fj

C
y(k) + Ejξ(t+ j) (9.18)

Again, we separate unknown (future and present) control actions from the
known (past) ones by the means of the polynomial division

B(q−1)Ej(q−1)
C(q−1)

= Gj(q−1) + q−j Γj(q−1)
C(q−1)

(9.19)

This gives the final form for the future value of the system output

y(t+ j) = GjΔu(t+ j − 1) +
Γj

C
Δu(k − 1) +

Fj

C
y(k) + Ejξ(t+ j) (9.20)

It is obvious that the minimum variance prediction of y(t+j) for given data up
to time k is obtained by replacing the last term containing future disturbances
by zero and yields

ŷ(t+ j) = GjΔu(t+ j − 1) +
Γj

C
Δu(k − 1) +

Fj

C
y(k) (9.21)

ŷ(t+ j) = GjΔu(t+ j − 1) + y0(t+ j) (9.22)

Thus, to obtain the j step predictor, two polynomial divisions (or equiva-
lently Diophantine equations) are to be solved

C = EjΔA+ q−jFj (9.23)
BEj = GjC + q−jΓj (9.24)

To implement calculation of the predictor efficiently, it is necessary to
understand correctly the rôle of the equation (9.22) and the terms involved
in it.
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Let us first assume that all future control increments are zero. Equa-
tion (9.22) gives

ŷ(t+ j) = y0(t+ j) (9.25)

Hence, the term y0 can be determined by the free response of the system if
the input remains to be constant at the last computed value u(k − 1).

Similarly, let us assume that the system is at the time k in the steady-state
and we may assume without loss of generality that the steady-state is zero.
This gives a zero free response y0(t+ j). If at time k the system is subject to
unit step in input, the system output is given from (9.22) as

ŷ(t+ j) = Gj(q−1)Δu(t+ j − 1)
= gj0Δu(t+ j − 1) + gj1Δu(t+ j − 2) + · · · + gj,j−1Δu(k)
= gj,j−1 (9.26)

Thus, the polynomial Gj(q−1) contains the system step response coefficients.
As an alternative way to show this consider (9.15) multiplied by B/C:

B

ΔA
=
BEj

C
+ q−j BFj

ΔAC

= Gj + q−j Γj

C
+ q−j BFj

ΔAC
(9.27)

which shows that Gj is the quotient of the division B/(ΔA).

9.3.2 Calculation of the Optimal Control

The GPC cost function is given by (9.8). Let us now assume for simplicity
that N1 = 1, Nu = N2, P = 1. It follows that all output prediction up to time
t+N2 are needed. Let us stack individual output predictions, future control
increments, future reference trajectory, and free responses into corresponding
vectors

ŷT = [ŷ(t+ 1), ŷ(t+ 2), . . . , ŷ(t+N2)] (9.28)
yT

0 = [y0(t+ 1), y0(t+ 2), . . . , y0(t+N2)] (9.29)
ũT = [Δu(k),Δu(t+ 1), , . . . ,Δu(t+N2 − 1)] (9.30)
wT = [w(t+ 1), w(t+ 2), . . . , w(t+N2)] (9.31)

(9.32)

To vectorise the predictor (9.22), let us form a matrix containing step response
coefficients given as

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

g0 0 . . . . . . 0
g1 g0 0 . . . 0
...

. . . . . .
...

... g0 0
gN2−1 . . . . . . g0

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.33)
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If we take into effect the real value of N1, then the first N1 − 1 rows of the
matrix G should be removed. Similarly, only the firstNu columns are retained.
Thus, the real matrix G has the dimension [N2 −N1 + 1 ×Nu].

Hence, the predictor in the vector notation can be written as

ŷ = Gũ + y0 (9.34)

and the cost function (9.8) as

I = (ŷ − w)T (ŷ − w) + λũT ũ

= (Gũ + y0 − w)T (Gũ + y0 − w) + λũT ũ

= c0 + 2gT ũ + ũT Hũ (9.35)

where the gradient g and Hessian H are defined as

gT = GT (y0 − w) (9.36)
H = GT G + λI (9.37)

Minimisation of the cost function 9.35 now becomes a direct problem of
linear algebra. The solution in the unconstrained case can be found by setting
partial derivative of I with respect to ũ to zero and yields

ũ = −H−1g (9.38)

This equation gives the whole trajectory of the future control increments
and as such it is an open-loop strategy. To close the loop, only the first element
of ũ, e. g. Δu(k) is applied to the system and the whole algorithm is recom-
puted at time t + 1. This strategy is called the Receding Horizon Principle
and is one of the key issues in the MBPC concept.

If we denote the first row of the matrix (GT G + λI)−1GT by K then the
actual control increment can be calculated as

Δu(k) = K(w − y0) (9.39)

Hence, if there is no difference between the free response and the setpoint
sequence in the future, the actual control increment will be zero. If there
will be some differences in the future, the actual control increment will be
proportional to them with the factor K.

To summarise the procedure, it should be noticed, that only two plant
characteristics are needed: free response y0 that is changing at each sampling
time and step response G(z−1) which is in the case of time invariant sys-
tem needed only once. Moreover, also the Hessian matrix H that should be
inverted, contains only information from the step response and can also be
calculated beforehand. The calculation of the actual control increment is thus
dependent only on weighted sum of past inputs and outputs contained in y0

and forms therefore a linear control law.
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9.3.3 Closed-Loop Relations

It follows from (9.39) that the control is a linear combination of the setpoint
and free response. As the control law and the controlled process are linear, it is
possible to derive the characteristic equation and the poles of the closed-loop
system.

The equation (9.39) can be written in the time domain

Δu(k) =
N2∑

j=N1

kj (w(t+ j) − y0(t+ j)) (9.40)

Using the free response from (9.22) yields

Δu(k) =
N2∑

j=N1

kj

(
w(t+ j) − Γj

C
q−1Δu(k) − Fj

C
y(k)

)
(9.41)

CΔu(k) = C

N2∑
j=N1

kjw(t+ j) −
N2∑

j=N1

kjΓjq
−1Δu(k) −

N2∑
j=N1

kjFjy(k)(9.42)

⎛
⎝C + q−1

N2∑
j=N1

kjΓj

⎞
⎠Δu(k) = C

N2∑
j=N1

kjw(t+ j) −
N2∑

j=N1

kjFjy(k) (9.43)

Let us assume for simplicity that the future setpoint change is constant,
i. e. w(t + j) = w(k). The control law constitutes a two degree-of-freedom
(2DoF) controller

QcΔu(k) = Rcw(k) − Pcy(k) (9.44)

where

Qc =
C + q−1

∑N2
j=N1

kjΓj∑N2
j=N1

kj

(9.45)

Rc = C (9.46)

Pc =

∑N2
j=N1

kjFj∑N2
j=N1

kj

(9.47)

To derive the characteristic equation of the closed-loop systems, the control
law is inserted into the CARIMA model (9.13)

AΔy(k) = Bq−1

(
Rc

Qc
w(k) − Pc

Qc
y(k)

)
+ Cξ(k) (9.48)

y(z) =
BRcz

−1

QcAΔ+ PcBz−1
w(z) +

CQc

QcAΔ+ PcBz−1
ξ(z) (9.49)

The denominator polynomial is the characteristic equation. Its further manip-
ulation gives
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QcAΔ+ PcBz
−1 =

CAΔ+ z−1AΔ
∑N2

j=N1
kjΓj +Bz−1

∑N2
j=N1

kjFj∑N2
j=N1

kj

(9.50)

=
CAΔ+ z−1

∑N2
j=N1

kj (AΔΓj +BFj)∑N2
j=N1

kj

(9.51)

= C
AΔ+

∑N2
j=N1

kjz
j−1(B −AΔGj)∑N2

j=N1
kj

(9.52)

= CM (9.53)

We can see that the characteristic polynomial is composed of two polynomials.
The first determines the behaviour of the closed-loop system with respect to
disturbances and corresponds to the observer poles. The second polynomial
depends in a rather complicated way on the controlled process and the GPC
parameters. It determines the closed-loop stability as it can also be seen from
the output equation

y(z) =
Bz−1

M
w(z) +

Rc

M
ξ(z) (9.54)

where the polynomial C has been cancelled in both transfer functions.

9.3.4 Derivation of the Predictor from State-Space Models

To show that it is possible to use any linear model, we will derive here the
predictor equations based in the state-space model.

Let us consider the standard state-space model of the form (9.4), (9.5).
Like in the previous case when CARIMA model was used, it is necessary to
include an integrator to the process. This can be accomplished by changing
the input to the process from u(k) to its increment Δu(k)

u(k) = Δu(k) + u(k − 1) (9.55)

There are more possibilities how to incorporate an integrator in the process
model. Among them, one way is to define a new state vector

x̄(k) =
(

x(k)
u(k − 1)

)
(9.56)

From the state-space model (9.4), (9.5) then follows

x̄(t+ 1) =
(

A B
0 I

)
x̄(k) +

(
B
I

)
Δu(k) = Āx̄(k) + B̄Δu(k) (9.57)

y(k) =
(
C 0

)
x̄(k) = C̄x̄(k) (9.58)

We can see that formally both state-space models are equivalent.
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The derivation of the predictor is simpler than in the input-output case.
The predictor vector is given as

ŷ(t+ 1) = C̄x̄(t+ 1) = C̄
(
Āx̄(k) + B̄Δu(k)

)
(9.59)

ŷ(t+ 2) = C̄x̄(t+ 2) = C̄
(
Āx̄(t+ 1) + B̄Δu(t+ 1)

)
(9.60)

...
ŷ(t+N2) = C̄x̄(t+N2) = C̄

(
Āx̄(t+N2 − 1) + B̄Δu(t+N2 − 1)

)
(9.61)

where the state predictions are of the form

x̄(t+ 1) = Āx̄(k) + B̄Δu(k) (9.62)
x̄(t+ 2) = Āx̄(t+ 1) + B̄Δu(t+ 1)

= Ā2x̄(k) + ĀB̄Δu(k) + B̄Δu(t+ 1) (9.63)
...

x̄(t+N2) = ĀN2 x̄(k) + ĀN2−1B̄Δu(k) + · · · + B̄Δu(t+N2 − 1) (9.64)

Joining all predictions to form the vector equation (9.34) yields matrices and
vectors

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

C̄B̄ 0 . . . . . . 0
C̄ĀB̄ C̄B̄ 0 . . . 0

...
. . . . . .

...
... C̄B̄ 0

C̄ĀN2−1B̄ . . . . . . C̄B̄

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.65)

and

y0 =

⎛
⎜⎜⎜⎝

C̄Ā
C̄Ā2

...
C̄ĀN2

⎞
⎟⎟⎟⎠ x̄(k) (9.66)

Example 9.1:
To explain the principle let us consider a simple SISO process with the
numerator and denominator polynomials of the form

B(z−1) = 0.4 + 0.1z−1, A(z−1) = 1 − 0.5z−1

This corresponds to the process transfer functions of the form

0.4z−1 + 0.1z−2

1 − 0.5z−1

Let us assume that C(z−1) = 1. The CARIMA description of the system
is of the form
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ΔA(q−1)y(k) = B(q−1)Δu(k − 1) + ξ(k)

or

y(k) = 1.5y(k− 1)− 0.5y(k− 2) + 0.4Δu(k− 1) + 0.1Δu(k− 2) + ξ(k)

Let us now assume the cost function (9.8) with the parameters N1 = 1,
N2 = 3, Nu = 2.
The predictions of future outputs can be obtained if ξ(t+ i) = 0 and are
as follows:

ŷ(t+ 1) = 1.5y(k) − 0.5y(k − 1) + 0.4Δu(k) + 0.1Δu(k − 1)
ŷ(t+ 2) = 1.5y(t+ 1) − 0.5y(k) + 0.4Δu(t+ 1) + 0.1Δu(k)
ŷ(t+ 3) = 1.5y(t+ 2) − 0.5y(t+ 1) + 0.4Δu(t+ 2) + 0.1Δu(t+ 1)

According to the assumptions, the term Δu(t + 2) is equal to zero. The
higher output predictions contain the lower output predictions that can
be back substituted and yield

ŷ(t+ 1) = 1.5y(k) − 0.5y(k − 1) + 0.4Δu(k) + 0.1Δu(k − 1)
ŷ(t+ 2) = 1.75y(k) − 0.75y(k − 1)

+ 0.4Δu(t+ 1) + 0.7Δu(k) + 0.15Δu(k − 1)
ŷ(t+ 3) = 1.875y(k) − 0.875y(k − 1)

+ 0.7Δu(t+ 1) + 0.85Δu(k) + 0.175Δu(k − 1)
Stacking all predictions into a vector and separating the terms unknown
at time k from the known ones gives⎛

⎝ŷ(t+ 1)
ŷ(t+ 2)
ŷ(t+ 3)

⎞
⎠ =

⎛
⎝ 0.4 0

0.7 0.4
0.85 0.7

⎞
⎠
(

Δu(k)
Δu(t+ 1)

)

+

⎛
⎝ 1.5y(k) − 0.5y(k − 1) + 0.1Δu(k − 1)

1.75y(k) − 0.75y(k − 1) + 0.15Δu(k − 1)
1.875y(k) − 0.875y(k − 1) + 0.175Δu(k − 1)

⎞
⎠

An alternative to obtain the matrix G would be to perform the long
division

B

ΔA
=

0.4 + 0.1z−1

1 − 1.5z−1 + 0.5z−2
= 0.4 + 0.7z−1 + 0.85z−2 + · · ·

Now let us assume that the weighting coefficient λ is equal to zero. Inver-
sion of the Hessian matrix gives

H−1 =
(

5.1383 −6.9170
−6.9170 10.8498

)

Finally, multiplication with g yields the closed-loop expression for the
element

Δu(k) = −3.6461y(k) + 1.2351y(k − 1) − 0.2470Δu(k − 1)
+ 2.0553w(t+ 1) + 0.8300w(t+ 2) − 0.4743w(t+ 3)
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Fig. 9.2. Closed-loop response of the controlled system

Simulation results show the behaviour of the closed-loop system in the
Fig. 9.2.
Let us also derive the predictor equations in the state-space form. The
corresponding state-space model can for example be given as

x(t+ 1) =
(

0 1
0 0.5

)
x(k) +

(
0
1

)
u(k)

y(k) =
(
0.1 0.4

)
x(k)

The new state-space description with integrator has three states

x̄(t+ 1) =

⎛
⎝0 1 0

0 0.5 1
0 0 1

⎞
⎠ x̄(k) +

⎛
⎝0

1
1

⎞
⎠Δu(k) = Āx̄(k) + B̄Δu(k)

y(k) =
(
0.1 0.4 0

)
x̄(k) = C̄x̄(k)

The state predictions of three steps to the future are then given as
x̄(t+ 1) = Āx̄(k) + B̄Δu(k)
x̄(t+ 2) = Āx̄(t+ 1) + B̄Δu(t+ 1)

= Ā2x̄(k) + ĀB̄Δu(k) + B̄Δu(t+ 1)
x̄(t+ 3) = Āx̄(t+ 2)

= Ā3x̄(k) + Ā2B̄Δu(k) + ĀB̄Δu(t+ 1)
The output predictions are then given as

ŷ(t+ 1) = C̄Āx̄(k) + C̄B̄Δu(k)
ŷ(t+ 2) = C̄Ā2x̄(k) + C̄ĀB̄Δu(k) + C̄B̄Δu(t+ 1)
ŷ(t+ 3) = C̄Ā3x̄(k) + C̄Ā2B̄Δu(k) + C̄ĀB̄Δu(t+ 1)

or in the vector form
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⎛
⎝ŷ(t+ 1)
ŷ(t+ 2)
ŷ(t+ 3)

⎞
⎠ =

⎛
⎝ C̄B̄ 0

C̄ĀB̄ C̄B̄
C̄Ā2B̄ C̄ĀB̄

⎞
⎠
(

Δu(k)
Δu(t+ 1)

)
+

⎛
⎝ C̄Ā

C̄Ā2

C̄Ā3

⎞
⎠ x̄(k)

When the actual values are substituted for the system matrices and states,
it yields
⎛
⎝ŷ(t+ 1)
ŷ(t+ 2)
ŷ(t+ 3)

⎞
⎠ =

⎛
⎝ 0.4 0

0.7 0.4
0.85 0.7

⎞
⎠
(

Δu(k)
Δu(t+ 1)

)
+

⎛
⎝ 0.3x2(k) + 0.4u(k − 1)

0.15x2(k) + 0.7u(k − 1)
0.075x2(k) + 0.85u(k − 1)

⎞
⎠

We can note that the matrix G is the same in both cases. The second part
depends on the actual state definitions. However, the predictive controller
will be the same.

9.3.5 Multivariable Input-Output Case

In the same line of thought as in the SISO case, the multivariable GPC algo-
rithm can de derived via Diophantine equations. From the practical point of
view, the multivariable controller can come from the prediction equation (9.22)
that holds exactly as before, only the vector and matrix elements instead of
being scalar are vectors and matrices. If m-input and n-output system is con-
sidered, then the matrix G is of the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

G0 0 . . . . . . 0
G1 G0 0 . . . 0
...

. . . . . .
...

... G0 0
GN2−1 . . . . . . G0

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.67)

with Gi being matrices of dimensions [n×m] and the overall G has dimensions
[n(N2 −N1 + 1) ×mNu].

The vectors y0i and matrices Gi can be obtained analogously as in the
singlevariable case from free and step responses of the system.

The drawbacks of the proposed multivariable derivation are increased di-
mensions of the matrices involved in matrix inversion routines. The multivari-
able formulation can be broken into series of SISO GPC calculations if the
system denominator matrix A(z−1) is diagonal.

9.3.6 Implementation

As it was stated before, for the actual implementation of the linear GPC
algorithm only two process characteristics are needed: step and free responses.
The step response can be obtained directly from the process by performing a
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small step change in one of the manipulated inputs at a time if the process
was before in a steady state. The magnitude of the step change is important
if the process is non-linear. If the process steady-state gain is approximately
known then the magnitude of the input step change should be chosen such
that it produces step response approaching the desired setpoint value. This
strategy may be applied if a non-linear model is used for predictions.

If the polynomials A,B are estimated on-line by means of a RLS algorithm,
the step response is obtained from the polynomial division

B

AΔ
= g0 + g1z

−1 + · · · + gN1z
−N1 + · · · + gN2z

−N2 + · · · (9.68)

The matrix G can be formed from the coefficients of the step response and it
is given by the last N2 −N1 +1 rows and the first Nu columns of the Toeplitz
matrix (9.33).

The free response is calculated as the process response from the actual
initial conditions if the input is fixed to u(k − 1). At time k is should hold

y(k) = y0(k) (9.69)

However, the assumption about random-walk disturbance usually results in
non-zero disturbance at time k and holds

y(k) = y0(k) + d(k) (9.70)

This disturbance is assumed to be constant in all future predictions. The
disturbance and the free response are thus calculated as

d =
deg(A)∑

i=0

aiyf (k − i) −
deg(B)∑

i=0

biuf (k − i− 1) (9.71)

y0(t+ j) = yf (t+ j) (9.72)

= d−
deg(A)∑

i=1

aiyf (k − i+ j) +
deg(B)∑

i=0

biū(k − i+ j − 1) (9.73)

where

ū(k − i+ j) =
{
uf (k − 1) j ≥ i
uf (k − i+ j) inak (9.74)

and

yf =
y

C
, uf =

u

C
(9.75)

Note 9.1. If polynomial P is assumed to be non-unity, then the above is valid
if the system denominator A is changed for PA. To ensure the offset-free
setpoint following, the polynomial P should be specified subject to condition
P (1) = 1.
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Note 9.2. The polynomial C is normally not estimated on-line, but used as a
user-design parameter. It can be shown from relation between state-space and
input-oputput approaches that it acts as an observer polynomial and is used
for disturbance rejection.

9.3.7 Relation to Other Approaches

One of the features of GPC approach is its generality. With different values
of its parameters it can be reduced to some well-known controllers:

Mean level control

N1 = 1, N2 → ∞, Nu = 1, P = 1, λ = 0

Exact model following

N1 = 1, N2 = Td + 1, Nu = Td + 1, P = 1, λ = 0

or

N1 = 1, N2 > Td, Nu = N2 − Td, P = 1, λ = 0

Dead-beat control

N1 ≥ deg(B)+1, N2 ≥ Nu +N1 − 1, Nu ≥ deg(A)+1, P = 1, λ = 0

Pole placement Dead-beat + P . Poles are placed at zeros of P .

N1 ≥ deg(B)+1, N2 ≥ Nu +N1 − 1, Nu ≥ deg(A)+1, P = 1, λ = 0

9.3.8 Continuous-Time Approaches

Predictive control has been developed in discrete-time domain. The discrete
formulation allows for an easy prediction generation, because time response
of discrete systems can be obtained from polynomial division of the system
numerator and denominator.

The analogical formulation for continuous-time systems is by no means so
simple. The principial polynomial equations remain the same, however, their
interpretation is different. For the signal predictions, the Taylor expansion is
used. However, the main advantage of MBPC – constraints handling, is very
difficult with this approach.

There are some approaches that are more realistic while still allowing con-
straints. The main principle is to approximate the future control and output
signals as a linear combination of selected continuous-time base functions –
for example splines. The real optimised variables become parameters of the
splines. It can be shown that both input and output signal approximations
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are affine functions of these parameters and thus constrained continuous-time
predictive control can be solved as a Quadratic Programming task.

The advantage of this approach is a truly continuous-control where the
choice of the sampling time is not so crucial as in the discrete time case. For
the disadvantages, we mention a larger number of user parameters and not
very clear stability properties.

9.4 Constrained Control

The GPC algorithm derived in the preceding section did not consider the
presence of constraints. This is not very realistic, as in practice some kind of
constraints is usually present in the process control. Most often, inputs are
constrained to be between some minimal and maximal values (flows cannot
be negative, valves can be opened at 100% maximally) or input rate changes
are limited. Usually, there also exist some recommended values of process
outputs; these are often formulated as soft constraints as opposed to hard
input constraints.

The ability to handle constraints is one of the key properties of MBPC and
also caused its spread, use, and popularity in industry. Nowadays, most of the
industrial processes run at the constraints, if not, the process is unnecessarily
overdesigned.

One might argue that input constraints can be respected if the calculated
control by some control method is subsequently clipped to be within limits.
There are at least two reasons not to do so:

• There is a loss of anticipating action. As the control is on its limit, it
cannot influence the process in a suitable way (one degree of freedom is
lost). The process may go totally unstable, out of limits of safety, or to
an emergency mode. This usually causes heavy economic losses connected
with emergency stop and start-up procedures.

• If multivariable control is considered, certain influence between the input
vector elements has to be respected. Clipping one input element may cause
entirely different transient responses. This phenomenon is called direction-
ality of a multivariable plant.

The cost function used in GPC is quadratic and of the form (9.35). If we
assume only constraints that are linear with respect to the optimised vec-
tor ũ then the resulting optimisation problem may be cast as the Quadratic
Programming problem which is known to be convex and for which efficient
programming codes exist. The general constrained GPC formulation is thus
given as

min
ũ

2gT ũ + ũT Hũ subject to: Aũ ≥ b (9.76)

Several types of constraints may be written in this general form:
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Input rate limits Δumin ≤ Δu ≤ Δumax:

A =
(

I
−I

)
, b =

(
1Δumin

−1Δumax

)

where 1 is a vector whose entries are ones.
Input amplitude limits umin ≤ u ≤ umax:

A =
(

L
−L

)
, b =

(
1umin − 1u(t− 1)
−1umax + 1u(t− 1)

)

where L is a lower triagonal matrix whose entries are ones.
Output constraints ymin ≤ y ≤ ymax:

A =
(

G
−G

)
, b =

(
ymin − y0

−ymax + y0

)

Several other types of output constraints can be handled similarly: overshoot,
undershoot, monotony, etc.

Although input constraints can always be met, presence of output con-
straints can cause infeasibility of the Quadratic Programming. Therefore from
practical point of view, hard output constraints should be changed to soft con-
straints where amount ε of constraint violation is penalised. In such a case
the output constraints are of the form

−ε+ ymin ≤ y ≤ ymax − ε, ε > 0 (9.77)

and the cost function (9.35) is of the form

I = 2gT ũ + ũT Hũ + εT H̄ε (9.78)

and the variables ε are added to optimised variables.

9.5 Stability Results

Any predictive method minimising the finite horizon cost function may become
unstable in some cases. This can easily be imagined if the system controlled
contains right half plane zeros, the output horizon is equal to one, and control
penalisation is equal to zero. Inevitably, the predictive controller that min-
imises only the output error, is able to set it to zero at each sampling time.
The price however is, that the control signals are increasing in magnitude and
the system will be unstable.

This is one of the main issues against MBPC. Although the methods may
work well in practice, some systems exists in theory for which the methods
are highly sensitive. Even more significant is, that there is no clear theory
which predicts the closed-loop behaviour for arbitrary horizons and control
penalisations.



9.5 Stability Results 421

Therefore, two main streams toward stability have been developed. In the
first case, some combinations of GPC parameters have been proven to be
stabilising. The second line of research has been devoted to methods that
overcome the basic GPC drawbacks.

9.5.1 Stability Results in GPC

Theorem 9.3. The closed-loop system is stable if the system is stabilisable
and detectable and if:

• N2 → ∞, Nu = N2, and λ > 0 or
• N2 → ∞, Nu → ∞, Nu ≤ N2 − n + 1, and λ = 0 where n is the system

state dimension.

Theorem 9.4. For open-loop stable processes the closed-loop system is stable
and the control tends to a mean level law for Nu = 1 and λ = 0 as N2 → ∞.

Theorem 9.5. The closed-loop system is equivalent to a stable state dead-beat
controller if

1. the system is observable and controllable and
2. N1 = n, N2 ≥ 2n − 1, Nu = n, and λ = 0 where n is the system state

dimension.

9.5.2 Terminal Constraints

The first approach that forces MBPC methods to be stable is based on the
state terminal constraints. Roughly speaking, the system is stable if it is sub-
ject to the moving-terminal constraint on final states

x(k +N2) = 0 (9.79)

Several different algorithm have emerged that are based on this result.

CRHPC

CRHPC (Constrained Receding Horizon Predictive Control), and SIORHC
(Stable Input Output Receding Horizon Control) were developed indepen-
dently, but are in fact equivalent. The idea behind these techniques is an
equivalent of the state terminal constraint within input/output system de-
scription. Hence, these methods optimise the usual quadratic function over
finite horizons subject to condition that the output exactly matches a ref-
erence value over a future constraint range (after k + N2). Some degrees of
freedom force the output to stay at setpoints while the remaining degrees of
freedom are available to minimise the cost function. The output constraint
description is
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y(k +N2 + i) = w(k +N2), i = 1, . . . , n (9.80)

and n is the dimension of the system state vector.
Although the output constraints are added to the original formulation, the

solution in the unconstrained case can still be found analytically.

Theorem 9.6 (SIORHC). Let the system polynomials ΔA and B be co-
prime. If λ > 0 and deg(B) ≤ deg(A) + 1 then provided that

N2 ≥ n = max(deg(A) + 1,deg(B))

then

• the SIORHC control law is unique;
• SIORHC stabilises the plant, and, irrespective of deg(A),deg(B), λ, for

N2 = n

yields a state dead-beat closed-loop system;
• whenever stabilising, SIORHC yields asymptotic rejection of constant dis-

turbances and offset free closed-loop system.

Derivation

As usual in GPC, consider the predicted output to be of the form

ŷ = Gũ + y0 (9.81)

where all vectors are stacked from k + 1 to k + N2. After this time, up to
k+N2 +n, output predictions are constrained to be equal to the setpoint and
future control increments to zero

w̄ = Ḡũ + ȳ0 (9.82)

where the vector ȳ0 denotes the free response between k+N2+1 and k+N2+n
and w̄ is vector of w(k +N2) of the corresponding dimension.

The cost function is as usual of the form

I = (ŷ − w)T (ŷ − w) + λũT ũ (9.83)

subject to the constraint (9.82). This can be solved analytically by the La-
grange multipliers.

Let us denote h̄ = w̄ − ȳ0 and h = w − y0. Hence

I = (Gũ − h)T (Gũ − h) + λũT ũ + xT (Ḡũ − h̄) (9.84)

Partial derivatives of I with respect to ũ,x (x are the Lagrange multipliers)
are zero. We obtain a system linear equations as follows
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(
2(GT G + λI) ḠT

Ḡ 0

)(
ũ
x

)
=
(

2GT h
h̄

)
(9.85)

The block matrix inversion formula states(
A−1 D
C B

)−1

=
(
A+ADΔCA −ADΔ

−ΔCA −Δ

)
, Δ−1 = B − CAD (9.86)

Therefore, the future control increment vector is given as

ũ = G̃(I − ḠT QḠG̃)GT h + G̃ḠT Qh̄ (9.87)

where

G̃ =
(
GT G + λI

)−1
(9.88)

Q =
(
ḠG̃ḠT

)−1

(9.89)

SGPC

Another method that can be shown to be equivalent to the preceding methods
is SGPC. Its advantages include more efficient computational implementation
and better numerical robustness.

In this approach GPC is invoked after application of the stabilising feed-
back control law

Y (q−1)Δu(t) = c(t) −X(q−1)y(t) (9.90)

where the polynomials X,Y are calculated as the dead-beat controller from
the Diophantine equation

ΔAY +BX = 1 (9.91)

and where c(t) denoted the reference signal for the closed-loop system that
forms the vector of optimised variables. The dead-beat controller results in
the control and output predictions of the form

y(t) = B(q−1)c(t) (9.92)
u(t) = A(q−1)c(t) (9.93)

These can be simulated forward in time to give the vectors of future output
and control predictions and treated in the same way as in GPC.

Hence, this methods optimises future reference trajectory subject to (ter-
minal) constraint that this trajectory should be equal to the desired setpoint
after some horizon.

It can be shown that SGPC is equivalent to the pole-placement method
with the controller polynomials Yr,Xr given from the Diophantine equation

ΔAYr +BXr = Pr (9.94)

and its stability depends on the roots of the Pr polynomial.

Theorem 9.7 (SGPC). For N2 ≥ deg(A)+ 1+Nc, where Nc is the number
of reference points optimised, is SGPC stable for any Nc.
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YKPC

The last approach within finite horizon formulation is the predictive control
algorithm based on the Youla Kučera parametrisation of all stabilising con-
trollers YKPC.

As in the previous approach, in the first step a nominal controller with
pole-placement technique is calculated and a nominal controller is given as a
solution of 2 Diophantine equations

P0ΔA+Q0B = M (9.95)
ΔS0 +BR0 = M (9.96)

where M is the desired closed-loop polynomial and the two degree of free-
dom controller with integral action is defined as Q/ΔP (feedback) and R/ΔP
(feedforward).

The minimum degree controller P0, Q0, R0 only serves as a basis to find
an expression for the set of all stabilizing controllers. Among these controllers
the one is chosen that minimises the GPC cost function.

The expression of such controllers (Youla-Kučera parametrisation) is as
follows:

Theorem 9.8 (YK Controllers). A controller (P (z), Q(z), R(z)) gives rise
to the closed-loop denominator matrix M(z) if and only if it can be
expressed as

P = P0 + ZB (9.97)
Q = Q0 − ZAΔ (9.98)
R = R0 +ΔX (9.99)

X,Z are assumed to be polynomials for simplicity. Their coefficients form
the vector of the optimised parameters.

Stability is proved as in the previous approaches via terminal constraint.
It is interesting to note, that in this approach the state terminal constraint
does not have to be specified and is implicitly assured.

Theorem 9.9 (Choice of horizons). Let n = max(deg(X),deg(Z)), N1 = 1
and let the horizons be equal or greater than

N2 = deg(B) + n (9.100)
Nu = deg(AΔ) + n (9.101)

Further assume that the sequences w, d (reference, disturbance) are bounded.
Then the unconstrained YKPC is uniformly asymptotically stable.

This controller is time-varying in spite of the fact that the system is as-
sumed to be time-invariant.
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9.5.3 Infinite Horizons

Another line of research has been focused on reformulation of the basic GPC
method when N2, Nu are infinity. Of course, if such a method can be imple-
mented, stability problems disappear. However, a number of the optimised
parameters (future control moves) is also infinity and the original problem
is untractable. Therefore, several suboptimal algorithms have emerged. The
basic principle of all of them is to leave N2 = ∞ but to play with Nu or with
its equivalents.

Rawlings a Muske developed a method in state-space formulation where the
number of control moves Nu is finite. The feedback gain is calculated via the
recursive ARE.

Theorem 9.10 (Stable plants). For stable system matrix A and Nu ≥ 1 is
the receding horizon controller stabilising.

Theorem 9.11 (Unstable plants). For stabilisable plant (A,B) with r un-
stable modes and Nu ≥ r is the receding horizon controller stabilising.

Constrained control can also be dealt with in this approach. The require-
ment added to the previous theorems is that the initial state at time k is
feasible (within constraints).

The SGPC and YKPC methods can be modified to use both input and output
horizons infinite. The SGPC approach utilises the finite reference sequence as
the vector of optimised variables. The solution is found via Lyapunov equation.

The YKPC method utilises coefficients of the Youla-Kučera polynomials
as the optimised variables. It is shown that in the unconstrained case the
optimal predictive controller coincides with the nominal pole-placement con-
troller whose poles are calculated via spectral factorisation equation – hence
it is the standard LQ controller. If the constraints are active, piece-wise linear
controller results.

9.5.4 Finite Terminal Penalty

The third approach to MBPC stability is to adopt a finite input and state
horizon with a finite terminal weighting matrix. This is equivalent to the
condition that the terminal state has to be within some neighbourhood of
the origin. Compared to the previous approaches when it had to be exactly
zero, here the state can be in such a neighbourhood of the origin that is
asymptotically stable.

With a state-space formulation

x(k + 1) = A(k)x(k) + B(k)u(k) (9.102)

is the cost given as
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I = xT (k +N)P (k +N)x(k +N) +
N∑

i=0

(
xT (k + i)Q(k + i)x(k + i)

+ uT (k + i)R(k + i)u(k + i)
)

(9.103)

If P (k +N) → ∞ then the terminal state constraint approach results. How-
ever, also some “smaller” terminal penalty matrix P can give a stabilising
receding horizon control. Equivalently, in terms of state constraints, we will
speak about stabilising state terminal sets.

Theorem 9.12. Assume that the terminal weighting matrix P (k+1) satisfies
the following matrix difference inequality for some matrix H(k)

P (k) ≥ F T (k)P (k+ 1)F (k) + Q(k) + HT (k)R(k+ 1)H(k), ∀k ∈ [N,∞)
(9.104)

where

F (k) = A(k) + B(k)H(k) (9.105)

Further suppose that Q(k) is positive definite. Then the receding horizon con-
trol which stems from the optimisation problem minimising the performance
index I asymptotically stabilises the system. In addition, if A(k),Q(k), and
P (k) are bounded above ∀k ≥ 0, then the receding horizon control exponen-
tially stabilises the system.

9.6 Explicit Predictive Control

In receding horizon control, a finite-time optimal control problem is solved at
each time step to obtain the optimal input sequence. Subsequently, only the
first element of that sequence is applied to the system. At the next time step,
the state is measured and the procedure is repeated from the beginning. The
input sequence can be computed by solving an optimisation problem on-line at
each time step. Hence the complexity of the underlying optimisation problem
limits the minimal admissible sampling time of the plant.

Alternatively, it is possible to solve the optimisation problem off-line as
a multi-parametric program. Then, the on-line effort reduces to finding the
correct feedback law entry in a lookup table, allowing MPC to be applied to
systems with very low sampling times.

9.6.1 Quadratic Programming Definition

Consider optimal control problems for a discrete-time linear, time-invariant
(LTI) system
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x(k + 1) = Ax(k) + Bu(k) (9.106)

with A[n× n] and B[m× n].
Now consider the constrained finite-time optimal control problem

min I(x(k)) = xT (k +N)P (k +N)x(k +N)

+
N∑

i=0

(
xT (k + i)Q(k + i)x(k + i)

+ uT (k + i)R(k + i)u(k + i)
)

(9.107a)

subj. to x(k + i) ∈ X, u(k + i) ∈ U, i ∈ {0, . . . , N − 1}, (9.107b)
x(k +N) ∈ Tset, (9.107c)
x(k + 1) = Ax(k) + Bu(k), x(k) = x0 (9.107d)

where we assume that states and control are subject to constraints (9.107b).
The terminal set constraint (9.107c) is an additional constraint which is often
added to obtain certain properties (i.e. stability and constraint satisfaction).

As future state predictions are constrained by (9.106), we can recursively
substitute for them yielding

x(k + i) = Aix(k) +
i−1∑
j=0

AjBu(k + i− 1 − j) (9.108)

Thus, optimal solution of problem (9.107) can be reformulated as

I∗(x0) = xT
0 Y x0 + min

UN

1
2

{
UT

NHUN + xT
0 FUN

}
(9.109a)

subj. to GUN ≤ W + Ex0 (9.109b)

where the column vector UN = [uT
0 , . . . ,u

T
N−1]

T is the optimisation vector
and H, F , Y , G, W , E can easily be obtained from the original formulation.

The reformulated problem (9.109) is a standard quadratic programming
formulation that was also obtained in previous sections. Taking any initial
value x0, optimal future control trajectory UN (x) can be found from which
only the first element is used to close the loop.

9.6.2 Explicit Solution

In explicit solution of (9.109) we use the so-called multi-parametric program-
ming approach to optimisation. In multi-parametric programming, the objec-
tive is to obtain the optimiser UN for a whole range of parameters x0, i.e.
to obtain UN (x) as an explicit function of the parameter x. The term multi
is used to emphasise that the parameter x (in our case the actual state vec-
tor x0) is a vector and not a scalar. If the objective function is quadratic
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in the optimisation variable UN , the terminology multi-parametric Quadratic
Program (mp-QP) is used.

In this formulation, it is useful to define

z = UN + H−1F T x0 (9.110)

and to transform the formulation to problem, where the state vector x0 apears
only in constraints

I∗(x0) = min
z

1
2

{
zT Hz

}
(9.111a)

subj. to Gz ≤ W + Sx0 (9.111b)

where S = E + GH−1F T .
An mp-QP computation scheme consists of the following three steps:

1. Active Constraint Identification: A feasible parameter x̂ is determined and
the associated QP (9.111) is solved. This will yield the optimiser z
and active constraints A(x̂) defined as inequalities that are active at
solution, i.e.

A(x̂) = {i ∈ J | G(i)z = W (i) + S(i)x̂}, J = {1, 2, . . . , q}, (9.112)

where G(i), W (i), and S(i) denote the i-th row of the matrices G, W ,
and S, respectively, and q denotes the number of constraints. The rows
indexed by the active constraints A(x̂) are extracted from the constraint
matrices G,W and S in (9.111) to form the matrices GA,WA and SA.

2. Region Computation: Next, it is possible to use the Karush-Kuhn-Tucker
(KKT) conditions to obtain an explicit representation of the optimiser
UN (x) which is valid in some neighborhood of x̂. These are for our prob-
lem defined as

Hz + GT λ = 0 (9.113a)

λT (Gz − W − Sx̂) = 0 (9.113b)
λ ≥ 0 (9.113c)

Gz ≤ W + Sx̂ (9.113d)

Optimised variable z can be solved from (9.113a)

z = −H−1GT λ (9.114)

Condition (9.113b) can be separated into active and inactive constraints.
For inactive constraints holds λI = 0. For active constraints are the cor-
responding Lagrange multipliers λA positive and inequality constraints
are changed to equalities. Substituting for z from (9.114) into equality
constraints gives
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−GAH−1GT
AλA + WA + SAx̂ = 0 (9.115)

and yields expressions for active Lagrange multipliers

λA = −(GAH−1GT
A)−1(WA + SAx̂) (9.116)

The optimal value of optimiser z and optimal control trajectory UN are
thus given as affine functions of x̂

z = −H−1GT
A(GAH−1GT

A)−1(WA + SAx̂) (9.117)

UN = z − H−1F T x̂

= −H−1GT
A(GAH−1GT

A)−1(WA + SAx̂) − H−1F T x̂

= F rx̂ + Gr (9.118)

where

F r = H−1GT
A(GAH−1GT

A)−1SA − H−1F T (9.119)

Gr = H−1GT
A(GAH−1GT

A)−1WA (9.120)

In a next step, the set of states is determined where the optimiser UN (x)
satisfies the the same active constraints and is optimal. Such a region is
characterised by two inequalities (9.113c), (9.113d) and is written com-
pactly as Hrx ≤ Kr where

Hr =
[
G(F r + H−1F T ) − S
(GAH−1GT

A)−1SA

]
(9.121)

Kr =
[

W − GGr

−(GAH−1GT
A)−1WA

]
(9.122)

3. State Space Exploration: Once the controller region is computed, the algo-
rithm proceeds iteratively in neighbouring regions until the entire feasible
state space is covered with controller regions.

After completing the algorithm, the explicit model predictive controller
consists of definitions of multiple state regions with different affine control
laws. Its actual implementation reduces to search for an active region of states
and calculation of the corresponding control.

9.6.3 Multi-Parametric Toolbox

The Multi-Parametric Toolbox (MPT) is a free, open-source, Matlab-based
toolbox for design, analysis and deployment of optimal controllers for con-
strained linear, nonlinear and hybrid systems. The toolbox offers a broad spec-
trum of algorithms developed by the international community and compiled
in a user friendly and accessible format: starting from different performance
objectives (linear, quadratic, minimum time) to the handling of systems with



430 9 Predictive Control

persistent additive and polytopic uncertainties. Users can add custom con-
straints, such as polytopic, contraction, or collision avoidance constraints, or
create custom objective functions. Resulting optimal control laws can either
be embedded into applications in the form of C code, or deployed to target
platforms using the Real Time Workshop.

Although the primal focus of MPT is on design of optimal controllers based
on multi-parametric programming, it can be used to formulate and solve on-
line MPC problems as well. The toolbox contains efficient algorithms to solve
linear and quadratic problems parametrically and features a rich library for
performing operations on convex polytopes and non-convex unions thereof.

Example 9.2:www
To illustrate the capabilities of the Multi-Parametric Toolbox, we consider
a double integrator whose transfer function representation is given by

P (s) =
1
s2

With a sampling time Ts = 1 second, the corresponding state-space form
can be written as

x(k + 1) =
(

1 1
0 1

)
x(k) +

(
1

0.5

)
u(k)

y(k) = x2(k)

We want to design an explicit optimal state-feedback law which minimizes
the performance index (9.107a) with N = 5, P = 0, Q = I, and R = 1.
System states and the control signals are subject to constraints x(k) ∈
[−1, 1] × [−1, 1] and u(k) ∈ [−1, 1], respectively. In order to solve the
problem (9.107) explicitly, one has first to describe the dynamical model
of the plant:
model.A = [1 1; 0 1];
model.B = [1; 0.5];
model.C = [0 1];
model.D = 0;

along with the system constraints:
model.umin = -1;
model.umax = 1;
model.xmin = [-1; -1];
model.xmax = [1; 1];

Next, parameters of the performance index have to be specified:
cost.N = 5;
cost.Q = [1 0; 0 1];
cost.R = 1;
cost.P_N = 0;
cost.norm = 2;
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Finally, the explicit optimal state-feedback control law can be calculated
by executing
controller = mpt_control(model, cost)

The obtained explicit control law is defined by

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−0.52 −0.94

)
x, if

⎛
⎜⎜⎜⎜⎜⎜⎝

0.48 0.88
−0.48 −0.88
−1 0
0 −1
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

x ≤

⎛
⎜⎜⎜⎜⎜⎜⎝

0.93
0.93
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

(Region #1)

−1, if

⎛
⎝ 1 0

0 1
−0.48 −0.88

⎞
⎠x ≤

⎛
⎝ 1

1
−0.93

⎞
⎠

(Region #2)

1, if

⎛
⎝ −1 0

0 −1
0.48 0.88

⎞
⎠x ≤

⎛
⎝ 1

1
−0.93

⎞
⎠

(Region #3)

and it can be plotted using the command
plot(controller)

which will show the regions of the state-space over which the optimal
control law is defined, as illustrated in Figure 9.3.

9.7 Tuning

Let us recall the GPC parameters: horizons N1, N2, Nu, control weighting λ,
and output weighting polynomial P . The effects of a change of the parame-
ters are strongly coupled and the strategies dealing with adjustment of GPC
parameters usually adjust only one parameter while all others are at some
default values.

9.7.1 Tuning based on the First Order Model

The tuning strategy based on the analysis of the first order system with time
delay is given as follows: The strategy is given as follows:

1. Approximate the process dynamics with the first order plus dead time
model:

G(s) =
Z

Ts+ 1
e−Tds (9.123)
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Fig. 9.3. Controller regions and the optimal control for the double integrator
example

2. If the sampling time has not yet been specified, select it as the larger value
that satisfies

Ts ≤ 0.1T, Ts ≤ 0.5Td (9.124)

3. Calculate the discrete dead time T̄d (rounded to the next integer)

T̄d = Td/Ts + 1 (9.125)

4. Set N1 = 1, and

N2 = 5T/Ts + T̄d (9.126)

5. Select the control horizon Nu (usually between 1–6) and calculate the
control weighting λ as

f =

{
0 Nu = 1
Nu

500

(
3.5T
Ts

+ 2 − Nu−1
2

)
Nu > 1 (9.127)

λ = fZ2 (9.128)

9.7.2 Multivariable Tuning based on the First Order Model

This tuning strategy is a generalisation of the previous approach to multivari-
able systems with R outputs and S inputs. Again, it is based on the analysis
of the first order system with time delay.
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1. Approximate the process dynamics of all controller output-process vari-
able pairs with first order plus dead time models:

yr(s)
us(s)

=
Zrs

Trss+ 1
e−Td,rss (9.129)

2. Select the sampling time as close as possible to:

T s
rs = max(0.1Trs, 0.5Td,rs), Ts = min(T s

rs) (9.130)

3. Set N1 = 1, compute the prediction horizon N2:

N2 = max
(

5Trs

Ts
+ krs

)
, krs =

Td,rs

Ts
+ 1 (9.131)

4. Select a control horizon Nu, equal to 63.2% of the settling time of the
slowest sub-process in the multivariable system:

Nu = max
(
Trs

Ts
+ krs

)
(9.132)

5. Select the controlled variable weights γr, to scale process variable mea-
surements to similar magnitudes

6. Compute the control weightings λs as

λs =
M

500

R∑
r=1

[
γrZ

2
rs

{
N2 − krs −

3
2
Trs

Ts
+ 2 − M − 1

2

}]
(9.133)

Fine tuning of the method is performed by increasing the corresponding γr

of the process variable for which tighter control is desired and increasing the
corresponding λs of the manipulated variable for which less aggressive moves
are desired.

9.7.3 Output Horizon Tuning

This tuning strategy assumes the active tuning parameter to be the output
horizon N2 with all other fixed at the values

N1 = 1, Nu = 1, P = 1, λ = 0 (9.134)

It is well known that if N2 → ∞, mean-level controller results. This controller
is rather conservative as its speed is the same as step responses.

The other limit for N2 is the value of the process dead time. If N2 = Td+1,
where Td represents process dead time, then we have the Minimum Variance
(MV) controller known to be unstable for non-minimum phase plants.

The practical range for N2 can be specified as

Td + 1 < N2 ≤ T90/Ts (9.135)
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where T90 is the time when process reaches about 90% of its final value after
input step change and Ts is the sampling time.

If the process is uncertain, it is better to start with a larger value of N2.
The minimum value of N2 for non-minimum phase plants should be such that∑

i gi has the same sign as the process gain.

9.7.4 λ Tuning

In this case the active tuning parameter is the penalisation of control moves
λ. All other parameters are fixed as

N1 = deg(B) + 1, Nu = deg(A) + 1, N2 ≥ Nu +N1 − 1 ≈ tr/Ts, P = 1
(9.136)

With λ equal to zero, dead-beat controller results. This is too rapid in the
majority of cases. Hence, with increasing value of λ the controller is made
more conservative. It might be shown that the closed-loop poles converge to
the open loop poles if λ→ ∞. Thus λ tuning is not recommended for unstable
plants.

It has been found that to desensitise the closed-loop system to changes in
process dynamics, the actual λ should be proportional to B(1)2:

λ = λ0B(1)2 (9.137)

with λ0 being a constant.
To determine a starting value of λ, the following relation can be used:

λ =
m tr(GTG)

Nu
(9.138)

and m is a factor of detuning the controller relative to the dead-beat control.
The control increments are approximately reduced by a factor m+1 compared
to that of the dead-beat strategy.

From this starting value of λ, an initial guess for λ0 can be determined
from (9.137).

9.7.5 Tuning based on Model Following

As it has been shown before, the P polynomial can be used to generate ref-
erence trajectory w/P . GPC can be set up to follow this trajectory exactly
and so to place the closed-loop poles at the process zeros. In order to have a
more practical controller, the model following can be detuned. This may be
accomplished by either increasing N2 or λ.

The fixed parameters are as follows:

N1 = 1, Nu = deg(A) + 1, N2 ≥ Nu + Td ≈ tr/Ts, λ = 0 (9.139)
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Most often, the models M = 1/P are of the first and the second order. If
the first order closed-loop model is assumed to be of the form

M(s) =
1

Ts+ 1
(9.140)

then its discrete equivalent is

M(z−1) =
(1 − p1)z−1

1 − p1z−1
(9.141)

where p1 = exp(−Ts/T ). The polynomial P can thus be chosen as (cf. equa-
tion (9.12)) and P (1) is equal to 1 to ensure the offset-free behaviour. This
model is applicable mainly for simpler plants as the first order trajectory may
sometimes generate excessive control actions.

The second order model can be of the form

M(s) =
1

T 2s2 + 2Tζs+ 1
(9.142)

Its discrete time equivalent is

M(z−1) =
n1z

−1 + n2z
−2

1 + p1z−1 + p2z−2
(9.143)

where

p1 = −2 exp
(
−ζTs

T

)
cos

[(
Ts

T

)√
1 − ζ2

]
(9.144)

p2 = exp
(
−2ζTs

T

)
(9.145)

Ignoring the numerator dynamics, the polynomial P may be specified as

P (z−1) =
1 + p1z

−1 + p2z
−2

1 + p1 + p2
(9.146)

The dominant time constant of the closed-loop system is approximately 2T
and the fractional overshoot is solely a function of the damping factor ζ:

ov = exp

[
−πζ√
1 − ζ2

]
(9.147)

and thus the user can then specify the desired rise time and overshoot and
translate these settings into an appropriate P polynomial.

9.7.6 The C polynomial

The CARIMA model includes knowledge about the disturbance properties in
the polynomial C. This can be estimated on-line using a suitable recursive
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identification algorithm. However, this is rather difficult in practice, because
the convergence of the C polynomial coefficients is rather slow.

Therefore, a more realistic approach is to set C by user directly. The value
that has been suggested as a default in the literature is of the form

C = (1 − 0.8z−1)2 (9.148)

Another possibility that follows from the optimal LQ theory is to calcu-
late it as a stable polynomial from spectral factorisation of the denominator
polynomial A as

C∗C = A∗A (9.149)

9.8 Examples

In this section some examples of the GPC control algorithm are shown. The
first example shows some effects of the tuning parameters that have been
described in the previous sections.

The bioreactor control example demonstrates the possibility of using a
non-linear model for predictions. Here, an artificial neural network model is
used. Comparison with an adaptive control based on a linear model shows
some drawbacks of adaptive methods applied to non-linear processes.

Finally, the pH control example shows a real-time control problem. It is
demonstrated that GPC is able to control such a strong non-linear process.

9.8.1 A Linear Process

Let us consider a linear continuous-time system with transfer function

G(s) =
1

(s+ 1)2
(9.150)

that is discretised with the sampling time Ts = 1.
Two simulation runs were performed. In the first, mean level settings were

given. The GPC parameters were N1 = 1, Nu = 1, λ = 0, and N2 varied
between 2 − 20. The results are shown in Fig. 9.4 and illustrate that with
the increasing N2 the control actions are smoother, more conservative and
converge to input step change.

In the second simulation λ was given as the varying parameter. The set-
tings of other parameters were N1 = 3, Nu = 3, N2 = 5 which for λ = 0 gives
the dead-beat controller. Increasing λ gives more weight to control increments
and slows down the controller. The results are shown in Fig. 9.5.
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Fig. 9.4. Increasing value of N2 leads towards mean-level control
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9.8.2 Neural Network based GPC

In this example we compare an adaptive GPC based on linear model (AGPC)
and implemented in the same way as in the previous example to GPC based
on non-linear neural network model (GPCNN).

The process studied was the bioprocess that describes the growth of Sac-
charomyces cerevisiae on glucose. The oxygen concentration co and the dilu-
tion rate Dg have been selected as the controlled and the manipulated vari-
ables, respectively.

A feedforward ANN plant model with the third order input dynamics and
one hidden layer was used. This means six neurons in the input layer with
signals

y(k − 1), y(k − 2), y(k − 3), u(k − 1), u(k − 2), u(k − 3) (9.151)

For the calculation of the step response, the ANN inputs are

y(k − 1), y(k − 1), y(k − 1), un, u(k − 1), u(k − 1) (9.152)

where the step change magnitude un was specified as

un = u(k − 1) +
w − y(k − 1)

Z
(9.153)

and the process static gain Z was determined from the step response estimated
in the previous sampling period. The static gain Z was initially set equal to
1. To take into account the fact that the initial conditions are not equal to
zero and the step input is not of unit value, the ANN approximation of the
step response is subsequently normalised.

For the free response the ANN inputs are

u(k − 1), u(k − 2), u(k − 3), y(k − 1), y(k − 2), y(k − 3) (9.154)

and it is assumed that the input is constant in the future.
The sampling period was set equal to 0.5 h. The training and validation

data sets (800 input-output pair samples) were obtained using a pseudo ran-
dom binary sequence input. The conjugate gradients algorithm was used as a
learning method and a genetic algorithm was used for the initialization of the
ANN weights.

For the AGPC, a third order discrete model has been considered for process
modelling. The model parameters have been estimated using the parameters
estimation algorithm LDDIF.

The GPC parameters were N1 = 1, N2 = 14, Nu = 4, λ = 0.1. The ob-
tained profiles of the process output controlled by the AGPC (dashed line)
and the GPCNN (solid line) are shown in Fig. 9.6. Figure 9.7 shows the pro-
files of the control actions generated by AGPC (dashed line) and GPCNN
(solid line), respectively. As it can be seen from these figures, both algorithms
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Fig. 9.6. Trajectories of the oxygen concentration (the process output)
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Fig. 9.7. Trajectories of the dilution rate (the manipulated variable)

achieve good results. When a large change of the setpoint occurs (see Fig. 9.7,
t = 50 h), GPC based on linear model leads to a generation of a bad transient
behaviour. Unlike AGPC, GPC based on ANN generates a smooth control
action which leads to a good control behaviour. This behaviour was expected
as the AGPC is based on linear model. Due to the nonlinear characteristic of
the bioprocess, a large change of the setpoint or some disturbance can bring
the process into other operating points with different dynamical properties.

9.8.3 pH Control

The experimental pH control has been studied at the University of Dortmund.
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The neutralisation plant to be controlled consists of a laboratory-scale
continuous stirred tank with two inlets and one outlet (see Fig. 9.8)), in which
acetic acid is neutralized with sodium hydroxide.

The hold-up of the tank is 5.57 l, the concentrations of the acid and the
sodium hydroxide solution streams are approximately 0.01 mol/l. The acid
flow rate FA is fixed at 0.33 lmin−1, whereas the NaOH flow FB is manipulated
by the controller. In order to obtain the necessary precision of the flow rates
diaphragm pumps were chosen. All control actions are performed by a PC-
based control system. The flow FB is controlled by the modulation of an
impulse frequency f , which leads to a quantisation of the control amplitude
because the frequency can assume only certain discrete values.

acetic acid

sodium
hydroxide

efluent 
stream

QIC
pH

Fig. 9.8. Neutralisation plant

In the tank, the following reaction takes place:

NaOH + CH3COOH � CH3COONa + H2O (9.155)

Due to the incomplete dissociation of the acetic acid in water and the
equilibrium reaction with sodium hydroxide the system behaves like a buffer
solution between pH 4 and 6.5. Consequently, the process gain varies extremely
over the range of pH-values that can be controlled.

The controlled variable pH and the control variable FB have been scaled
for control and identification purposes as

y =
pH − 7

7
u =

FB − F s
B

F s
B

(9.156)

where F s
B denotes the approximate steady state value of FB corresponding to

pH = 7.
The parameters for the GPC controller were chosen as N = 50, Nu =

4, λ = 1, α = 0.3. Several model orders have been tried, the best results have
been obtained with the third order model. The sampling time was set at 5s.

The tuning of the predictive algorithm was performed at pH = 9 with
the requirement, that the deviations from the steady-state have to be within
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±0.1pH. It was observed, that the small values of Nu led to rather active con-
trol actions and the final value Nu = 4 was chosen as the result of trade-off
between the performance and the complexity of the calculations. The param-
eter λ influenced the penalisation of the future control increments. Very large
values caused limit cycles of pH as the control was unable to compensate sat-
isfactorily the disturbances, therefore the smallest possible value was chosen.

For the final tuning of the algorithm, the P polynomial was used. Only
the first order polynomial of the form P (z−1) = (1 − αz−1)/(1 − α) was
assumed. The smaller values resulted in increased steady-state deviations and
the larger values in very slow and oscillatory response to setpoint changes.
The value α = 0.3 was chosen as a compromise.

The experimental results of the adaptive GPC controller were compared
with a carefully tuned PI controller. All experiments were carried out with the
same pattern of setpoint changes. At first the reactor was stabilised at pH = 7
and then controlled to pH = 9, 7, 8.3 (Fig. 9.9). Finally, the disturbance
rejection performance has been studied. As a disturbance, a 20% decrease
of the acid flow was performed at t = 0 and held constant afterwards (see
Fig. 9.10).
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Fig. 9.9. Setpoint tracking
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Fig. 9.10. Disturbance rejection

The experiments have confirmed, that the adaptive GPC method is able to
control the strongly nonlinear plant and that it behaves much better compared
to the linear PI control. However the tuning of the controller parameters
must have been done with some care and only the parameters which slowed
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down the closed-loop system substantially, gave good results. This is because
a neutralisation reactor control is known to be not very succesful with linear
controllers.
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June 4 –7, Tatranské Matliare, Slovakia, volume 1, pages 153–156, 1995.

9.10 Exercises

Exercise 9.1:
Derive the control law from Example 9.1 on page 413 for the state-space model
and show that it is equivalent to the input-output model.

Exercise 9.2:
One possible way of including an integrator to a state-space model has been
demonstrated in section 9.3.4. Another possibility is to consider the new state
vector of the form

x̄(k) =
(

Δx(k)
y(k)

)
(9.157)

Derive the modified state-space description in this case.

Exercise 9.3:
Unstable processes can pose problems when the predictor is derived in sec-
tion 9.3.4. Calculation of the terms Ai for unstable matrix A can in this case
be ill-conditioned as higher powers of Ai do not converge to zero. One possible
remedy is to stabilise the controlled process using the state feedback control
law of the form

u(k + i) = −Kx(k + i) + ci (9.158)

where ci is a new optimised parameter and it is supposed that it is zero after
k+Nu. Derive prediction equations and find the solution minimising the cost
function without constraints.

Exercise 9.4:
Consider an unstable process with the transfer function of the form

G(z−1) =
1

1 − 2z−1 + z−2
(9.159)

• Calculate the closed-loop poles for N1 = 1, λ = 0, Nu = 1 a N2 =
1, 2, 3, . . . , 10. Find the smallest N2 that guarantees stable closed-loop
system.

• Choose suitable parameters of the predictive controller to realise the dead-
beat control.
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Adaptive Control

Dynamic and static properties of controlled processes often change in time.
Process control is always based on a process model. If process characteristics
are changing in time, it seems to be appropriate to use a time-variant process
model – model that adapts to changes in the process.

There are many approaches and definitions of adaptive control.
Adaptive control is such a control that adapts to unknown and changing

process behaviour.
Adaptive control can be in principle realised in several ways. One of them

is the self-tuning control. Here, one starts with a control design for a known
process. However, as process parameters are unknown, they are obtained us-
ing a recursive parameter identification algorithm assuming that the process
model is linear.

There are several reasons for use of self-tuning controllers. The first are
changes of operating points of technologic processes that are nonlinear. Lin-
ear models for each operating point are different and the controller should
change for each of them. Another reason are changes in physical process prop-
erties caused by material ageing, wearing etc. The third reason is the presence
and elimination of unmeasurable disturbances, perturbations, and unmodelled
process dynamics.

The self-tuning controller structure consists of two loops. The inner loop
contains a linear feedback controller with time-varying parameters. The outer
loop contains identification algorithm and a box that adjusts the controller
parameters based on the identification results. The linear controller design is
separated from the identification part. It can be based on LQ, LQG or other
control design. Parameter estimation is usually implemented using a least
squares method. A self-tuning control system is a complex nonlinear system
that converges under some conditions.

To start adaptive control, it is generally advisable to use a nominal sta-
bilising controller until the identified process parameters converge. As it was
shown in Section 6.3.1, if parameter estimation algorithm starts without any
a priori knowledge about the process (covariance matrix contains large values
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on the main diagonal), convergence can be attained in at minimum so many
steps as there is the number of parameters. After that it is possible to switch
the controllers usually using some kind of bumpless transfer methods.

Self-tuning control can be used based on both discrete-time and continuous-
time models.

10.1 Discrete-Time Self-Tuning Control

This section deals with an explicit self-tuning control based on discrete-time
process models. The explicit self-tuning algorithm is implemented in three
steps.

The first step is to estimate process model parameters of a given structure.
In the second step controller parameters are calculated given the process

model parameters from the first step and a suitable design method.
Manipulated variable is calculated and realised in the third step based on

the control law.
This procedure is repeated in each sampling instant.
The self-tuning control system with a discrete-time controller calculates

identified parameters and a new controller in each sampling instant. The ma-
nipulated variable and identified parameters then remain constant until the
new sampling time.

Block diagram of a self-tuning discrete-time control system of a singlevari-
able process is shown in Fig. 10.1.

_ 

Parameter
estimation

ProcessSampler
Discrete-time

controller

Calculation of
controller

parameters

y(k)

Tsu(k)

w(k)

Fig. 10.1. Block diagram of a self-tuning discrete-time controller
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10.2 Continuous-Time Self-Tuning Control

Block diagram of a self-tuning control with a continuous-time controller and
singlevariable controlled process is shown in Fig. 10.2.

_ 

Filter

Continuous-time
controller

w(t) u(t)

Ts

y(t)

Filter

Calculation of
controller

parameters

Parameter
estimation

Process

Ts

Fig. 10.2. Block diagram of a self-tuning continuous-time controller

The self-tuning continuous-time control uses a continuous-time controller
but its parameters are changed in discrete time intervals based on the re-
cursive identification of the continuous-time process. Inputs to identification
are filtered inputs, outputs and their derivatives. Outputs of the identifica-
tion block are piece-wise constant (with respect to time) parameters of the
continuous-time process model. See Section 6.3.3 for more details.

The self-tuning continuous-time control system is implemented in three
steps in the same way as its discrete-time counterpart.

10.3 Examples of Self-Tuning Control

The above described adaptive control algorithms will be tested on several
simulation examples. Testing of algorithms is usually based on step changes
of reference and disturbance variables, slowly varying parameters, etc for an
unknown system after some adaptation phase.

In all studies the recursive parameter estimation LDDIF with directional
forgetting is employed. Dead-beat, pole-placement, LQ, and predictive control
algorithms are used. Simulations results show that adaptive control algorithms
converge quickly.

Simulation studies in MATLAB/Simulink environment use the Polyno-
mial Toolbox for MATLAB and Simulink identification blockset IDTOOL.
Although other choices are possible, this corresponds to the authors and their
colleagues experience.
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One of the fundamental problems of the feedback linear control in general
and of ST control in particular is the issue of system structure selection. This
in linear case means determination of degrees of numerator and denominator.
If the model order is chosen too low, control performance will suffer. On
the other side, if the system degree is too high, its transfer function may
contain similar factors in numerator and denominator. As we have seen, the
Diophantine equation can be solved only if both polynomials are coprime.
Therefore, numerical problems and ill-conditioning can be observed in this
case.

Also the choice of the sampling period is very important in the ST control.
If not otherwise explicitly stated, all MATLAB simulations used default

values of the library IDTOOL. This includes LDDIF algorithm with increasing
exponential forgetting strategy (6.98) with λ0 = 0.985, minimum trace of
the covariance matrix δ = 0.01, zero initial parameter estimates, and initial
covariance matrix with values of 106 on the diagonal.

10.3.1 Discrete-Time Adaptive Dead-Beat Control of a Second
Order System

Consider a continuous-time controlled system with the transfer functionwww

G(s) =
bs1s+ as0

as2s2 + as1s+ 1
(10.1)

This system will be controlled by an adaptive feedback controller according to
Simulink scheme ad031s.mdl shown in Fig. 10.3. Initialisation of this diagram
is performed with the script ad031init.m that sets the process and discrete
integrator blocks. This file can be loaded automatically when the diagram is
opened using the MATLAB command (the scheme has to be already opened)

set_param(’ad031s’, ’PreLoadFcn’, ’ad031init’);

It is necessary to save the scheme afterwards. The first parameter of this
function determines the name of the Simulink scheme and the third determines
the name of the script to be executed.

Program 10.1 (Initialisation of the scheme in Fig. 10.3 – ad031init.m)
z = 2; t1 = 1; t2 = 2; ts = 1;
G = tf(z, conv([t1 1],[t2 1]));
zinteg = tf([1 0],[1 -1], ts);

The corresponding discrete-time transfer function is in the fractional rep-
resentation given as

G(z−1) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(10.2)
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param

To Workspace1

data

To Workspace

Step Scope

stdisconST discrete
controller design

G

Process

Pred. error

D. identification
SISO

Discrete identification

zinteg

Discrete
Integrator

Cov. matrix

1+.4z  +.2z −1 −2

1+.7z −1

Controller

u

y

B

A

w

w

Fig. 10.3. Scheme ad031s.mdl in Simulink for dead-beat tracking of a continuous-
time second order system with a discrete-time adaptive controller

Parameters a1, a2, b1, b2 are estimated in each sampling instant. The
controller without integral part is given by polynomials

Y (z−1) = y0 + y1z
−1 + y2z

−2, X(z−1) = x0 + x1z
−1 (10.3)

that are solution of the Diophantine equation

(1 + a1z
−1 + a2z

−2)(1− z−1)X(z−1) + (b1z−1 + b2z
−2)Y (z−1) = 1 (10.4)

The general transfer function of the controller is then of the form

R(z−1) =
Y (z−1) + (1 − z−1)A(z−1)T (z−1)

X(z−1) −B(z−1)T (z−1)
(10.5)

If T (z−1) = 0 then the controller defined as

R(z−1) =
y0 + y1z

−1 + y2z
−2

x0 + x1z−1
(10.6)

guarantees the finite-time response to the step change of reference and distur-
bance variables in a minimum number of control steps.

The controller parameters are determined in the each sampling instant
from (10.4) based on estimated parameters a1, a2, b1, b2. From the actual
control law is calculated the control action. This algorithm is repeated in each
sampling instant.

Parameter estimation is for the case shown in Fig. 10.3 implemented using
the discrete-time SISO identification block from the library IDTOOL and the
controller parameters are calculated in the S-function stdiscon.

We can notice in the Simulink scheme that in contrast to Fig. 10.1 it
contains only one feedback loop consisting of the controlled process and the
controller. The second loop is closed using the information about the ac-
tual controller parameter values from the block stdiscon into the block
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Controller. To achieve this, MATLAB function set_param is used within
stdiscon. The implementation of the function stdiscon is as follows.

Program 10.2 (S-function stdiscon.m)
function [sys,x0,str,ts] = stdiscon(t,x,u,flag,tsamp)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes(tsamp);

case 2,
sys=mdlUpdate(t,x,u);

case 3,
sys=mdlOutputs(t,x,u);

case 9,
sys=mdlTerminate(t,x,u);

otherwise
error([’Unhandled flag = ’,num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes(tsamp)
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 0;
sizes.NumInputs = 5;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [];
str = [];
ts = [tsamp 0];
% Controller initialisation
Denominator = ’[1 .7]’;
Numerator = ’[1 .4 .2]’;
set_param(’ad031s/Controller’, ’Numerator’, Numerator, ...

’Denominator’, Denominator);

function sys=mdlOutputs(t,x,u)
if t>4 % begin adaptive control
b = [1 zi zi^2] * [0; u(1:2)];
a = [1 zi zi^2] * u(3:5);
a = a * (1-zi); % add integrator
[x0,y0]=axbyc(a,b,1);
tt = 0;
xx = x0 - b * tt;
yy = y0 + a * tt;
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Denominator = sprintf(’[%f %f]’,xx{0},xx{1});
Numerator = sprintf(’[%f %f %f]’,yy{0},yy{1}, yy{2});
set_param(’ad031s/Controller’, ’Numerator’, Numerator, ...

’Denominator’, Denominator);
end
sys=[];

function sys=mdlUpdate(t,x,u)
sys = [];

function sys=mdlTerminate(t,x,u)
sys = [];
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Fig. 10.4. Trajectories of (a) input, output, and setpoint variables, (b) identified
parameters of the discrete-time process model controlled with a dead-beat controller

Fig. 10.4a shows trajectories of input and output variables of the controlled
process and Fig. 10.4b gives the trajectories of the estimated parameters.

The nominal controller was chosen as

R(z−1) =
1 + 0.4z−1 + 0.2z−2

1 + 0.7z−1
(10.7)

The adaptive closed-loop system was controlled in the first four sampling
periods with this nominal controller. Afterwards, the controller calculated in
the block stdiscon was used. The controlled process used in the simulation
was the same as its model.

10.3.2 Continuous-Time Adaptive LQ Control of a Second Order
System

Consider a continuous-time controlled system with the transfer function www
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G(s) =
b(s)
a(s)

=
b1s+ b0

a2s2 + a1s+ a0
(10.8)

This system will be controlled by an adaptive feedback controller accord-
ing to the Simulink scheme ad033s.mdl shown in Fig. 10.5. Initialisation of
this diagram is performed with the script ad033init.m that sets the process,
identification and controller update sampling time. This file can be loaded
automatically in the same way as in the previous example by the command

set_param(’ad031s’, ’PreLoadFcn’, ’ad031init’);

Program 10.3 (Initialisation of the scheme in Fig. 10.5 – file)
ad033init.m

ts = .5;
G = tf([1 1.5],[1 3 2]);

param

To Workspace1

data

To Workspace

Step Scope

stconconST continuous
controller design

G

Process

Pred. error

s

1

Integrator

Cov. matrix

.1s  +.4s+.22

.1s  +.7s+.22

Controller

C−identification
 SISO

Continuous identification

u

u

y

B

A

w

w

Fig. 10.5. Scheme ad0313.mdl in Simulink for LQ tracking of a continuous-time
second order system with a continuous-time adaptive controller

Parameters a0, a1, a2, b1, b2 are estimated in the each sampling time. The
feedback LQ control law based on state observation is given as

u = − q(s)
sp(s)

e (10.9)

where the polynomials

q(s) = q2s
2 + q1s+ q0, p(s) = p2s

2 + p1s+ p0 (10.10)

are solution of the Diophantine equation

a(s)sp(s) + b(s)q(s) = o(s)f(s) (10.11)

Polynomials
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o(s) = s2 + o1s+ o0, f(s) = s3 + f2s
2 + f1s+ f0 (10.12)

are stable and monic and f(s) is defined by the spectral factorisation equation

ã(−s)ã(s) + B̃Rs(−s)Q̃nB̃Rs(s) = f(−s)f(s) (10.13)

where

ã(s) = sa(s), B̃Rs(s) = ã(s) (sI − An)−1
Bn (10.14)

An =
(
0 I
0 A

)
, Bn =

(
0
B

)
(10.15)

A =
(

0 1
−a0 −a1

)
, B =

(
0
1

)
(10.16)

Weighting matrix Q̃n of the form

Q̃n =
(

Q 0
0 0

)
(10.17)

follows from the cost function to be minimised

I =
1
2

∫ ∞

0

(
xT Qx + u̇2

)
dt (10.18)

where

Q =
(
Q1 0
0 Q1

)
(10.19)

Coefficients of the control law are determined in each sampling instant from
equation (10.11) based on estimated parameters a0, a1, a2, b0, b1. Finally, the
control action is realised.

Parameter estimation is for the case shown in Fig. 10.5 implemented using
the continuous-time SISO identification block from the library IDTOOL and
the controller parameters are calculated in the S-function stconcon.

MATLAB function set_param is used to transfer the calculated controller
parameters into the block Controller and thus to close the adaptive control
loop. The implementation is as follows.

Program 10.4 (S-funkcia stconcon.m)
function [sys,x0,str,ts] = stconcon(t,x,u,flag,tsamp)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes(tsamp);

case 2,
sys=mdlUpdate(t,x,u);

case 3,
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sys=mdlOutputs(t,x,u);
case 9,
sys=mdlTerminate(t,x,u);

otherwise
error([’Unhandled flag = ’,num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes(tsamp)
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 0;
sizes.NumInputs = 5;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [];
str = [];
ts = [tsamp 0];
% Controller initialisation
Denominator = ’[.1 .7 .2]’;
Numerator = ’[.1 .4 .2]’;
set_param(’ad033s/Controller’, ’Numerator’, Numerator, ...

’Denominator’, Denominator);

function sys=mdlOutputs(t,x,u)
if t>4 % begin adaptive control
b1 = u(1); b0 = u(2); b = b1*s + b0;
a2 = u(3); a1 = u(4); a0 = u(5); a = a2*s^2 + a1*s + a0;

An=[0 0 1 0;0 0 0 1;0 0 0 1;0 0 -a0 -a1];
Bn=[0;0;0;1];
Cn=[b0 b1 0 0];
[BRs,AR]=ss2rmf(An,Bn,eye(4));
BR=Cn*BRs;

Q1=1; Q2=1;
Qn=[Q1 0 0 0;0 Q2 0 0;0 0 0 0;0 0 0 0];
[Dc,J]=spf(AR’*AR+BRs’*Qn*BRs);
Df=s^2+1.5*s+3;
[x0,y0]=axbyc(AR,BR,Dc*Df);
tt = 0;
xx = x0 - b * tt;
yy = y0 + a * tt;
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Denominator = sprintf(’[%f %f %f]’,xx{2},xx{1},xx{0});
Numerator = sprintf(’[%f %f %f]’,yy{2},yy{1}, yy{0});
set_param(’ad033s/Controller’, ’Numerator’, Numerator, ...

’Denominator’, Denominator);
end
sys=[];

function sys=mdlUpdate(t,x,u)
sys = [];

function sys=mdlTerminate(t,x,u)
sys = [];
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Fig. 10.6. Trajectories of (a) input, output, and setpoint variables, (b) identified
parameters of the continuous-time process model controlled with LQ controller

Fig. 10.6a shows trajectories of input and output variables of the controlled
process and Fig. 10.6b gives the trajectories of the estimated parameters. ID-
TOOL normalises the estimated transfer function, thus a0 = 1. LQ weighting
coefficients were set as ϕ = 1, ψ = 10.

The nominal controller and the observer polynomial were set as

R(s) =
0.1s2 + 0.4s+ 0.2
0.1s2 + 0.7s+ 0.2

, o(s) = s2 + 1.5s+ 3 (10.20)

The adaptive closed-loop system was controlled in the first eight sampling
periods (Ts = 0.5) with this nominal controller. Afterwards, the controller
calculated in the block stconcon was used. The choice of the sampling period
follows from the dynamical properties of the process. The controlled process
used in the simulation was the same as its model.
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10.3.3 Continuous-Time Adaptive MIMO Pole Placement Control

Consider a continuous-time multivariable controlled system with the transfer
function matrixwww

G(s) = A−1
L (s)BL(s) (10.21)

where

AL(s) =
(

1 + a1s a2s
a3s 1 + a4s

)
, BL(s) =

(
b1 b2
b3 b4

)
(10.22)

and a1a4 = a2a3.
Nonadaptive LQ control of this system was illustrated in Example 8.11 on

page 386.
This system will be controlled by an adaptive feedback controller accord-

ing to the Simulink scheme ad035s.mdl shown in Fig. 10.7. Initialisation of
this diagram is performed with the script ad035init.m that sets the process,
integrator, identification and controller update sampling time. This file can
be loaded automatically in the same way as in the previous example by the
command

set_param(’ad035s’, ’PreLoadFcn’, ’ad035init’);

Program 10.5 (Initialisation of the scheme in Fig. 10.7 – file)
ad035init.m

ts = 0.5;
al = [1+.3*s, .5*s; .1*s 1+0.7*s];
bl = [.2 .4;.6 .8];
bl = pol(bl);
[a,b,c,d] = lmf2ss(bl,al);
G = ss(a,b,c,d);

Parameters of the left matrix fraction ai, bi are estimated in each sampling
instant.

To calculate the controller, it is necessary to determine the right matrix
fraction of the controlled process

A−1
L (s)BL(s) = BR(s)A−1

R (s) (10.23)

The feedback controller

R(s) = P−1
L (s)Q(s) =

(
p1s p2s
p3s p4s

)−1(
q1 + q2s q3 + q4s
q5s+ q6s q7s+ q8s

)
(10.24)

is then obtained by solving the matrix Diophantine equation

P L(s)AR(s) + QL(s)BR(s) = ÕL(s)F R(s) (10.25)

where the matrix ÕL(s)F R(s) determines poles of the closed-loop system.
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Fig. 10.7. Scheme ad035s.mdl in Simulink for tracking of a multivariable system
with a continuous-time adaptive controller

Parameter estimation is for the case shown in Fig. 10.7 implemented us-
ing the blocks from the library IDTOOL and the controller parameters are
calculated in the S-function st2i2ocon.

MATLAB function set_param is used to transfer the calculated controller
parameters into the block Controller and thus to close the adaptive control
loop. The implementation is as follows.

Program 10.6 (S-funkcia st2i2ocon.m)
function [sys,x0,str,ts] = st2i2ocon(t,x,u,flag,tsamp)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes(tsamp);

case 2,
sys=mdlUpdate(t,x,u);

case 3,
sys=mdlOutputs(t,x,u);

case 9,
sys=mdlTerminate(t,x,u);

otherwise
error([’Unhandled flag = ’,num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes(tsamp)
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 0;
sizes.NumInputs = 8;
sizes.DirFeedthrough = 1;
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sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [];
str = [];
ts = [tsamp 0];
% Controller initialisation
A=’[0 0; 0 0]’;
B=’[1 0; 0 1]’;
C=’[1 0;0 1]’;
D=’[.1 .1 ; .1 .1]’;
set_param(’ad035s/Controller’, ...

’A’, A, ’B’, B, ’C’, C, ’D’, D);

function sys=mdlOutputs(t,x,u)
if t>4 % begin adaptive control
al = [1+u(1)*s, u(2)*s; u(5)*s, 1+u(6)*s];
bl = pol([u(3), u(4); u(7), u(8)]);
[br,ar] = lmf2rmf(bl,al);
ar = ar * s; % add integrator
% closed-loop poles
clpoles = [(0.7*s+1)*(1.5*s+1),0;0,(0.7*s+1)*(1.5*s+1)];
[pl,ql]=xaybc(ar, br, clpoles);
[ac,bc,cc,dc] = lmf2ss(ql,pl*s);
A = sprintf(’[%f %f; %f %f]’,ac’);
B = sprintf(’[%f %f; %f %f]’,bc’);
C = sprintf(’[%f %f; %f %f]’,cc’);
D = sprintf(’[%f %f; %f %f]’,dc’);
set_param(’ad035s/Controller’, ...

’A’, A, ’B’, B, ’C’, C, ’D’, D);
end
sys=[];

function sys=mdlUpdate(t,x,u)
sys = [];

function sys=mdlTerminate(t,x,u)
sys = [];

Fig. 10.6a,b shows trajectories of input and output variables of the
controlled process and Fig. 10.6c gives the trajectories of the estimated
parameters.

The nominal controller and the closed-loop poles were set as
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Fig. 10.8. Trajectories of (a) output, and setpoint variables, (b) input variables, (c)
identified parameters of the continuous-time process controlled with a pole placement
controller

R(s) =
(
s 0
0 s

)−1(1 + 0.1s 0.1s
0.1s 1 + 0.1s

)
(10.26)

ÕL(s)F R(s) = (0.7s+ 1)(0.5s+ 1)I (10.27)

The adaptive closed-loop system was controlled in the first eight sampling
periods (Ts = 0.5) with this nominal controller. Afterwards, the controller
calculated in the block st2i2ocon was used. The controlled process used in
the simulation was the same as its model.

10.3.4 Adaptive Control of a Tubular Reactor

This example dealing with the control of a tubular chemical reactor describes
the adaptive implementation of GPC. A linear model is estimated on-line with
a recursive least squares algorithm and successively controlled.

We consider an ideal plug-flow tubular chemical reactor with an exothermic
consecutive reaction A→ B → C in the liquid phase and with countercurrent
cooling. It is assumed that A is the educt, B is the desired product and C the
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unwanted by-product of the reaction. Such reactors are central components of
many plants in the chemical industry and exhibit highly nonlinear dynamics.

Mathematical model of this reactor is given as

∂cA
∂t

= −v ∂cA
∂z

− k1cA (10.28)

∂cB
∂t

= −v ∂cB
∂z

k1cA − k1cB (10.29)

∂T

∂t
= −v ∂T

∂z
+

qr
ρcp

− 4U1

d1ρcp
(T − Tw) (10.30)

∂Tw

∂t
=

4
(d2

2 − d2
1)ρwcpw

[d1U1(T − Tw) + d2U2(Tc − Tw)] (10.31)

∂Tc

∂t
= v

∂Tc

∂z
+

4n1d2U2

(d2
3 − n1d2

2)ρccpc
(Tw − Tc) (10.32)

with initial conditions

cA(z, 0) = csA(z), T (z, 0) = T s(z), Tc(z, 0) = T s
c (z)

cB(z, 0) = csB(z), Tw(z, 0) = T s
w(z) (10.33)

and with boundary conditions

cA(0, t) = cA0(t), T (0, t) = T0(t)
cB(0, t) = cB0(t), Tc(L, t) = TcL(t). (10.34)

Here t is time, z space variable along the reactor, c are concentrations, T are
temperatures, v are fluid velocities, d are diameters, ρ are densities, cp are
specific heat capacities, and U are heat transfer coefficients. The subscripts
are (.)w for metal wall of tubes, (.)c for coolant, and (.)s for steady-state
values. The reaction rates k and the heat of reactions are expressed as

kj = k0j exp(−Ej/RT ) , j = 1, 2 (10.35)
qr = h1k1cA + h2k2cB (10.36)

where k0 are exponential factors, E are activation energies and h are reaction
enthalpies.

Assuming the reactant temperature measurement along the reactor at
points zj , the mean temperature profile can be expressed as

Tm(t) =
1
n

n∑
j=1

T (zj , t) (10.37)

where n is the number of measured temperatures along the reactor.
The input variable, the value of qc, has been assumed to be constrained in

the interval

0.2 ≤ qc ≤ 0.35 (10.38)
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For the control purposes both the manipulated input and the controlled
output were defined as scaled deviations from their steady-state values

u(t) =
qc(t) − qs

c

qs
c

, y(t) =
Tm(t) − T s

m

T s
m

. (10.39)

This scaling helps to obtain variables with approximately the same magnitude
and reduces the possibility of ill-conditioned control problem and round-off
errors.

The sampling time was chosen Ts = 3s and the reactor was on-line iden-
tified as SISO discrete system with deg(A) = 2, deg(B) = 3 of the form

y(k) = −a1y(k−1)−a2y(k−2)+b1u(k−1)+b2u(k−2)+b3u(k−3)+dc+ξ
(10.40)

The estimation method used is the recursive least-squares algorithm LDDIF
with exponential and directional forgetting. The value of exponential forget-
ting was set at 0.8 and the minimum of the covariance matrix was constrained
to 0.01I. The purpose of these settings was to improve tracking properties of
the estimation algorithm.

The result of the first simulation is shown in Fig. 10.9. It shows comparison
of two GPC settings: mean-level (ml) and dead-beat (db) control.

The upper graph represents behaviour of the controlled variable Tm to-
gether with its reference value and the lower graph manipulated variable qc.

The values of GPC tuning parameters [N1, N2, Nu, λ] were [1, 15, 1, 10−1]
for mean-level and [3, 7, 3, 10−5] for dead-beat, respectively. These values cor-
respond to the slow open loop response (ml) and the fastest dead-beat re-
sponse. The polynomials P,C were set to 1 as the effect of disturbances is
very small. One can notice that the dead-beat control strategy actively uses
constraints on manipulated variable defined by Eq. (10.38).

The purpose of the second simulation was to investigate the behaviour
of GPC with respect to unmeasured disturbances. The output variable was
corrupted by measurement noise with variance 0.1K. The inlet concentration
cA0 of the component A varied in steps and was given as

t 0 100 300 500
cA0 − csA0 0 0.1 0 0.1
Due to the presence of disturbances, the design polynomials P,C were

used. The polynomial C attenuates effects of measurement noise and the
polynomial P shapes responses of the closed-loop system subject to load
disturbances in cA0 and also to reference step changes. The degrees of the
polynomials were chosen 1 and their values as

P = 0.6 − 2
3
z−1, C = 1 − 0.8z−1. (10.41)

The GPC controller was implemented with the mean-level strategy and had
the values of the tuning parameters given as [1, 15, 1, 10−1].
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Fig. 10.9. Comparison of the dead-beat (db) and mean-level (ml) control strategy
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Fig. 10.10. Effect of step disturbances in inlet concentration

The result of the simulation is shown in Fig. 10.10. One can notice that
the behaviour of GPC controller is very good and no abrupt control actions
can be observed. Moreover, the controlled variable quickly tracks the reference
temperature and the effects of load changes in cA0 are suppressed very well.
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J. Mikleš. A multivariable self-tuning controller based on pole-placement de-
sign. Automatica, 26(2):293 – 302, 1990.
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II. ES SVŠT, Bratislava, 1983. (in Slovak).

J. M. Douglas. Process Dynamics and Control. Prentice Hall, Inc., New Jersey,
1972.



References 467

J. C. Doyle, K. Glover, P. P. Khargonekar, and B. Francis. State-space solu-
tions to the standardH2 andH∞ control problems. IEEE Trans. Automatic
Control, 34:831–847, 1989.

P. Eykhoff. Trends and Progress in System Identification. Pergamon Press,
Oxford, 1981.

A. A. Feldbaum and A. G. Butkovskij. Methods in Theory of Automatic
Control. Nauka, Moskva, 1971. (in Russian).

M. Fikar and A. Draeger. Adaptive predictive control of a neutralization
reactor. In J. Mikleš, editor, Preprints of 10th Conf. Process Control’95,
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P. Grieder, M. Kvasnica, M. Baotić, and M. Morari. Stabilizing low complexity

feedback control of constrained piecewise affine systems. Automatica, 41
(10):1683–1694, 2005.

F. R. Hansen and G. F. Franklin. On a fractional representation approach to
closed-loop experiment design. In Proc. ACC’88, pages 1319–1320, Atlanta,
GA, 1988.
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Modelling of Systems in Chemical Technology. Chimija, Moskva, 1974. (in
Russian).

T. Kailaith. Linear Systems. Prentice Hall, Englewood Cliffs, New Jersey,
1980.

P. L. Kalman, R. E. Falb and M. Arib. Examples of Mathematical Systems
Theory. Mir, Moskva, 1971. (in Russian).

R. E. Kalman. On the general theory of control systems. In Proc. First IFAC
Congress, Moscow, Butterworths, volume 1, pages 481 – 492, 1960a.

R. E. Kalman. Contribution to the theory of optimal control. Boletin de la
Sociedad Matematica Mexicana, 5:102–119, 1960b.

R. E. Kalman. When is a linear system optimal? Trans. ASME, Series D,
Journal of Basic Engn., pages 51–60, 1964.

R. E. Kalman and J. E. Bertram. Control system analysis and design via the
second method of Lyapunov. J. Basic Engineering, 82:371 – 399, 1960.

R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction
theory. J. Basic Engr., 83:95 – 100, 1961.

R. E. Kalman, Y. C. Ho, and K. S. Narendra. Controllability of linear dynam-
ical systems in contributions to differential equations. Interscience Publish-
ers, V1(4):189 – 213, 1963.

L. B. Koppel. Introduction to Control Theory with Application to Process
Control. Prentice Hall, Englewood Cliffs, New Jersey, 1968.



References 469

B. Kouvaritakis and M. Cannon, editors. Non-linear Predictive Control:
Theory and Practice. The Institution of Engineering and Technology, Lon-
don, 2001.

B. Kouvaritakis, J. A. Rossiter, and A. O. T. Chang. Stable generalised
predictive control: an algorithm with guaranteed stability. IEE Proc. D,
139(4):349 – 362, 1992.

S. Kub́ık, Z. Kotek, V. Strejc, and J. Štecha. Theory of Automatic Control I.
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V. Kučera and D. Henrion. H2 optimal control via pole placement. In IFAC
Symposium Robust Control Design, Prague, 2000.
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